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ABSTRACT

Self-organization of brain areas in animals begins prdiyaev-
idently driven by spontaneously generated internal padteThe
neural structures continue to develop postnatally whenstre
sory systems are exposed to stimuli from the environmenthifn
process, prenatal training may give the neural system theoap
priate bias so that it can learn reliably under changingrenvi
mental stimuli. This paper evaluates the hypothesis thadrtin
ficial learning system can benefit from a similar approachsist-
ing of initial training with patterns from an evolved geniarafol-
lowed by training with the actual training set. Competitigarning
networks were trained in recognizing handwritten digitshree
ways: through environmental learning only, through evolubnly,
and through prenatal training with evolved pattern gemesafiol-
lowed by environmental learning. The results demonstraethe
evolved pattern generator approach leads to better |lepparfor-
mance, suggesting that complex systems can be constritded e
tively in this way.

Categories and Subject Descriptors

1.2.6—Connectionism and Neural Nets; 1.2.0—Cognitive \8ation;
1.5.2—Classifier Design and Evaluation

General Terms
Algorithms, design, experimentation, performance

Keywords

Competitive learning, evolutionary computation, pattgenera-
tors, spontaneous cortical activity, self-organizaticomplex sys-
tems

1. INTRODUCTION

The tradeoff between bias and variance is a well-known issue

in machine learning [11, 32]. Given a set of example inputs an
outputs (the training set), a learning system needs to ransa

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GECCOQ'05,June 25-29, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-010-8/05/0006$5.00.

11

James Bednar
School of Informatics
The University of Edinburgh
Edinburgh, EH1 2QL UK

jbednar@inf.ed.ac.uk

Risto Miikkulainen
Dept. of Computer Sciences
The Univ. of Texas at Austin

Austin, TX 78712 USA

risto@cs.utexas.edu

mapping that produces correct outputs for new examplesté¢gte
set). There is often a very large number of possible mapgiogs
sistent with the training set, and they result in differentpuits for
the same test inputs. Which mapping will be selected is deted

by the bias of the learner. The best results are obtainee ibidis
matches the problem and is strong. That way, the outputsefer n
examples are likely to be correct. Also, the same mapping-s s
lected with different training sets and even when the trajréx-
amples are noisy, i.e. the learner will have a low variance.

Unfortunately, it is usually not clear what the right biasrsak-
ing it necessary to make the bias weaker. Which mapping will b
selected then depends more on the training data. As a résailt,
variance is increased: The selection of the mapping becames
predictable, determined based on which examples werededlin
the training set and the noise in those examples. Choosimg-an
propriate point in the bias-variance tradeoff thereforpetiels on
how much is known about the problem in advance.

In this paper, a method for constructing artificial learnsyg-
tems that have both good classification accuracy and gooudihea
ability is proposed based on inspiration from nature on hdvan-
dles this bias-variance tradeoff. As a result of evolutimature has
created neural learning systems in the brain that underguelap-
mental process utilizing both genetic and environmentarima-
tion, as opposed to a pure hardwiring of neural connectiopsice
learning induced by the environment.

Experiments since the 1960s have shown that the environment
can have a large effect on the structure and function of thig ea
visual areas of the brain (see [23] for a review). For instaric
kittens are raised in environments consisting of only eattcon-
tours during a critical period, most of their primary visualrtex
neurons become responsive to vertical orientations [Slwéver,
there is also significant evidence on the contrary, sugygstat vi-
sual cortex structure is also genetically determined. kangple, it
has been known for a long time that individual orientatiefestive
cells exist in newborn kittens and ferrets even before tipeyndheir
eyes [6].

How can the same circuitry be both genetically hardwired, ye
also capable of significant learning and adaptation basékeoen-
vironment? The recent discovery of spontaneous activgiion
vides an important clue: Much of the neural activity in deyel
ing sensory systems is not caused by the external enviranimgn
generated internally in many cortical and subcortical sgnareas,
such as the visual cortex, the retina, the auditory systeioh ttze
spinal cord (see [25, 27, 33] for reviews). This activity nexypress
a genetic bias within a system that is designed to learn fhenen-
vironment. The genetic information is represented in tmeeseiay
at the neural level: as patterns of activity in the input sbgra



brain area. The same activity-dependent learning meaiartisat
can explain postnatal learning may simply be functioninfpiee
birth, driven by activity from internal instead of exterrsdurces.
The genome thus needs to specify only a pattern generataglaxm
anism capable of producing visual-like patterns, rathan tspeci-
fying individual connections.

These results from nature suggest that learning driven lly bo
internal and external inputs can be used to build complestid,
robust structures that would be too complex to determinectiy
genetically and too fragile to learn from external inputheTnain
hypothesis studied in this paper is that artificial learnsygtems
can achieve the same benefits as biological learning sydbgms
training using generated patterns in addition to actualitrg data.

In order to test this hypothesis, a competitive learning aleet-
work architecture is studied in the task of recognizing henitten
digits. Experiments were devised to evaluate the relatiggtmof
three learning approaches: (1) competitive learning ame set
of training data, (2) evolving (i.e. hardcoding through letion)
the network connection weights directly based on the sagie-tr
ing data, and (3) competitive learning on patterns produmedn
evolved pattern generator followed by competitive leagron the
training data.

The results show that competitive learning alone is muctkerea
than the other two methods. Although direct evolution evelty
achieves slightly higher classification accuracy thanepatgen-
eration, pattern generation reaches a high level of pegooa in
much fewer generations. In real-world applications as aslin
nature, such slow learning might not be practical, makingepa
generation a particularly useful way of constructing coempys-
tems.

The remainder of the paper is organized as follows. Section 2

reviews biological and computational background on pattgm-
eration and on interaction of learning and evolution. Theegel
hypothesis studied in this paper, i.e. that prenatal tngirbased
on evolved pattern generators is an effective way to buitdmlex
systems, is formulated in Section 3. The learning architecand
the algorithms used to evaluate the hypothesis are presiengec-
tion 4, and experimental results on the handwritten digibgai-
tion task in Section 5. The mechanism by which prenatal rain
ing helps avoid local minima in postnatal learning is anatymn
Section 6, and possible directions for future work are preskin
Section 7.

2. BACKGROUND AND RELATED WORK

In the following subsections, the biological motivatiorr feat-
tern generation is reviewed, followed by computationatiits ver-
ifying the advantage of combining learning with evolutiordahe
effects of generating internal patterns.

2.1 Biological Motivation

Many researchers have argued that the structure of the grima
visual cortex in mammals develops through self-orgaromedif in-
put connections from the thalamus, driven by visual expegdsee
e.g. [29] for a review). A number of classic experiments byoklu
Wiesel and other researchers showed that altering thel\ésua
ronment, especially during a critical period of early liéan dras-
tically change the organization of the visual cortex [16]. ISuch
experiments indicate that visual inputs are crucial fommarcor-
tical organization, and suggest that the cortex tunesf itsethe
distribution of visual inputs.

However, there are two problems with this result. Firstf-sel
organization takes time, and the animal would not be ablettora
visual input until the process is almost complete. Secdralself-
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organized structure depends critically on the specifictipptterns
available: if the visual environment is variable, the oigemmay
not develop predictably, and what the learning algorithetolvers
may not be the information most relevant to the organism.

In contrast, visual development in nature is highly stabled
the visual cortex of most animals is partially organizecadty at
birth (or eye-opening). For example, newborns can alreasly d
criminate between two orientations, and animals have msuaod
brain regions selective for particular orientations evefote their
eyes open [8, 31]. These same areas then later adapt catligiste
visual experience to construct an adult visual system [6EhSo-
bustness could be achieved with a specific, fixed genetiglihte
but there is not enough information available in the genaomep-
resent it.

Recent experimental findings in neuroscience suggest &taten
may have found a clever way to utilize self-organizationdbieve
the same result. Developing sensory systems are now known to
be spontaneously active even before birth, i.e. beforedbaid be
learning from the environment (see [25, 27, 33] for revievil®)is
spontaneous, internal activity may guide the process oicabide-
velopment, acting as genetically specified training pattdor a
learning algorithm.

Although spontaneous activity can arise at all levels oftteel-
oping visual system [20, 25, 27], retinal waves are a wetivikm
example and likely to play a role in prenatal self-organarat In
the developing retina of e.g. cats and ferrets, internatiyegated
activity occurs as intermittent, local waves across groofpgan-
glion cells [21]. The waves begin before photoreceptoreiier
veloped [19], so they cannot result from visual input. lastethey
arise from spontaneous recurrent activity in networks gétigping
amacrine cells that provide input to the ganglion cells [, 30].
Like visual images, these waves are locally coherent inespad
time and thus they could act as training input for the devalpp
visual cortex [28].

For a biological species, such training patterns can gteean
that each organism has a rudimentary level of performarara fr
the start. Such training would also ensure that initial tigwment
does not depend solely on the details of the external envieoi.
Thus, internally generated patterns can preserve the teoéfa
blueprint, within a learning system capable of much higream<
plexity and performance.

2.2 Computational Studies

The role of spontaneous activity in development has be¢edes
computationally using a computational map model of the alisu
cortex called HLISSOM [3, 4, 22]. Using prenatal trainindtpens
similar to retinal waves, two developmental phenomena \seerd-
ied: (1) How orientation maps develop in the visual corteangr
tally and postnatally, and (2) how human newborns come tepre
face-like visual input prenatally and how these prefersrutgange
in early life.

The HLISSOM orientation model resulted in detailed conmect
ity structure that matches known biological orientationgassing
circuitry in animals. When trained with three-dot input teats,
the model learned to respond preferentially to picturesacgs,
and these preferences changed as they do in infants in faier t
ing with visual images. The experiments with HLISSOM theref
elucidate computationally how self-organization basedneernal
pattern generation can account for the observed biologttat-
tures, resulting in species-specific biases such as faterpnees.

A related idea that has been explored computationally bgragév
researchers is combining evolution with learning from theren-
ment. In many such approaches, connection weights areesl/olv
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Figure 1: The architecture of the competitive learning netvork.
Binary activations from the input pattern consisting of 64 pix-
els are fed to the input units of the network, which also contans
a bias unit. The 10 output units each correspond to a classi-
fication of the input as one of the 10 digits; the one with the
highest activation is chosen as the answer of the network. Du
ing training, the weights of this unit are adjusted towards te
input pattern, making it more likely to win similar patterns in
the future.

for a network that later learns. In such a system, evoluten s
lects individuals with weight patterns that have the capaoilearn
good performance, rather than individuals with good pentoice
at birth [15, 24]. In other words, learning establishes esqtion
in the local vicinity of the genetically specified solutidvolution
can search a large search space efficiently, leaving lo¢ahiz@a-
tion to the learning algorithm rather than having to find therect
weight patterns directly. This process results in the Baldeifect
[1]: learning influences evolution even though acquired-atier-
istics are not inherited.

The above two ideas are brought together in this paper: The pa
tern generators are evolved to make postnatal learningectieé
as possible, as will be described in the next section.

3. GENERAL HYPOTHESIS

How can the idea of internal pattern generation be utilized i
constructing complex artificial systems? In the most shthig-
ward approach, the pattern generator can be designed spbygifi
for the task, as was done with HLISSOM. Such a generator allow
the engineer to express a desired goal without having to-tzadd
it into a particular, inflexible architecture. In essente ¢ngineer
will bias the learning system with generated patternsyatig it to
solve problems that would otherwise be difficult for leagnBys-
tems. For example, simple patterns can be learned befdréatsa
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thereby avoiding local minima in the search space of saist[8].
Such bootstrapping may also allow the designer to avoidresipe
and laborious manual collection and/or tagging of trairdatasets,
as in tasks like handwriting recognition and face detectior in-
stance, a three-dot training pattern could be used to detest
faces, and only the patterns that were not detected would teee
be tagged manually.

More significantly, the pattern generator could be constdiau-
tomatically using evolutionary algorithms (EA). In thismpach,
domain-specific knowledge necessary to design the gemdrgto
hand would not be needed. For instance, studying real faegs m
lead one to suggest that a three-dot configuration would luod g
training pattern to bootstrap a face detector; howevegnoiuch
knowledge can only be obtained through trial and error, dand i
would be better to have an algorithm to do it automatically- |
deed, the self-organizing system, the pattern generatdrthe EA
together can be considered a single general-purpose aslafiip-
rithm.

What benefits would such a system have over other adaptive
systems, such as EAs or learning networks alone? Essgntiall
the combination of learning and evolution represents anoal®e-
tween adaptation at different time scales (i.e. it deteesianproper
tradeoff between bias and variance; Section 1). Shorteasming
allows an individual network to become well suited for thetioa-
lar tasks on which it is tested. Long-term adaptation (eéection
by the EA) can ensure that short-term learning does not eegeis-
erality. For instance, the EA can select training patteonsrisure
that a system is able to handle events that occur rarely,rgetia
tally important over the long term. For example, a compuigion
system for detecting faults in manufactured devices camaiesd
both on the typical cases of correct devices, plus spedifigaher-
ated examples of faults and defects. The EA can also selgetipa
generators that get the system “in the ball-park,” to inseethe
chance that learning will succeed. Thus, by combining EA% an
learning using pattern generators, it should be possibkvodve
systems that perform better than using either approactealon

4. TESTING THE HYPOTHESIS

The hypothesis is tested in this paper with the task of coostr
ing a single-layer artificial neural network to identify thandwrit-
ten digits 0 to 9. The network receives the handwritten gig&
its input and produces the classification of each digit a®uis
put. Classification accuracy and learning effort is comgdoe
environment-based learning, direct evolution, and evblpattern
generator approaches.

4.1 Competitive Learning

The learning algorithm used is competitive learning [13]. 26
Even though other neural network learning algorithms maybee
powerful in general classification tasks, competitive hézg is a
good model for learning in biological systems. It is basedHet-
bian adaptation of synaptic efficacies [14] and itis a sejfanizing,
unsupervised algorithm. It therefore captures the kindeafriing
that is likely to occur in early development, as is apprdprir
testing the hypothesis.

The digits are written in aB x 8 grid of pixels (Figure 1). The
inputs to the network consist of the binary activations atG#4 grid
locations and a bias unit. The network has 10 outputs, onesfci
of the 10 digits to be recognized. Each output unit is coretect
directly to each of the inputs (including the bias).

Learning starts by initializing the network connection gfes
w;; between an input unit and an output unif randomly, and
normalizing so that the squares of the weights of each outpitit
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Figure 2: Inducerl produces a classifier network by perform-
ing competitive learning on the set of training examples. Tts
method corresponds to postnatal learning (there is no prenal
learning phase).

sum to one:
Wij
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Wi = .
u wi]
When the network is presented with an input pattern, eaghubut

unit j computes the weighted susn of its input activationse;:
S5 = Z WijTs-

The output unit with the highest sum is the winner for thatqrat
The weights of this unit are then updated as

@)

Wiy (t + 1) = wip +n(zi — win(t)), (3)

wheren is the learning rate. After the update, the weights of this
unit are again normalized so that their squares sum to on& Th
process constitutes a basic competitive learning methadishat
the core of many unsupervised learning algorithms [2, 1P, 18

4.2 Experimental Hypothesis

To evaluate the benefits of training with generated patt¢hnse
different ways of constructing the neural network are coraga

4.2.1 Inducerl

First, a network is trained using competitive learning al@kig-
ure 2). This process involves initializing the network wigmdom
weights and training it using a set of examples until its w&sgon-
verge. This method corresponds to an organism whose |lggisin
entirely postnatal, without any genetically determineaskis.

4.2.2 Inducer2

In the second method (Figure 3), the connection weightsef th
network are evolved directly; there is no competitive |&agrphase
at all. The architecture of the networks is the same as thht-in
ducerl. The classification accuracy of each network on #ieiirg
set is estimated to compute its fitness. The evolution isitertad
once the fitness on a validation set begins to level off, arch#i-
work at that point is output as the classifier.

4.2.3 Inducer3

Constructing the third classifier network involves evotyapat-
tern generator (Figure 4). Each generator produces a sattefips
on which a network is trained (using competitive learningpidg a
prenatal training phase. After the prenatal learning ismlete, the
resulting network is trained on the training set during atpaizl
training phase. After postnatal training, the fitness of gh#ern
generator is calculated based on how well the final network pe
forms on the training set. After all pattern generators m plop-
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Figure 3: Inducer2 produces a classifier network by evolving

the weights of a network that has the same architecture as
that produced by Inducerl. There is no prenatal nor postna-

tal learning in this approach.

ulation have been evaluated in this manner, the next geoeratt
pattern generators is formed. The evolution is terminatest dhe
fitness on a validation set begins to level off, and the netvaoid
the corresponding pattern generator at that point are batpthe
result of evolution.

The expected outcome of these comparisons is that the direct
EA (Inducer2) would require a prohibitively large numberitef-
ations, because it has to search in an extremely high-diomeals
space of network weights. The environmentally driven leam-
ducerl), on the other hand, is likely to get stuck in suboatical
minima, because it will start far from the desired solutiaithout
any bias toward it. In contrast, the pattern-generatoredrsystem
(Inducer3) should be able to discover a solution quicklydose it
only needs to evolve a small number of parameters of the gewer

4.3 Evolving Networks Directly

In order to evolve the weights of the network directly in tie |
ducer2 approach, each gene is coded as an array of 65 welighs va
(corresponding to 64 inputs + 1 bias) associated with anubwtpit.
The weights are floating point values between 0 (inclusive) @
specified maximum bound (exclusive). The genes for all thpudu
units are concatenated to form a chromosome, which cotestiain
individual in the population. Each chromosome therefonesisis
of 10 genes, one for each output unit of the network.

The weights are mutated by applying Gaussian perturbations
the floating-point weight values. The standard deviatiothefper-
turbation is calculated as the product of a “mutation fdcaod the
maximum value allowed for weights. If the mutated value bas
side the allowed legal range of values, the mutation is igth@nd
the weight is not changed. The probability of mutation istoalied
by a “mutation rate” evolution parameter.

Mating is done by selecting a partner from the population ran
domly and performing uniform crossover to produce an offgpr
Crossover takes place at two levels: individual weight ealand
whole genes. That is, genes and weight fields in the genesof th
parent are randomly selected and replaced by the corresppnd
piece of the genome from the partner to produce the offspfiihgs
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Figure 4: Inducer3 evolves pattern generators in its main coputational loop. The patterns produced by each generatorrain a
competitive learning network in the prenatal training phase. This phase is followed by a postnatal competitive learnmphase where
the network is trained further with a training pattern set, | ike Inducerl. The evolution run produces two results: the clampion

pattern generator and the classifier network trained using .

process is controlled by a “mating rate” parameter for gegledi
and another one for whole genes.

In every generation, all individuals are given a chance farove
their fitness either through mutation or by mating. If thespffng
has a higher fitness than a parent, the offspring replacgzatteat
in the population for the next generation; otherwise theephars
retained in the population, keeping the population sizestzont.

4.4 Evolving Pattern Generators

Each prenatal training pattern in the Inducer3 approactsis-a
gle two-dimensional Gaussian of floating point values betwe
and 1. Each pattern generator is coded as a collection ofGaak-
sians. Each gene in the chromosome specifies one Gausseh bas
on six floating-point valuess,, the standard deviation of the Gaus-
sian in thez-direction;o,, the standard deviation in thedirection;

6, the rotation angled,, the displacement in the-direction;d,, the
displacement in thg-direction; andf, the frequency (or probabil-
ity) with which the Gaussian appears among the generateerpat
set.

The values foro,, oy, d, andd, are constrained so that the
generated patterns lie within tl8ex 8 pixel grid. Thed parameter
varies within[0, ), which covers all possible orientations of the
Gaussian (since orientationssperiodic). Thef parameter varies
within [0, 1).

A specified number of genes are packed in a chromosome, which

then represents an individual pattern generator in the lptpno.
Selection, mutation, and crossover (at the levels of Ganssand
their parameters) are performed as in the Inducer2 approach

4.5 Estimating Classification Accuracy

Two methods are used to estimate how well the networks per-
form in their task. The first measures classification acqudie
rectly, and the second measures fithess more continuouslih B
methods require computing B x 10 confusion matrix, whose
(4, 4) entry is the number of times output ugitvon when exam-
ples of digiti were presented to the network.
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Figure 5: The procedure for calculating the percentage of ex
amples correctly recognized from a test set involves first lzel-
ing the output units of the network with the digits they have
learned to recognize using a validation set. Once the output
units have been labeled, the classification accuracy of theety
work on a test set can be determined.

Calibrate Network
by Labeling
Output Units

Network Network with Classification

Labeled output: Accuracy

4.5.1 Percentage Correct

The first method calculates the percentage of examples ihat a
correctly recognized from the test set (Figure 5). Sinceptitive
learning is an unsupervised method, the network does net laav
bels on its output units to indicate which digits they eagiresent.
The labeling must be done after learning, based on the peafoce
of the network on the validation set. Each output yrii assigned
the label of the first row with the highest value in colughof the
confusion matrix on the validation set. In some cases, theesa
label is assigned to multiple output units, some digits malyle
represented by any output unit, and some units may not gefeldb
at all (if they do not win any inputs). After labeling, the stifi-
cation accuracy on the test set can be determined. This neeigsu
used to compare the accuracy of the final networks producedi by
three approaches.

45.2 Fitness Estimation

The second method measures classification accuracy based on
how close to orthogonal the rows of the confusion matrix dfe.
the classifier is perfect then there can be only one non-zery e
in each column, corresponding to the digit that the unit gaizes.



Table 1: Parameters for evolution and learning
[l Inducerl] Inducer2] Inducer3

Prenatal learning rate 0.005
Prenatal max. epochs 100
Postnatal learning ratel| 0.0005 0.0005
Postnatal max. epochg| 1000 1000
Mutation factor 0.2 0.4
Mutation rate 0.9 0.5
Mating rate (fields) 0.1 0.2
Mating rate (genes) 0.05 0.1
Max. network weight 1.0
Max. displacement 8.0
Max. standard deviation 3.0
Number of genes 10 7
Size of pattern set 100
Population size 25 25
Max. generations 9000 9000

The average angle between the rows can therefore be used as
measure of classification accuracy without having to labeldut-
put units.

During evolution, the confusion matrix is calculated frohet
training set, and the average angle is used as fitness of metwo
and pattern generators. Such a fithess provides a smootiegsfit
landscape for evolution than the percentage-correct rdethae-
wards changes in the confusion matrix that may not resulhjn a
immediate increase in the percentage accuracy, but atg tikdo
so when accumulated over several generations.

5. EXPERIMENTS

The three classifier network inducers were evaluated us2992
image subset of the National Institute for Standards andhii@e
ogy (NIST) handwritten digit database. The dataset wasflsluf
and split into 11 equal-size parts so that a 11-fold crogdatbn
experiment could be run on it. In each of the 11 splits, a diffe
part was used for testing the classifier accuracy, anotlfierefnt
part for validation (i.e. determining when to stop evolatand la-
beling the output units), and the remaining nine parts faining.

Suitable values for the evolution and competitive learnjag
rameters were determined experimentally prior to the emysart
(Table 1). Competitive learning in Inducerl and Inducer3 wen-
tinued until all weights changed less thed 2 in an epoch, or up
to a maximum number of epochs. The network with the final con-
verged weights was taken as the result. The training examysee
presented in a different random order in each epoch.

Similarly, evolution in Inducer2 and Inducer3 was contitiue-
til the fitness on the validation set leveled off, i.e. did moprove
by more than 0.009 over the next 1000 generations. The cloampi
of this generation was then selected as the result of evoluti

The average classification accuracy over the 11-fold cedissv
dation experiment is shown in Table 2. The differences sedine
table are statistically significant as measured by paie8isident’s
t-test on the crossvalidation runs. As expected, Inducesigisf-
icantly less accurate than either Inducer2 or Inducer3.udac?
achieves a slightly better accuracy than Inducer3, but doés a
much larger number of generations than Inducer3. This ceia
is illustrated in Figure 6, where fitness and accuracy foubsad2
and Inducer3 are plotted over time for one example evolution
Inducer3 achieves a good level of performance much eaHaar t
Inducer2.
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Table 2: Average classification accuracies

[ Inducerl Inducer2 Inducer3
Average Accuracy(%)| 63.37 74.47 71.12
Average Generationg 2152 202

In real-world applications as well as in nature, where trerce
spaces are much larger, it may not be practical to run In@loeg
enough to achieve its best accuracy. In such domains, In8lica
preferable alternative for constructing complex systems.

6. EFFECT OF PRENATAL TRAINING

How does prenatal learning in Inducer3 allow postnataieay
to perform better than in Inducerl? It turns out that only & fe
output units learn anything during prenatal training; theeo units
maintain their initial random weights. Such focused |eagréstab-
lishes just the right bias for postnatal learning so thaststem as
a whole does not get stuck in local minima like Inducerl does.

The most obvious way to establish an appropriate bias would
Be to separate each digit to a different unit as much as geslib
ready in prenatal training. To some extent, this indeed bagppFor
example, during one sample run, one of the output units becam
biased toward learning digit 7 because of high weights omecn
tions to the top right corner of the input grid, whereas aeothit
became biased toward 9 because of high weights on conngction
to the top left corner. These biases were subtle but alloled t
network to disambiguate between the digits 7 and 9, whiclewer
particularly problematic for Inducerl.

However, such separation is not clear in other cases, amdlbve
the prenatally trained network is quite different from theafinet-
work, both in terms of weights and classification behaviorfakt,
the confusion matrix after prenatal training often showsgaii-
cant clustering of examples to one output unit, instead pdusdion
of each digit to a different unit. The digits are eventuatyparated
during postnatal training, and it turns out that the prareltester-
ing plays a crucial role in this process.

Without such clustering, all units have random initial leigsOne
and the same unit is likely to win most of the examples of simi-
lar digits, because the competing units have very diffebéses
and win other kinds of digits. Consequently, the units doleatn
to identify the specific features that differentiate the iEmdig-
its. This phenomenon is seen frequently with Inducerljq@aerly
with digits 7, 8 and 9, and it never recovers from it.

In contrast, in Inducer3 one of the output units forms a elust
and a few competing units have just the right biases. These co
peting units initially represent only the subtle differeadetween
similar digits in the cluster, and win only a few extreme exam
ples. As these units adapt to examples during postnatalitegr
they maintain these differences while they gradually bexdess
extreme. In this process, they eventually learn an effeatpre-
sentation for the entire digit category that is distincfrthe other
similar categories. In this way, evolution of pattern gawers dis-
covers a starting point from which it is easy to learn goodsila
fication, rather than a starting point that performs wekatty but
from which further progress is difficult.

7. DISCUSSION AND FUTURE WORK

As the classification accuracies in Table 2 show, Inducetfies
least accurate of the three methods. Since its weights iiddired
randomly, the network is not biased in favor of any learniathp
Without a proper bias, it regularly gets stuck in local miainOn
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Figure 6: Improvement in fitness and accuracy during evoluton of Inducer2 and Inducer3 for one example evolution run. Tte
final accuracy of Inducerl is also shown for comparison. The gttern-generator-based learner (Inducer3) reaches a gootevel
of performance much earlier than direct evolution learner (Inducer2), confirming that it is an effective strategy for castructing

complex systems.

the other hand, the networks in Inducer3 are prenatallgechwith
the generated patterns. Evolution converges on a patteeraer
that establishes biases on a few output units, making ieeémi
the network to separate the categories during the postiestad-
ing. The result is a significantly better classification aacy for
Inducer3.

8. CONCLUSIONS

Research on brain development in animals has led to insights
how complex brain structures are constructed prenatattypast-
natally. Spontaneous activity in the brain before birth rbayre-
sponsible for rudimentarily structures that are found instrami-
mals at birth. Such prenatal training may have been diseaviey

When constructing complex systems such as those in biology eyolution to establish a proper bias so that the system aan éfi-

and robotics, fitness evaluation of an individual requites live a
lifetime and interact with its environment. The individuzn ei-
ther be fixed as with Inducer2, or it can learn from the envirent
and improve its fithess, as with Inducer3. In both cases thatidn

of a lifetime (i.e. a generation) is the same. In this respgbetcost
of evaluating an individual is the same for both Inducer2 amd
ducer3, and only the number of generations needs to be cethpar
as was done in this paper.

According to this measure, Inducer2 also reaches a goobdéve
accuracy eventually, if evolution is allowed to proceedjenough.
Although its final accuracy slightly exceeds that of Ind&en-
ducer3 reaches a good level of performance in much fewergene
ations than Inducer2, as shown by the fitness and accuraty plo
in Figure 6. In other words, constructing a good digit redegn
tion network is much easier through prenatal pattern géoera
Without a proper bias, Inducer2 requires evolution to deararge
space of possible solutions. The digit recognition expenitiwith
such small networks is still within the limits of direct eutibn,
and a solution will eventually be found. However, largertpems
with larger search spaces may no longer be tractable forckr@u
Thus, the results confirm the hypothesis that prenatalitrgiwith
an evolved pattern generator is an efficient way to constrot-
plex systems.

The experiments described in this paper are based on a simple

competitive learning network. The domain of handwrittegitdi
recognition of 10 different digits is also simple comparedeéal-
world application domains. Future work will focus on applyi
these techniques to more complex learners and domainse\eer
benefits of Inducer3 are expected to be even more pronouticed.
successful, this effort will ultimately pave the way for #regineer-
ing of complex systems that are otherwise difficult or imfilussto
construct.
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ciently from environmental inputs after birth. This papeogoses
the same approach for building complex systems more gdyeral
The hypothesis is that pretraining a system with patteros fan
evolved generator will make the learning from the actuah dzts-
ier. Experiments in the handwritten character recognitiomain
supported this hypothesis, suggesting that complex sygstam be
effectively constructed in this way.
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