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Abstract 

Reinforcement learning is considered as one of the most suitable and prominent 
methods for solving game problems due to its capability to discover good strategies 
by extended self-training and limited initial knowledge. In this paper we elaborate on 
using reinforcement learning for verifying game designs and playing strategies. 
Specifically, we examine a new strategy game that has been trained on self-playing 
games and analyze the game performance after human interaction. We demonstrate, 
through selected game instances, the impact of human interference to the learning 
process, and eventually the game design. 
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1 Background 

The game theory domain is been widely regarded as appropriate for understanding the 
concepts of machine learning. Scientists usually focus on strategic games and make 
efforts to create “ intelligent”  programs that efficiently compete with human players. 
Such games are suitable for further studying because of their complexity and the 
opportunities they offer to explore winning strategies. Furthermore, evaluation criteria 
are typically known, whereas the game environment, the moves and the termination 
conditions can be simulated. 

Scientists have long tried to create expert artificial players for strategy games. In 
1949, Shannon began to study how computers could play chess and proposed the idea 
of using a value function to compete with human players. In 1959, Samuel created a 
checkers program that tried to find “ the highest point in multidimensional scoring 
space” . Although the experiments of Samuel’s research were impressive they did not 
exert significant influence (method-wise), until 1988 when Sutton formulated the 
TD( ) method for temporal difference learning. Since then, more games such as 
Tetris, Blackjack, Othello [Leouski 1995], chess [Thrun 1995], backgammon were 
analysed by applying TD( ) to improve their performance. During the 1990s, IBM 
made strenuous efforts to develop (first with Deep Thought, later with Deep Blue) a 
chess program comparable to the best human player. Whether it succeeded is still a 
philosophical and technological question. 

One of the most successful and hopeful applications of TD( ) is TD-Gammon 
[Tesauro 1992, 1995] for the game of backgammon. Using reinforcement learning 
techniques and after training with 1.5 million self –playing games Tesauro achieved a 
performance comparable to that demonstrated by backgammon world champions.  



The advantage of reinforcement learning domain among other learning methods is 
that it requires little programming effort for system training. Training is effected by a 
system’s interaction with its environment. RL comprehends changes on the learning 
environment without having to be re-programmed from scratch. 

As far as strategy games are concerned, the most important and critical point of them 
is to select and implement the computer’s strategy during the game. The term strategy 
stands for the selection of the computer’s next move considering its current situation, 
the opponent’s situation, consequences of that move and possible next moves of the 
opponent. RL comes to significant assistance in solving this problem. 

In this paper we continue the research of Kalles and Kanellopoulos [2001] on the 
application of RL to the design of a new strategy game (see section on game 
description, below, for a detailed game description). The research demonstrated that, 
when trained with self-playing games, both players had nearly opportunities to win 
and neither player enjoyed a pole position advantage. In this paper, we aim to explore 
the extent to which this conclusion continues to stand for the case one of the 
opponents is human.  Specifically, we will try to give answers to questions such as:  

�  Are games played from a computer against itself enough to accomplish learning?  

�  Which case is more suitable for learning, a computer playing against itself or a 
computer playing against a human player?  

�  Does playing with human players improve the computer performance much more 
than playing against itself? 

The rest of this paper is organised in six sections. The next section presents the details 
of the game. It includes the basic components of the game, rules for legal pawn 
movements, special characteristics and playability issues. The third section refers to 
the game analysis; which methods are used and how they could lead towards learning. 
The fourth section describes training issues and experimental results. The fifth section 
refers to the human factor and how this affects the learning procedure. Finally, we put 
all the details together and discuss lines of future research that have been deemed 
worthy of following. 

2 Game descr iption 

The game is played on a square board of size n by two players, called black and 
white. Two square bases of size a are located on the board. The base at the lower left 
part of the board belongs to the white player whereas the base at the upper right part 
of the board belongs to the black player. 

At the beginning of the game each player possesses � pawns, but during the game 
some pawns may be lost.  

Each player’s goal is to possess the opponent’s base; the first that will achieve that is 
the winner. If some player runs out of pawns the opponent is the winner.  

Each pawn can move to an empty square that is vertically or horizontally adjacent, 
provided that the pawn’s maximum distance from its base is not decreased (this mean 
that backward moves are not allowed).  



Using coordinates the above rule could be defined as follows:  

If (x,y) is the current position of the pawn, then it can move to position (x,z), if  

),,max(),max( azaxayax �����  

if the white player moves, or  

),max(),max( zanxanyanxan ��������� , 

if the black player moves. 

Legal moves can be categorized in moves of: 

�  leaving the base (the base is considered as a single square and not as a set of 
squares, therefore every pawn of the base can move at one step to any of the adjacent 
to the base free squares), and 

�  moving from a position to another. 

Figure 1 shows examples and counterexamples of moves (the left board demonstrates 
an illegal move; the centre and right boards demonstrate the loss of pawns). 
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Figure 1: Examples and counterexamples of moves. 

Such moves bring about the direct adjustment of the moving pawn with some pawn of 
the opponent. In such cases the “ trapped”  pawn automatically draws away from the 
board game. Alike, in the case that there is no free square next to the base the rest 
pawns of the base disappear automatically. 

3 Game analysis  

Since the design of the game the challenge was to design and implement a system that 
learns how to play through a number of self – playing games. Reinforcement Learning 
is ideal for this purpose. The basic idea behind RL comes from psychology: the 
likeliness of repeating an action depends on its consequences. RL is characterized as 
learning that takes place via continuous interaction of the learning agent with his 
environment. The agent itself detects which actions to take via trial and error learning 
with very limited need for human involvement. 



The game is a discrete Markov procedure in discrete time, since there are finite states 
and moves, and since each episode does terminate. The a priori knowledge of the 
system consists of the rules only. The agent’s goal is to learn a policy �  : S � A 
(where S being the state space, A being the space of legal moves), that will maximize 
the expected sum of rewards in a specific time; this is called an optimal policy. A 
policy determines which action should be taken next given the current state of the 
environment.  

The move selection is critical and affects the whole learning procedure. The agent has 
to decide whether to choose an action that will straightforward maximize its reward or 
to try a new action for which it does not know anything but it may prove to be better 
(the first case is known as exploitation, whereas the second is known as exploration). 
The answer to the above question is (in our case, too) both. Specifically, the system 
uses an � -greedy policy, with � =0.9, which means that in 90% of the cases the system 
chooses the best-valued action, while in the rest 10% it chooses a random one. 

The agent estimates whether it is good for it to be in a specific position using the V� (s) 
value function. According to V� (s) the value of the state s of the strategy �  equals to 
the sum of the expected rewards starting from state s and following the strategy � . 
Specifically, the agent is interesting in discovering the optimal strategy (the strategy 
that will maximize the expected sum of rewards) and for this it uses the optimal value 
function V� (s). Learning comes from the experience in playing or training from 
samples of positions taken from the game. Because of the high dimensionality and 
large state space of this computation we use neural networks as a generalization 
technique.  

In fact, two neural networks were used, one for each player, because each player has a 
unique state space, different from its opponent’s. Back-propagation was used, setting 
the RL parameters to � =0.95 and � =0.5.The input layer nodes are the board positions 
for the next possible move, totalling n2-2a2+10. The hidden layer consists of half as 
many hidden nodes, whereas the output node has only one node, which can be 
regarded as the probability of winning beginning from a specific game-board 
configuration and then taking on a specific move. 

At the beginning all states have the same value except for the final states, but after 
each move the values are updated through the temporal difference learning rule. The 
algorithm is TD(� ), where �  determines the reduction degree of assigning credit to 
some action. Using �  only, the eligible states (eligibility traces can be seen as a 
temporary record of the occurrence of an event, e.g. visiting a state) or actions are 
assigned credit or blame when a TD error occurs. We replaced eligibility traces 
instead of accumulating them, because the latter approach has been known to inhibit 
learningm, when a repeated wrong action generates a large bad trace. 

For the experiments we used a game of dimensions 8x2x10 (8: the game board 
dimension, 2: the base dimension, 10: the number of pawns). 

4 Training issues 

Initial experiments had suggested that both computer players have nearly equal 
opportunities to win. However, when we tested the game performance against a 
human player we realized that the human player was almost always, independently of 
the moves the black player was following. Obviously the network training was not 
enough. Tesauro [1992, 1995] reached a high level performance in his TD-Gammon 



after playing a huge number (1,500,000) of self-playing games. And as Sutton and 
Barto [1998] point out, in the case of the first 300,000 games, TD-Gammon 
performance was poor, games lasted hundreds or thousands of moves before one side 
or the other won, almost by accident. 

The above symptoms arose in our game as we noticed that the initial games lasted 
hundred of moves with the majority of moves being cyclical between two squares. So, 
we kept on the training procedure and in order to speed up learning we changed the 
way of assigning reward. In the initial experiments, each action-move is given reward 
–1, unless the resulting state is a final one; then the reward is +50 for the winner’s last 
move and –50 for the loser’s last move. The new reward assignment procedure was 
more explicit; each action-move is assigned reward not only in final states but also 
during the learning procedure when it loses some pawn or when it is next to the 
opponent’s base.  

The new training results showed a clear improvement in computer playing even in the 
case it had to compete with a human player.  

There were four obvious points of improvement towards the agent’s goal to establish 
an advantage in winning the game. 

1. The computer player attempts to protect its base by covering the next-to-base 
squares in case an opponent’s pawn approaches them. This is a clear sign that the 
computer player has learned to protect itself against attacks. 

2. The back-n-forth moves were significantly decreased. Currently, the average 
number of moves per game has been nearly halved. 

3. The area covered by the computer player during the game has been significantly 
expanded. The computer player does not stop short at squares lying near its base 
but expands its moves so as to cover distant squares too. This is another sign that 
the computer player has begun to understand its goal to possess the opponent’s 
base. 

4. The computer player protects its pawns. More specifically, it moves carefully so 
as to avoid adjacency with opponent’s pawns, which might cause their loss. 
Towards this direction the computer player does not hold all next to base squares; 
note that due to game rules, when all next-to-base squares are occupied, the 
remaining base pawns are lost. In previous experiments, the computer player 
played usually with four pawns only, as it lost all the others when it covered all 
next-to-base squares. 

The above were all signs of game performance improvement. Aiming at greater 
improvement and to speed up learning we decided to examine the impact of human 
interference to the learning procedure. Our question was: how can a human player 
improve the game performance and speed up the learning procedure? And, we ask, 
does this have the same influence as adding handcrafted features (note that the latter 
has been shown to accelerate learning [Tesauro 1992, 1995]). 



5 The human factor  in learning acceleration 

Training the system by self-playing games restricts the exploration to very narrow 
portions of the state space, due to the absence of some strong “ regularity disturbance”  
factor. In the case of backgammon, dices play such a role and this is believed to be 
vital in the success of TD-Gammon. Dices produce a high degree of variability in the 
positions seen during training and, as a result, the learner explores more of the state 
space, leading to the discovery of improved evaluations and new strategies. 

In our game we use the human factor. The human player gives the computer 
opportunities to explore a large state space different from what it has seen until now 
by playing against itself. A human opponent can create long-term viewed playing 
sequences that help a computer player to follow a loosely guided unexplored path. 

Experimental results presented below prove the above assertions. After training the 
network with 119,000 self-playing games, we trained it by playing alternatively self-
playing games and human-computer games. More specifically, we followed the 
training sequence shown in Figure 2 (where light-shaded squares correspond to 
human-computer games). 
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Figure 2: The training sequence. 

In all these human-computer games the human had a specific goal: to possess the 
opponent’s base by capturing a particular next-to-base square (see Figure 3). Our aim 
was to check whether the computer could learn from human attacks and how this 
would affect the learning procedure. The number of computer-human games was 
comparably smaller than the number of computer games. We intended to give the 
computer the opportunity to face states different from those it had explored. After 
playing 160 human-computer games in combination with 18,160 self-playing games 
(totalling 137,160 games) the computer’s performance has been rapidly improved, as 
it almost never allowed the human to enter its base through that particular square (see 
Figure 3 for such a game instance). 

 



    
�

    

     
�

   

     
�

 �   

       
�

 

        

        

        

        

 

   
�

 
�

    

   
�

  
�

   

  
�

  �  
�

  
�

 

   �   �  
�

  

        

   �      

       
�

 

        

Figure 3: Or iginal (left) and improved (r ight) game per formance. 

To disambiguate the human impact in learning we also ran 137,160 separate self-
playing games and we compared them with the above experiments. Experiments 
showed that in the second case the computer had not learned something specific. 
There was little improvement in its way of playing but this improvement was general 
and does not correspond to any specific strategy. This happens due to the slow speed 
of learning; the computer learns through self-playing games but such kind of learning 
can only be useful after a long number of self-playing games. 

The above results are encouraging referring to learning acceleration. But does human 
interference contribute to the long-term game performance improvement or do we risk 
degrading the generality of computer playing? The latter would be surely achieved 
through self-playing games although the number of games required is extremely large. 
To explore this question we ran more experiments using the neural network weights. 
Specifically, we ran four sets of experiments, each set consisting of 1,000 computer-
vs-computer games. Each set was based on a different training configuration though; 
see Table 1 for a list of configurations and related performance results. 

 

 

 

 

 

 

 

 

Table 1: Cross-testing of learning strategies and percentage of games won. 

White player  (with): Black player  (with): 
  

computer training computer training 

54.2% 45.8% 

computer and human training computer and human training 

55% 45% 

computer training computer and human training 

50.3% 49.7% 

computer and human training computer training 

52.5% 47.5% 



The term “white player with computer and human training”  means that the white 
computer player bases its play on the knowledge received from the 137,160 
compound human-computer games mentioned above, whereas the term “white player 
with computer training”  means that the white computer player bases its play on the 
knowledge received from the 137,160 self-playing games mentioned above. 

The above experiments show that human involvement should be carefully exercised 
to add value to computer performance. The human (white player) experience proved 
to be significantly helpful in the case of the black player; the percentage of the black 
player winning games has been increased from 45.8% to 49.7%. The opposite 
happens with the white player, whose initial goal was to train the black player with a 
particular defending strategy. Towards this aim, the white player was rather risky by 
not exploring new states, and, instead, following the minimal path that would ensure it 
the black’s base possession. Performance percentage was decreased from 54.2% of 
winning games to 52.5%. 

Another interesting point of the above experimental results is the performance 
percentage for the case where the training of both computer players contains games 
against a human opponent. We would expect a reduction in the white player’s 
performance, but we were surprised to observe its performance increasing from 
54.2% of winning games to 55%, which contradicts our intuition. A reason could be 
the (comparatively) small amount of experiments, so that a decrease of 0.8% may be 
actually misguiding. 

6 Conclusion 

Experimental results presented in this paper show that computer performance can take 
advantage of human knowledge.  

We expect to speed up learning by exploring Explanation Based Learning techniques. 
A combination of RL and EBL could benefit the game providing it with faster 
learning and the ability to scale to large state spaces in a more structured manner 
[Dietterich and Flann, 1997].  

A parallel improvement of practical value would be to develop a benchmark computer 
player, however, this is best viewed as a by-product of the game design improvement. 

We are confident, however, that this is a most promising research direction with 
widespread application implications, especially so in simulation of educational 
environments. 
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