
Emergence of Communication in Competitive Multi-Agent 
Systems: A Pareto Multi-Objective Approach 

Michelle McPartland 
Artificial Life and Adaptive Robotics 

(A.L.A.R.) Lab 
University of New South Wales 

Australian Defence Force Academy 
Campus Northcott Drive, Campbell, 

ACT 2600, Australia 

m.mcpartland@adfa.edu.au 

Stefano Nolfi 
Institute of Cognitive Science and 

Technologies 
CNR, Viale Marx 15 
Rome, 00137, Italy 
s.nolfi@istc.cnr.it 

Hussein A. Abbass 
Artificial Life and Adaptive Robotics 

(A.L.A.R.) Lab 
University of New South Wales 

Australian Defence Force Academy 
Campus Northcott Drive, Campbell, 

ACT 2600, Australia 

h.abbass@adfa.edu.au 
 
 

ABSTRACT 
In this paper we investigate the emergence of communication in 
competitive multi-agent systems.  A competitive environment is 
created with two teams of agents competing in an exploration 
task; the quickest team to explore the largest area wins.  One team 
uses indirect communication and is controlled by an artificial 
neural network evolved using a Pareto multi-objective approach.  
The second team uses direct communication and a fixed strategy 
for exploration.  A comparison is made between agents with and 
without communication.  Results show that as the fitness function 
vary differing exploration strategies emerge.  Experiments with 
communication produced cooperative strategies; while the 
experiments without communication produced effective strategies 
but with individuals acting independently. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning - Concept learning  
Connectionism and neural nets 

General Terms 
Experimentation, Theory 

Keywords 
Communication, multi-agent systems, artificial life, evolutionary 
robotics and adaptive behavior 

1. INTRODUCTION 
The purpose of this paper is to investigate the emergence of 
communication strategies in a competitive multi-agent system.  
Evolutionary techniques are used to develop the communication 
strategy within a population of agents. The experiments 
encourage the emergence of communication strategies through a 

task where cooperation between individuals is conducive to the 
improvement of the group’s behavior. 

The task that has been selected consists of two populations of 
agents competing for exploration area of an environment.  The 
first population (Blue) will evolve a competitive strategy through 
the use of indirect communication.  This indirect communication 
is analogous to pheromone trails deposited by ants and only 
occurs among Blue agents.  This encourages Blue agents to 
evolve an effective communication strategy which is cooperative 
and coordinated.  Whether any strategies develop however, is left 
entirely to evolution.  The opposing agents (Red) will use a fixed 
strategy involving direct communication.  This strategy is based 
on complete knowledge of the environment and is used to 
compete against the evolving Blue population.  Red agents will 
not be able to deposit or detect pheromone trails left by Blue 
agents.  This situation provides an asymmetric problem space as 
Reds have complete information of the environment while Blues 
have only local information.  However, both populations have the 
same goal: to increase the area explored by their team. 

The following section reviews a small sample of the current 
literature on artificial life techniques relating to communication.  
Section 3 describes the experimental design and setup.  Section 4 
presents the empirical results. Section 5 provides an observational 
analysis of the agents’ behavior that has evolved through 
communication.  The paper concludes in section 6 with further 
directions this work might take. 

2. BACKGROUND 
The origins of communication systems apparent in sentient 
organisms are largely unclear.  In the past decade researchers 
have been using artificial life techniques to study this 
phenomenon.  Communication can be seen as the interaction 
between intelligent entities [11].  Even in insect societies this is 
evident in the use of pheromone trails by ants foraging for food 
and the waggle dance of bees to indicate the direction and 
distance of nectar. 
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Communication systems can be divided into two distinct 
categories: direct and indirect. In the former category the behavior 
of one individual directly affect the sensors (and potentially the 
behavior) of other individuals.  In the latter category the behavior 
of one individual instead affects the external environment.  The 
modification of the external environment might later affect other 
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individual behaviors.  Speech and emails are examples of direct 
communication.  Pheromone trails are a biological example of 
indirect communication. 

Evolutionary computation models of communication are 
represented by three different paradigms: signals, symbols and 
complex syntactical structure [3].  Significant work has been 
undertaken in understanding signal-based communication 
[9][10][11][12]. Signals generally occur in animal or insect 
societies and rely on the transmission of information through a 
sign or indication.  In the work of [3] and [16] symbolic models 
have been evolved through object recognition tasks (physically 
and virtually respectively) which thereby develop lexicons.  The 
third model of communication, complex syntactical structure, 
concerns the development of language.  Refer to research by [3] 
and [6] for further information concerning complex syntactical 
structure. For an analysis of the adaptive factors that might favor 
the emergence of communication see [4][13][14]. 

Mataric uses simple broadcasting techniques to aid in the learning 
of multi-agent systems situated in complex, noisy environments 
[11]. These experiments illustrate the use of simple 
communication systems by robots to learn social skills.  The 
robots broadcast information concerning their current behavior 
and reinforcement value (the value they recently received for 
performing a useful task).  Robots in close proximity are 
encouraged to imitate this behavior thereby learning useful skills.  
The social behaviors learnt by the robots were broadcasting 
location of objects and yielding to other robots.  These behaviors 
are non-trivial to learn as reinforcement encourages the individual 
to be selfish (i.e. they want to be the highest scoring robot in the 
population), which is not conducive to cooperative learning. 

In the work by [10] we see the evolution of communication 
unaided by the designers.  Agents were embodied with artificial 
neural networks (ANN) and were provided with the abilities to 
produce signals with varying intensities and to detect signals up to 
a certain distance.  Evolved agents developed a communication 
system involving four different signals that allowed them to 
coordinate and cooperate in order to solve a collective navigation 
problem. 

Other successfully evolved communication systems demonstrate 
lessons concerning the origins of communication.  Smith 
hypothesizes on the evolution of language through experiments 
involving natural selection and cultural transmission [15].  
Learning biases, related to cultural transmission, of individuals in 
the population, were found to have a significant effect on the 
evolution of a reliable communication system.  In some cases the 
learning abilities of the agents could cancel out the effect of 
natural selection.  These results led to the implication that the 
evolution of language occurs in two distinct stages: firstly that a 
learning mechanism is adapted over a geological time scale and 
secondly that this learning mechanism enables the development of 
language over a historical time scale. 

The need to investigate the evolution of communication is 
important for a multitude of reasons.  Using artificial life 
techniques to evolve communication strategies may aid in the 
understanding of how communication (including language) may 
have evolved in animals, insects and humans alike [8][14]. 

This paper attempts to explore this issue by creating an 
environment which encourages cooperation among a team of 
agents through the use of simple indirect communication.  A 
competitive environment is achieved by means of a second team 
who has access to complete information via direct 
communication.  The use of communication is altered in the 
experiments to investigate the affect it has on the task at hand. 

3. METHODOLOGY 
The two populations of agents (Blue and Red) live in a 
rectangular environment of cells.  Each agent occupies exactly 
one cell, and no two agents can occupy the same cell {see Figure 
1}.  Movement of the agents is restricted to the 8 surrounding 
cells in the environment, provided the cell is empty.  All agents 
are moved synchronously through a random bidding system. 

 
Figure 1. 20x20 environment with 5 Blue agents (squares) and 

5 Red agents (triangles) in the center starting position. 
The behavior of each Blue agent is controlled by 5 identical 
ANNs, analogous to the central hive brain of insects such as bees, 
wasps or ants (i.e. the team is homogeneous).  Each ANN has 27 
sensory neurons, 10 internal neurons (that receive connections 
from the sensory neurons), and 4 motor neurons (that receive 
connections from the sensory and motor neurons). Sensory 
neurons encode: (a) the intensity of pheromone trails in the 8 
adjacent and the single current cell of the agent (9 neurons); (b) 
the presence of obstacles (agents or walls) in the surrounding 
cells; and, (c) the activation state of internal neurons at time t-1 
{see Figure 2}.  Agents can differentiate between a wall, a Blue 
agent and a Red agent.  This is encoded through randomly 
generated numbers between the following different ranges for the 
four types of obstacles: 0.0 – 0.2 for no obstacle; 0.2 – 0.4 for a 
wall; 0.4 – 0.7 for Blue agents and 0.7 – 1.0 for Red agents.  The 
motor neurons encode: (a) the direction of movement (3 neurons); 
and, (b) the amount of pheromone deposited in the current cell.  
The 3 output neurons were used to encode a binary direction of 
movement 0 to 7 where 000 represents moving north, 001 
represents moving north east and so on in a clockwise fashion.  
This ensures the distance between each direction is the same (i.e. 
the amount of change needed to the weights of the ANN to switch 
from direction 1 and 2 is the same as for 7 and 0). 
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Figure 2. ANN topology. 
 
The connection weights of the ANN controlling the Blue agents 
are evolved.  Group fitness is evaluated at completion of the time 
steps by counting how many cells have been visited by Blue (and 
eventually Red) agents. Only cells visited for the first time are 
considered. 
Each genotype encodes the connection weights of a 
corresponding ANN. A simple direct encoding was used in which 
each weight is represented with a real number.  Each network is 
duplicated five times, embodied into five corresponding Blue 
agents, and tested in interaction with the Red agents. 
The behavior of the Red agents is controlled by a fixed strategy 
involving complete information of the environment. The 
environment is projected onto a 3x3 resolution map where each of 
the nine segments store the number of Blue and Red agents.  An 
attraction-repulsion system is used to decide on the movements of 
Red agents. The system uses a weighted sum algorithm where the 
segment with the maximum number of Blues and minimum 
number of Reds had the highest probability of being visited next.  
A random position in the calculated segment is selected for the 
agents heading {see Figure 3}.  This calculation was repeated 
once the agent had reached its destination position.  This strategy 
is designed so the Red agents traverse empty areas (of Red 
agents), while at the same time attempting to block the Blue 
agents from their exploration. 

 
Figure 3. 3x3 resolution map and the selected segments 

represented by the directional lines from the Red agents. 

We chose to use the self-adaptive Pareto artificial neural network 
(SPANN) algorithm proposed in [1][17].  The evolutionary 
algorithm involves the selection, mutation and reproduction of a 
population of ANNs over a number of generations.  Each ANN 
has two fitness values associated with it, where the single 
objective case sets the second objective to a random number to 
promote diversity as suggested by [2].  The Pareto approach 
involves the preservation (elitism) of a Pareto set of ANNs.  The 
ANNs are ranked according to layers, where the highest scoring 
rank is the Pareto front.  This is made up of a minimum of three 
and maximum of ten ANNs.  Therefore, two networks which have 
a high fitness in differing objectives are ranked equally.  
Reproduction involves three parents and the algorithm 
incorporates a self-adaptive crossover and mutation rate. 
The Pareto approach has been shown to be more advanced than 
traditional evolutionary methods in relation to maintaining 
diversity in the population and efficiency in finding a good 
quality solution, though not necessarily the best, in a short time 
[17]. 

3.1 Experiments 
In order to perceive an accurate view of the effect of 
communication on group cooperation, five experiments were 
necessary: 

T1. single objective with no communication; 
T2. single objective with random indirect communication; 
T3. single objective with indirect communication; 
T4. multi-objective with correlated objectives; and, 
T5. multi-objective with negatively correlated objectives. 

The single objective used in the first three experiments involves 
the maximization of the Blue exploration area.  This encourages 
Blue agents to explore but does not encourage strategies to block 
Red movement.  No communication is included as a bench mark 
for the other experiments to reliably compare the effect of 
communication on the task.  This simply involves the sensory 
neurons associated with the pheromones being set to 0.  The 
second experiment introduces random pheromone trails.  The 
justification for this was to ‘shake’ the weights of the ANN during 
evolution to produce a random communication strategy and to 
ensure that the pheromone trails used in the third experiment are 
not merely used as random sensors by the network.  The third 
experiment institutes communication by enabling pheromone 
trails.  The last two tasks use multiple objectives.  The first 
objective in both tasks is the same as the single objective 
experiments, to maximize the Blue exploration area.  The second 
objective in T4 is to minimize the exploration of Red.  The last 
experiment, with negatively correlated objectives, attempts to 
maximize Blue and maximize Red.  Due to the properties of the 
Pareto approach this will ensure the best case for the first 
objective (maximize Blue exploration) will be on one end of the 
Pareto front, while the best case for the second objective 
(maximize Red exploration) will be at the other end.  This 
approach ensures greater diversity in the population because of 
the conflicting objectives. 
The five experiments were repeated 30 times with different 
random seeds.  The same parameters were used for all the 
experiments and can be seen in Table 1. 
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Table 1. Parameters for experiments 

Parameter Task 

Task T1…T5 

Number of Blue Agents 5 

Number of Red Agents 5 

World Dimension 20x20 
Pheromone Evaporation 

Rate 0.03 

Generations 300 

Number of ANNs 100 

Hidden Neurons 10 

Time Steps 100 

 

4. RESULTS 
This section is divided into three sub-sections.  In section 4.1, the 
evolutionary results are discussed through observing the best 
network and average population over time for each of the 
aforementioned experiments.  Section 4.2 looks at the workings of 
an evolved ANN through the correlation between the input and 
hidden neurons.  The agent’s behavior from each experiment is 
analyzed in section 4.3. 

4.1 The Effect of Objective Functions 
Five experiments were performed to explore the effect of varying 
objective functions.  For each task the ANN that performed best 
in Blue exploration is displayed over time with the corresponding 
Red exploration area.  The average of the best ANN over the 30 
experimental runs was calculated and represented.  Note the best 
Red exploration is not preserved over the generations in the single 
objective experiments.  This is due to the single objective 
selection pressure only driving Blue exploration.  As previously 
mentioned the second fitness value is set with random values, 
thereby the better Red strategies are not necessarily preserved. 
The first experiment provided no means of communication for the 
Blue agents.  This was included to observe the effect 
communication has on the emerged behavior in the system.  The 
highest scoring ANN produced a fitness of 241 in Blue 
exploration; however, the Red exploration remains at a constant 
rate {see Figure 4}.  Results confirmed that a reasonable strategy 
that maximized exploration of Blue can still emerge. However, as 
we will show in section 4.3, agents behaved independently, with 
no significant interaction between or within teams. As Red uses a 
fixed strategy, and as Blue can only detect Red in the immediate 
neighborhood, a no communication strategy is suited for this task.  
Only when Blue agents detect a Red in the immediate 
neighborhood, a Blue agent may have a better chance to behave in 
a non-random fashion. We use these results for benchmarking the 
other experiments. 

T1
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Best Blue Best Red Avg Blue Avg Red  
Figure 4. The best and average ANN(s) in T1. 

T2 introduces the random communication system through the 
pheromone sensors being set to random values.  Results show a 
sharp decrease in Blue exploration.  Our initial hypothesis that by 
feeding these sensors with random values may ‘shake’ the 
network and produce a better result than T1 was incorrect. The 
random sensors introduced too much noise to the agents and the 
network was unable to filter this large amount of noise arriving 
simultaneously to the 9 sensors.  The top scoring network 
produced a fitness of 208 in Blue exploration and 198 in Red {see 
Figure 5}.  Of particular interest, the average of Blue and Red 
have a difference of one point in fitness {see Table 2}.  This 
shows that the strategy for Red and Blue are evenly matched.  We 
can also see the variance in the Blue population of ANNs is small 
by looking at the difference between the best ANN and the 
average of ANNs.  We expect that the larger the difference the 
more variance in the set of solutions.  This experiment is also a 
benchmark for the other three experiments because it gives us 
confidence that the network in the remaining experiments is using 
the pheromone in a sensible way and not just in a random fashion. 
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Figure 5. The best and average ANN(s) in T2. 

T3 is the first experiment where we allow agents to sense the 
pheromone level they deposit; therefore, communication is 
allowed.  The results show the best scoring fitness in Blue 
exploration at 269.  This is the best fitness produced for Blue 
exploration throughout all the experiments.  Red exploration is 
similar to both T1 and T2 {see Table 2} and follows a trend of a 
slight decrease from generation one to ten, then oscillates 
regularly for the remaining generations.  The increase in Blue 
exploration has had next to no effect on Red exploration.  The 
average of Red fitness reaches 185, compared to 183 and 184 of 
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T1 and T2 respectively {see Table 2}.  A significant increase in 
variance of the Blue population is apparent from the distance 
between the best and average Blue compared with the distances in 
T1 and T2. 
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Figure 6. The best and average ANN(s) in T3. 

The first of the multi-objective experiments attempts to place 
some selection pressures on minimizing Red exploration.  Figure 
7 shows the best ANN reaching 245 in Blue fitness.  The average 
of Blue is lower than T1 and T3; this is due to the introduced 
selection pressure for minimizing Red exploration. The 
interaction between Red and Blue was not encouraged in any of 
the previous three experiments.  Once such an interaction is 
favored, the Blue team has to sacrifice some of its own fitness to 
block the path of Red.  The reduction of 24 exploration units in 
Blue (when comparing T3 and T4) is balanced with a reduction of 
34 units in the exploration of Red.  The results show the first 
significant effect on the exploration of Red.  Figure 7 shows the 
best fitness of Red oscillating sharply in the first 60 generations, 
and then tapers into a consistent low fitness of 143.  The best 
ANN has evolved a reasonable strategy which increases Blue 
exploration while simultaneously decreases Red exploration. 
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Figure 7. The best and average ANN(s) in T4. 

The second multi-objective experiment involved negatively 
correlated objectives of maximizing Blue and Red exploration.  It 
is evident in Figure 8 that this in fact occurred.  Blue reached a 
high of 244 in fitness with a corresponding top scoring Red of 
209.  The average of the Red networks illustrates a slight increase 
of fitness over the first 100 generations.  We hypothesize that 
given the Red strategy has not changed, Blue is actually evolving 
strategies that are avoiding Red to allow Red to explore more 
areas. 
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Figure 8. The best and average ANN(s) in T5. 

The following table summarizes the empirical data displayed in 
the graphs. 

Table 2. Summary of results for T1-T5 

 T1 T2 T3 T4 T5 

Best Blue 241 208 269 245 244 

Best Red  186 192 182 148 209 
Average 

Blue 192 182 197 185 196 

Average Red 184 183 185 175 212 

 

4.2 Activation States of ANN 
In order to form a basic understanding of the neurons’ behaviors 
we investigated the correlation of the activation states of the 9 
pheromone neuron sensors, 10 hidden neurons and the one 
pheromone output neuron.  T1 did not use the pheromone trails so 
no comparison was made.  In T2, the correlation coefficients fall 
between -0.5 and 0.5 for many of the hidden neurons. This 
correlation explains the drop in the Blue population’s 
performance because the random sensory input neurons were 
generating a high level of noise for the network.  
The correlation coefficients between the sensory input neurons 
and the hidden neurons were very high for experiments T3-T5.  
T3 was found to have high correlation coefficients, ranging -1 to 
1, with the higher correlations only periodically occurring 
throughout the experiments.  T4 and T5 had similar correlation 
between the input, hidden and output pheromone neurons. 
Figure 9 represents a 3-dimensional landscape of the correlation 
coefficients for the best network achieved in each of the 30 
experiments for T5. The x-axis represents the hidden neurons (30 
experiments x 10 hidden neurons in each experiment = 300 
hidden neurons).  The y-axis represents the 9 inputs (1-9) and the 
1 output neuron (10).  It is evident from Figure 9 that there exists 
a high correlation coefficient between the hidden neurons’ 
activations and the pheromone values (both as input and output). 
This demonstrates that T3-T5, but more so in T4 and T5, use the 
pheromone inputs to evolve an exploration strategy. 
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Figure 9. Activation correlation for input and hidden neurons 
for T5. 

 
A Blue agent was extracted from T4 to study its behavior in an 
experiment.  Figure 10 shows the directions the agent moved over 
one hundred time steps.  The direction is represented by the 
number corresponding to the binary encoding where north is 0, 
north east is 1, east is 2 and so forth in a clockwise direction.  The 
extracted agent has a preference for moving in west, north 
westerly direction for the majority of the time.  Periodically the 
agent moves east, south east and then south in different 
formations.  Interestingly the agent never moves north east, and 
only moves north and east once.  This agent may be 
representative of one of the Blue agents with the specialization 
behavior of attracting Red agents which will be seen in following 
sub section. 
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Figure 10. Foot stamp for an agent from T4. 

4.3 Behavior of Agents 
This section presents screenshots of the agent’s exploration area 
for the best ANNs evolved for each of the objectives.  Blue agents 
are represented by squares and Red by triangles.  The cells 
explored by the Blue agents are shaded with dark grey, the Red 
with light grey. 
Observation of the Blue agents’ behavior showed some interesting 
results.  The agents appear to move synchronously with each 
other in similar pattern formations.  The pattern consists of 
medium sized, approximately eight-step, circular movements with 
tails.  The results of this pattern can be seen in the checkerboard 

trail in white and dark grey space in Figure 11.  These are the 
spaces avoided from the circular movements.  The Blue agents are 
able to explore a wider space through the tails directing them on a 
new course.  Although there are no pheromone trails to guide 
them, the Blue agents explore the environment using their circular 
pattern producing an effective solution. 

 
Figure 11. Screenshot from T1. 

The empirical data from T2 showed the Blue and Red strategies to 
be equal.  Observation of a number of solutions showed this to be 
true.  Figure 12 represents a common theme occurring from the 
set of solutions from T2.  From a glance it is evident both sides 
are closely matched.  No pattern is discernible of the Blue agents; 
they genuinely appear to be moving in random directions. 

 
Figure 12. Screenshot from T2. 

The single objective experiments produced the highest 
exploration area for Blue agents and the highest average.  A 
common strategy that emerged from the set of solutions was 
distinct from the other experiments.  This involved a systematic 
strategy of long straight movements.  A typical agent would travel 
in a straight line until encountering an obstacle; this could be a 
wall or another agent.  Once an obstacle was encountered the 
agent would move up or down for a few steps and then begin 
traveling in the opposite direction, although sometimes they 
would retrace their own steps.  Every so often the agent would 
abandon the straight path behavior for a one-step diagonal path 
system which consisted of a typical pattern such as: one step 
north, one south east, one north, one south east and so forth.  As 
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seen in Figure 13, lines of white unexplored space are present 
near the dark grey of Blue exploration (see middle eastern and 
western portion of the environment).  This systematic behavior of 
straight movement produces good coverage of the environment. 
In the previous three experiments, it seems that the two teams 
became more specialized on different parts of the environment, 
where the Blue mostly explore the bottom half while the Red 
explore the top half.  

 
Figure 13. Screenshot from T3. 

The first of the multi-objective tasks (T4) evolved solutions 
containing high Blue fitness and low Red fitness.  Observation of 
the resultant behavior provided insight into a strategy the Blue 
agents used to minimize Red exploration.  In the run represented 
in Figure 14, the Blue agents begin by splitting into two groups.  
The first group began by moving in a north westerly direction in 
jagged steps (e.g. north, west, north, north, west etc.).  After a 
small amount of exploration in the north west corner of the map 
the agents appear to become stuck.  The three agents’ position in 
the north western corner of the environment in Figure 14, was 
held for the majority of the time steps. 
To gain an insight into this seemingly unintelligent behavior we 
must look at the actions of the second group.  One of the 
remaining two Blue agents began moving in a southerly direction 
and the other in an easterly direction.  Both agents began to 
thoroughly explore their areas, occasionally bumping into each 
other and then moving away again.  The area they are exploring 
has not been traversed by the Red agents as they are all hanging 
around in the north western area of the environment  The other 
Blue ‘stuck’ agents are acting as a decoy by attracting the Red 
agents through the weighted sum strategy.  The Red agents head 
towards the north western segment as it has the majority of Blue 
agents in it.  Once they reach their destination, there are too many 
Red agents in the segment so the new calculated position heads 
them away from the corner.  However, once they reach this new 
destination they head back to where all the Blues are hanging 
around as the Reds have all left.  This means the Red agents keep 
traversing the same paths, back and forth, leaving a huge area for 
the two Blue agents to explore.  We see signs of specialization 
within the group, even though all the agents are controlled by a 
single ANN. 

 
Figure 14. Screenshot from T4. 

The second multi-objective experiment produced an exploration 
strategy which maximized Blue and Red exploration.  The Blue 
agents’ movement generally focused on the southern and eastern 
regions of the environment.  The behavioral pattern of the Blue 
agents consisted of a diagonal movement strategy.  A typical 
agent may follow a sequence similar to: north, south east, east, 
north, south east etc.  It can be discerned from Figure 15 that the 
Blue agents generally avoid the areas the Red explore thus 
creating a cooperative environment.  Even though cooperative 
behavior has evolved between the two teams, the Blue still has 
coordinated behavior within its team.  The agents move out in 
different directions, singularly exploring the area using the same 
diagonal movement strategy.  This eventuated in all the agents 
heading towards the north eastern most corner of the map.  They 
all reached this point at the same time of time step 95. 

 
Figure 15. Screenshot from T5. 

It is evident from observations of the agents’ behaviors that the 
differing fitness functions have produced significantly different 
strategies.  T1 has evolved a reasonable solution to the problem; 
however, the agents act independently from each other.  
Observation of T2 supports the empirical data that the random use 
of pheromone trails creates too much noise for the ANN and 
thereby creates random behavior of the agents.  T3 showed the 
best results in Blue exploration, as the fitness function aimed 
solely to increase this.  The first three tasks produced diverse 
strategies for the exploration task; however, no cooperation 
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between the agents is evident.  T4 saw an interesting development 
in behavior by producing a blocking mechanism to stop the Red 
agents from exploring large areas.  The Blue agents sacrificed 
their own exploration to do this.  The last experiment, T5, 
demonstrated cooperation between the two teams.  The Blue team 
explored the area quite well while avoiding the Red agent 
exploration areas. 

5. CONCLUSION 
The results of these experiments demonstrate how a group of 
evolving agents, that are able to modulate the amount of 
pheromone released in the environment and detect pheromone 
intensity, are able to exploit indirect communication to coordinate 
and cooperate.  The effect of communication is apparent from the 
empirical comparison of the no communication experiment, the 
random communication experiment and the three communication 
experiments. Moreover, the results obtained show how multi-
objective optimization methods can be successfully applied to a 
collection of interactive agents that cooperate in order to achieve 
conflicting collective goals. Observation of the agents’ behaviors 
supported the empirical evidence in hypothesizing that the 
different fitness functions have a dramatic effect on the 
emergence of exploration strategies.  There was a clear 
relationship between the fitness functions and the behaviors that 
emerged in evolution. For example, cooperation between the 
agents was seen in T5 through avoidance of the Red team, while 
the competitive nature of T4 forced Blue agents to specialize and 
maneuver with the Red team. 
The experiments presented in this paper would extend well into 
the field of robotics.  In order to do this it may be worthwhile 
changing the domain from discrete to continuous, in which 
different solutions may emerge.  Other experiments could be 
performed with differing environmental conditions, for instance 
the effect of number of agents, world size or starting positions. 
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