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Explanation-based learning (EBL) is a technique by which an intelligent system can 
learn by observing examples. EBL systems are characterized by the ability to create 
justified generalizations from single training instances. They are also distinguished by 
their reliance on background knowledge of the domain under study. Although EBL is 
usually viewed as a method for performing generalization, it can be viewed in other ways 
as well. In particular, EBL can be seen as a method that performs four different learning 
tasks: generalization, chunking, operationalization, and analogy. 

This paper provides a general introduction to the field of explanation-based learning. 
Considerable emphasis is placed on showing how EBL combines the four learning tasks 
mentioned above. The paper begins with a presentation of an intuitive example of the 
EBL technique. Subsequently EBL is placed in its historical context and the relation 
between EBL and other areas of machine learning is described. The major part of this 
paper is a survey of selected EBL programs, which have been chosen to show how EBL 
manifests each of the four learning tasks. Attempts to formalize the EBL technique are 
also briefly discussed. The paper concludes with a discussion of the limitations of EBL 
and the major open questions in the field. 

Categories and Subject Descriptors: 1.26 [Artificial Intelligence]: Learning-analogies; 
concept learning; induction; knowledge acquisition 

General Terms: Experimentation 

Additional Key Words and Phrases: Analogy, analytic learning, chunking, concept 
acquisition, empirical learning, explanation-based learning, generalization, goal 
regression, machine learning, operationalization, similarity-based learning 

INTRODUCTION 

Research in the field of machine learning 
has identified two contrasting approaches 
to the problem of learning from exam- 
ples. The traditional method is some- 
times known as empirical learning or 
similarity-based learning.’ This tech- 
nique involves examining multiple exam- 

1 A glossary of selected terms is given at the end of 
this paper. Each term in the glossary is printed in 
boldface the first time it appears in text. 

ples of a concept in order to determine the 
features they have in common. Researchers 
using the empirical approach have assumed 
that an intelligent system can learn from 
examples without having much prior 
knowledge of the domain under study. Some 
well-known examples of empirical learning 
are given in Winston [1972], Michalski 
[ 19801, and Lebowitz [ 19831, among others. 
This research is surveyed by Angluin and 
Smith [1983], Cohen and Feigenbaum 
[1982], Michalski [1983], Michalski et al. 
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[1983], and Mitchell [1982a]. An alterna- 
tive technique known as explanation- 
based learning (EBL) has been developed 
more recently. This analytic learning 
method attempts to formulate a general- 
ization after observing only a single ex- 
ample. In contrast to empirical learning 
techniques, EBL requires that a learning 
system be provided with a great deal of 
domain knowledge at the outset. Some ex- 
amples of the EBL technique are given by 
Mitchell [ 19831, DeJong [ 19861, Carbonell 
[ 19861, and Mostow [1983a], among others 
described below. 

1.1 An Intuitive Example of EEL 

EBL is based on the hypothesis that an 
intelligent system can learn a general con- 
cept after observing only a single example. 
In order to illustrate how this can be done, 
consider the following example taken from 

the card game “Hearts.“* Imagine a student 
who is learning to play the game of Hearts 
by looking over the shoulder of a teacher 
who is actually playing the game. The 
teacher is faced with the situation described 
in Figure 1. The leader of the current trick 
has just played the eight of hearts. Accord- 
ing to the rules, the teacher must play one 
of his hearts. He can choose either the 
queen, the seven, the four, or the two of 
hearts. It turns out that the teacher chooses 
to play the seven of hearts. The student 
might explain the teacher’s choice with the 
following line of reasoning: 

(1) This trick contains hearts. The winner 
of the trick will accumulate some un- 
desirable points. Therefore, it is best to 
play a card that will lose the trick. 

(2) Playing a high card will minimize the 
chances of taking tricks in the future. 
All other things being equal, it is better 
to play a high card than a low card. 

(3) The seven of hearts was chosen because 
it is the highest heart that is guaranteed 
to lose the trick. 

After explaining the example, the stu- 
dent might realize that the same line of 
reasoning would also apply in slightly dif- 
ferent situations. Although this example 
was taken from the fourth trick of the game 
and the players all had specific scores, these 
facts were not used in the explanation. 
Furthermore, the explanation does not 
depend on the ranks of any cards in the 
teacher’s hand, other than hearts. The ex- 
planation would continue to be valid even 

* Hearts is normally played with four players. Each 
player is dealt 13 cards. At the start of the game, one 
player is designated to be the “leader.” The game is 
divided into 13 successive tricks. At the start of each 
trick, the leader plays a card. Then the other players 
play cards in order, going clockwise around the circle. 
Each player must play a card matching the suit of the 
card played by the leader, if he has such a card in his 
hand. Otherwise, he may play any card. The player 
who plays the highest card in the same suit as the 
leader’s card will take the trick and become the leader 
for the next trick. Each player receives one point for 
every card in the suit of hearts contained in a trick 
that he takes. In the simplest version of the game, the 
objective is to minimize the number of points in one’s 
score. Other versions are more complicated. Complete 
rules are found in Gibson [1974]. 
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Trick number: 4 Trick number: 6 

Current scores: TEACHER: 0 
TOM: 0 
DICK: 2 
HARRY: 0 

Current scores: 

Lead suit: V Lead suit: 

Cards on table: (18 Cards on table: 

Teacher’s hand: + JACK, 7 
V QUEEN, 7,4,2 
+ ACE, 10 
+ JACK, 9 

Student’s hand: 

Teacher’s card choice: V 7 Student’s card choice: + 8 

Figure 1. A training example from Hearts. Figure2. A new Hearts example covered by the 
general rule. 

if these features were changed. By elimi- 
nating such irrelevant facts, the student 
could formulate a general rule. The rule 
might say, “Whenever a trick contains 
hearts, play the highest legal card guaran- 
teed to lose the trick.” The explanation can 
help the student formulate this general 
rule. The rule could be created by separat- 
ing the facts used in the explanation from 
the facts that are irrelevant to the expla- 
nation. Using this rule, the student could 
determine which card to play in new situ- 
ations like the one described in Figure 2. In 
this situation the rule would recommend 
playing the eight of spades, because it is the 
highest spade guaranteed to lose the trick. 

mains valid. The generalization will include 
other examples that can be understood us- 
ing the same explanation and that manifest 
the same principle of operation. EBL is a 
method of using background knowledge to 
determine which features and constraints 
on an example can be generalized. The 
generalizations are justified, since they can 
be exnlained in terms of the svstem’s back- 
ground knowledge. 
may speak of EBL 
generalization. 

1.2 Overview 

The term explanation-based learning has 
been used to encompass a wide variety 
of methods. Nevertheless, most of these 
methods can be understood in terms of the 
two-step procedure used by the student de- 
scribed above. The first step is to build an 
explanation of the function or behavior of 
the input example. The explanation is in- 
tended to capture a general principle of 
operation embodied in the example. In or- 
der to build the explanation, the system 
must be provided with some background 
knowledge of the domain. The second step 
involves analyzing the explanation and the 
example in order to construct a generalized 
concept. Features and constraints pertain- 
ing to the example are generalized as much 
as possible, as long as the explanation re- 

Section 1 contains a discussion of why EBL 
methods are necessary. Some of the issues 
and problems that EBL techniques are in- 
tended to address are described here. The 
history of EBL is also described, showing 
how it developed out of several different 
branches of the machine learning field. 
This section also describes the relation be- 
tween EBL and other knowledge-intensive 
learning techniques. 

Section 2 is a survey of some represen- 
tative EBL programs, illustrating that EBL 
methods apply to a variety of learning tasks 
including generalization, chunking, opera- 
tionalization, and analogical reasoning. It 
is divided into four parts corresponding to 
these four learning tasks. For each type of 
task, several EBL programs that perform 

STUDENT: 3 
TOM: 0 
DICK: 2 
HARRY: 0 

4 

+ 10, (I QUEEN 

4 ACE, 8,4 
V JACK, 10 
+ 9,5 
+4 

For this reason one 
as a type of justified 
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the task are described. This section also 
shows that differences between the four 
categories of EBL programs are largely a 
matter of interpretation. The operation of 
most EBL programs can be interpreted in 
terms of any of the four learning tasks. 

In Section 3, efforts to precisely define 
the methods of EBL, the requirements for 
building EBL systems, and the types of 
learning tasks that EBL can handle are 
described. Formalization also serves to clar- 
ify the relation between the four categories 
of EBL systems. Section 4 is an attempt to 
characterize the types of learning that EBL 
systems can and cannot perform. Section 5 
contains a discussion of major open prob- 
lems in the EBL field and some ongoing 
attempts to resolve them. 

1. BACKGROUND OF EBL 

1.1 Why Is EBL Necessary? 

The methods of explanation-based learning 
have been developed to address several dif- 
ferent issues in the field of machine learn- 
ing. One issue involves human learning 
abilities. Some EBL research has been mo- 
tivated by the observation that people are 
often able to learn a general rule or concept 
after observing a single instance of the 
concept. Experimental evidence for single- 
instance learning among humans is re- 
ported in Ahn et al. [ 19871. Textbooks also 
provide some evidence for this type of 
learning. For instance, a textbook on logic 
circuits presents an example of a three-bit 
shift register and then asks the student to 
design a four-bit shift register as an exercise 
[Mano 1976, p. 781. In order to solve the 
problem, the student must somehow gen- 
eralize or transform the single example of 
a three-bit shift register. Empirical learning 
techniques are not suitable for learning 
from a single example. They normally re- 
quire examining multiple instances of a 
concept. EBL is specifically designed for 
generalizing from a single example and is 
therefore able to model a type of human 
learning outside the scope of empirical 
methods. 

EBL methods also address a more the- 
oretical issue. EBL may be viewed as an 

attempt to solve the problem of inductive 
bias. As described by Mitchell [ 19801, every 
system that learns from examples requires 
some sort of bias. Mitchell defines bias to 
be “any basis for choosing one generaliza- 
tion over another, other than strict consis- 
tency with the observed training instances” 
[Mitchell 1980, p. 11. A system lacking in- 
ductive bias would not be capable of making 
predictions beyond the training examples 
it has already seen. Typical types of bias 
include using a restricted vocabulary in the 
generalization language [Utgoff 19861 and 
preferring maximally specific concept de- 
scriptions [Dietterich and Michalski 19811 
among others [Dietterich 19861. EBL may 
be viewed as an attempt to use “background 
knowledge” or a “domain model” as a type 
of bias. The EBL method is biased toward 
making generalizations that can be justified 
by explaining them in terms of the domain 
model. EBL programs usually represent do- 
main knowledge in a declarative style, and 
may therefore be said to utilize a declara- 
tive bias representation. 

Several advantages result from repre- 
senting bias in terms of a declarative do- 
main model [Russell and Grosof 19871. TO 
begin with, a declarative bias can be inter- 
preted in terms of direct statements about 
the domain. For this reason, the bias is 
subject to evaluation by human experts 
even before it is used to process training 
examples. In comparison, a nondeclarative 
bias such as a restricted vocabulary is not 
immediately interpretable as a statement 
about the domain [Dietterich 19861. It 
therefore cannot be easily evaluated except 
by testing its consistency with the training 
examples. A declarative bias also offers 
advantages of domain independence. As ob- 
served by Dietterich and Michalski [ 19811, 
greater domain independence is achieved if 
the bias is contained in a separate module. 
The declarative domain models used by 
EBL systems are usually kept separate and 
can be easily modified. Traditional types of 
bias, such as the two cited above, are nor- 
mally built into the representation and pro- 
cedures used by the learning system. For 
this reason they are not easily modifiable. 
A declarative bias representation also helps 
to integrate diverse sources of background 
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knowledge into the learning process [Rus- 
sell and Grosof 19871. 

1.2 The History of EBL 

Explanation-based learning has only re- 
cently emerged as a recognizable area 
of study. Consequently, most early EBL 
research was undertaken by investigators 
who were not working on “explanation- 
based learning” per se. EBL may be viewed 
as a convergence of several distinct lines of 
research within machine learning. In par- 
ticular, EBL has developed out of efforts to 
address each of the following problems: 

l Justified generalization: A logically 
sound procedure for generalizing from ex- 
amples. Given some initial background 
knowledge B and a set of training exam- 
ples T, justified generalization finds a 
concept C that includes all the positive 
examples and excludes all the negative 
examples. The learned concept C must 
be a logical consequence of the back- 
ground knowledge B and the training 
example set T [Russell 19861. 

l Chunking: In the context of expla- 
nation-based learning, chunking is a 
process of compiling a linear or tree- 
structured sequence of operators into a 
single operator. The single operator has 
the same effect as the entire original se- 
quence [Rosenbloom and Newell 19861. 

l Operationalization: A process of 
translating a nonoperational expression 
into an operational one. The initial non- 
operational expression may be a set of 
instructions or a concept. Concepts and 
instructions are considered to be opera- 
tional with respect to an agent if they 
are expressed in terms of actions and 
data available to the agent [Mostow 
1983a]. 

l Justified analogy: A logically sound 
procedure for reasoning by analogy. 
Given some initial background knowl- 
edge B, an analog example X, and a target 
example Y, find a feature F such that 
F(X) is true, and infer that F(Y) is true. 
The conclusion F(Y) must be a logical 
consequence of F(X) and the background 
knowledge B [Davies and Russell 19871. 

Two of the first investigators to develop 
EBL methods were DeJong and Mitchell. 
DeJong’s first paper in the EBL genre was 
DeJong [1981], in which he outlines a 
method of using explanations to learn pro- 
cedural schemata from natural language 
input. DeJong viewed his approach as an 
attempt to model “insight learning” that 
involves “grasping a principle” embodied in 
an example [DeJong 1981, p. 671. Mitchell’s 
first EBL program was the LEX-II system 
developed jointly with Utgoff. This system 
involved a method of learning search con- 
trol heuristics by analyzing sequences of 
operators [Utgoff and Mitchell 19821. 
Mitchell’s overall approach to EBL was 
first outlined in his “Computers and 
Thought” paper [Mitchell 19831, where he 
suggested that a learning system be given 
“declarative knowledge of its learning goal” 
[Mitchell 1983, p. 11451. Such knowledge 
would enable a system to make “justifiable” 
generalizations and would be more power- 
ful than purely “empirical” or “syntactic” 
methods. 

At the same time that Mitchell and 
DeJong were developing EBL methods of 
generalization, Carbonell introduced his 
method of derivational analogy [Carbonell 
1983a]. Carbonell’s method uses deriva- 
tions as a guide to analogical reasoning in 
a manner similar to the way in which EBL 
uses explanations to guide generalization. 
Winston was another one of the first inves- 
tigators to use EBL methods in the context 
of reasoning by analogy [Winston et al. 
19831. The EBL methods used by Carbonell 
and Winston are both similar to Gentner’s 
“structure-mapping” theory of analogy 
[Gentner 19831. They also resemble Banerji 
and Ernst’s method of using homomor- 
phisms to implement a type of analogical 
reasoning [Banerji and Ernst 19721. 

One of the first operationalizing systems 
was Mostow’s FOO program for operation- 
alizing advice [Mostow 19811. Keller’s 
LEXCOP technique [Keller 19831 was an- 
other early example of operationalization. 
The techniques used by Keller and Mostow 
bear a strong resemblance to Balzer’s 
method of “transformational implementa- 
tion” [Balzer et al. 19761. A general ap- 
proach to the problem of operationalizing 
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advice is discussed in Hayes-Roth and Mos- 
tow [1981]. This line of research can be 
ultimately traced back to McCarthy’s sug- 
gestion for an advice taking program 
[McCarthy 19681. All of these systems may 
be seen as implementing a type of “learning 
by being told” [Cohen and Feigenbaum 
19821. 

Early research into chunking of operator 
sequences includes the STRIPS system 
[Fikes et al. 19721 along with Lewis [1978] 
and Neves and Anderson [1981]. Although 
STRIPS uses explanation-based methods 
for generalizing robot plans, it was not 
viewed as an EBL system by its authors, 
since it was built well before EBL became 
a recognized field of study. The idea of 
combining individual operators into macros 
goes back to Amarel’s paper on represen- 
tations for the “missionaries and canni- 
bals” problem [Amarel 19681. The general 
idea of chunking can ultimately be traced 
back to Miller’s psychological studies 
[Miller 19561. 

1.3 Relation to Other Machine 
Learning Research 

EBL is characterized by the fact that it 
makes use of extensive background knowl- 
edge to guide the learning process. A num- 
ber of researchers outside the area of EBL 
have also used such knowledge-intensive 
approaches to machine learning. Some 
early examples include Lenat’s AM pro- 
gram [Lenat 19821, Sussman’s HACKER 
program [Sussman 19751, and Soloway’s 
program for learning rules of competitive 
games [Soloway 19781. These systems are 
difficult to compare since they use diverse 
program architectures. Their background 
knowledge is embedded in specialized, 
domain-dependent heuristics, such as 
Lenat’s heuristics for creating and evalu- 
ating concepts and Sussman’s knowledge 
base of bugs and patches. Additional pro- 
grams using knowledge-intensive learning 
techniques include Buchanan and Mitchell 
[ 19781, Vere [ 1977 1, Lebowitz [ 19831, Stepp 
and Michalski [1986], and Lenat et al. 
[1986]. 

The search control technique known 
as “dependency-directed backtracking” 

(DDB) provides an interesting comparison 
to EBL. This technique is used to control 
the process of backtracking when a contra- 
diction or failure is encountered during a 
search process [Doyle 1979; Stallman and 
Sussman 19771. DDB may also be inter- 
preted as a type of explanation-based learn- 
ing. DDB uses data dependencies to 
generalize the context of a contradiction, 
or search failure, in much the same manner 
that EBL uses explanations to generalize 
from training examples. 

Attempts at formally classifying the 
types of background knowledge useful for 
inductive learning have been undertaken 
by both Michalski and Russell. Michalski 
[ 19831 developed a typology describing var- 
ious kinds of “problem background knowl- 
edge” that can be used by inductive learning 
systems. Russell [1986] has attempted to 
exhaustively identify the types of informa- 
tion that can enable a system to make 
deductively sound generalizations. Natara- 
jan and Tadepalli 119881 have developed a 
framework for analyzing the impact of 
background knowledge on the information 
complexity of learning from examples. 

2. SELECTED EXAMPLES 
OF EXPLANATION-BASED LEARNING 

2.1 Introduction 

The techniques of explanation-based learn- 
ing can be understood in a number of dif- 
ferent ways. As described above, EBL 
represents a merging of several trends in 
machine learning research. These include 
research into generalization, chunking, op- 
erationalization, and analogy. Each of these 
research areas has contributed a distinct 
view of EBL. In this section EBL programs 
are classified in terms of these four cate- 
gories. The category for each system is cho- 
sen to reflect the language used by its 
authors in describing their work. In many 
cases the differences between systems in 
separate categories are only a matter of 
interpretation. Programs described differ- 
ently by their authors often involve similar 
underlying procedures. The authors have 
merely chosen to emphasize different 
aspects of their work or different ways of 
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Mapping justified generalization to chunking: 

Explanation rules --* Operators, 
Explanation + Operator sequence, 

Generalized explanation + Compiled operator sequence, 
Example + Problem state 

+ Instantiated operator sequence, 
Learned concept + Precondition of operator sequence 

+ Generalized operator sequence. 

Mapping justified generalization to operationalization: 

Explanation rules + Nonoperational concept description, 
Explanation + Translation process, 

Generalized explanation --, Compiled translation process, 
Example + Example, 

Learned concept -S Operational concept description. 

Mapping justified generalization to justified analogy: 

Explanation rules -+ Causality rules 
+ Problem-solving derivation rules, 

Explanation + Network of causal relations 
+ Derivation of solution, 

Generalized explanation + Transferred causal subnetwork 
+ Transferred portion of derivation, 

Example + Analog or target, 
Learned concept - Concept including analog and target. 

Figure 3. Relation among views of EBL. 

thinking about their programs. In this sec- 
tion an attempt is made to show how most 
EBL programs can be understood from 
each of the four points of view. Figure 3 
suggests some rough correspondences be- 
tween the different views of EBL. The 
reader should refer back to this figure while 
reading about each program. 

2.2 EBL = Justified Generalization 

Explanation-based learning is most often 
viewed as a method of generalizing from 
examples. As described above, the general- 
ization process is usually framed in terms 
of a two-step procedure: (1) Explain the 
example, and (2) analyze the explanation 
in order to generalize the example. Figure 
3 shows five roles that are a part of this 
process, including “explanation rules,” “ex- 
planations,” “generalized explanations,” 
“examples,” and “learned concepts.” When 
reading about EBL generalization pro- 
grams, it is useful to keep the two-step 
process in mind, and to consider how each 
of the roles is filled in a particular program. 

2.2.1 GENESIS (DeJong and Mooney) 

One of the major efforts to investigate EBL 
has been undertaken by DeJong and 
co-workers at the University of Illinois 
[DeJong 1986; DeJong and Mooney 1986; 
Mooney and DeJong 1985; O’Rorke 1984; 
Segre and DeJong 1985; Shavlik 19851. The 
GENESIS system is a typical example of 
their work [Mooney 1985; Mooney and 
DeJong 19851. GENESIS has been pre- 
sented by DeJong and Mooney as a system 
for generalizing examples. It is intended to 
investigate explanation-based learning in 
the domain of human problem-solving be- 
havior. GENESIS reads natural language 
stories that describe people engaged in car- 
rying out plans to achieve typical human 
goals. It attempts to generalize from the 
stories to form schemata describing general 
plans for achieving goals. A story of a kid- 
napping is shown in Figure 4. GENESIS is 
able to generalize this single example of a 
kidnapping into a schema describing a gen- 
eralized plan for kidnapping to obtain ran- 
som. The schema contains only those 
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Fred is the father of Mary and is a millionaire. 
John approached Mary. She was wearing blue 
jeans. John pointed a gun at her and told her 
he wanted her to get into his car. He drove her 
to his hotel and locked her in his room. John 
called Fred and told him John was holding 
Mary captive. John told Fred if Fred gave him 
$250,000 at Trenos then John would release 
Mary. Fred gave him the money and John 
released Mary. 

Figure4. A story that GENESIS reads and 
generalizes [Mooney 19851. 

elements of the story that were necessary 
for the kidnapping to be successful, but 
none of the extra details. For instance, the 
schema requires that the victim be someone 
who is in a close personal relationship with 
a rich person since this constraint is nec- 
essary for the kidnapping to succeed. It 
does not require that the victim be wearing 
blue jeans or that the money be delivered 
at Trenos, since the success of the plan 
does not depend on these details. 

In order to generalize a story, GENESIS 
builds a “causally complete explanation” of 
the events the story describes. Although 
the story describes a sequence of events, it 
does not state the causal connections be- 
tween events. GENESIS must infer these 
connections. A causally complete descrip- 
tion of the kidnapping story is shown in 
Figure 5. In the course of building this 
explanation, the system had to make sev- 
eral types of inferences. All of the “support 
links” (effects, preconditions, motivations, 
and inferences) [Mooney 19851 and “com- 
ponent links” were inferred by the system. 
For example, GENESIS inferred that the 
telephone call fulfilled a precondition for 
the bargain made between John and Fred. 
The system also inferred that the actors in 
the story had certain goals or goal priori- 
ties, for example, that Fred wanted Mary 
to be safe more than he wanted to keep his 
$250,000. In addition, the system inferred 
that certain actions in the story were com- 
ponents of composite plans, for example, 
that the action of pointing a gun is part of 
a “threaten” plan, which itself is part of a 
“capture” plan. The explanation is “com- 
plete” in the sense that all volitional actions 
are understood to be motivated by typical 

human goals, that is, “thematic goals” 
[Mooney 1985; Schank and Abelson 19771. 
Each action achieves a thematic goal di- 
rectly or else is part of a plan that fulfills a 
thematic goal. 

In order to build explanations of stories, 
GENESIS draws upon a knowledge base 
containing facts about typical human goals 
and motivations. The knowledge base also 
describes actions and plans for achieving 
such goals. This knowledge is organized 
into a hierarchy of schemata describing 
actions, states, and objects. The actions 
are represented in a manner similar to 
STRIPS-type operators [Fikes et al. 19721. 
Each action has a list of preconditions and 
a list of effects. GENESIS uses a combi- 
nation of script-based [Cullingford 19781 
and plan-based [Wilensky 19781 story- 
understanding methods [Schank and Abel- 
son 19771. Script-based methods operate by 
instantiating general schemata to match 
observed action sequences. Plan-based 
methods require searching a space of goals 
and plans to find those that would account 
for peoples’ actions. 

The GENESIS generalization process is 
charged with the task of building a schema 
describing plans for a wide variety of situ- 
ations. For this purpose the generalizer 
analyzes the explanation of the story to 
determine which aspects are essential to 
the plan and which are irrelevant. The gen- 
eralizer removes as much information from 
the story as possible, as long as the expla- 
nation of the success of the plan remains 
valid. If the explanation remains valid, the 
generalized plan should also be successful. 
Therefore, this procedure may be said to 
produce justified generalizations. The gen- 
eralization procedure is shown in Figure 6.3 

’ The GENESIS system has apparently gone through 
more than one implementation. Two similar general- 
ization procedures are described by Mooney [1985] 
and DeJong and Mooney [1986]. The procedure de- 
scribed here is essentially the one in DeJong and 
Mooney [1986], except that one step has been omit- 
ted. The omitted step requires replacing observed 
inefficient subplans with more efficient subplans, 
when possible. Two additional steps are mentioned in 
Mooney [1985]. One step involves “constraining the 
achieved goal to be thematic,” and the other step 
involves enforcing a constraint that all generalized 
schemata be “well formed.” 
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POSSESS9 
BARGAIN1 

John has $250,000. 

MTRANS3 

RELEASE1 
ATRANS 1 
POSSESS14 
POSSESS1 
GOAL-PRIORITY5 
POSITIVE-E?‘1 
PARENT1 
FATHER1 
HELD-CAPTIVE1 
CAPTURE1 
D-KNOW1 
PTRANS 1 
DRIVE1 
THREATFNI 
AIM1 
MTRANSl 
AT1 
CONFINE 1 
FREE1 
BELIEFS 
COMMUNICATE1 
TELEPHONE1 
CALL1 
CPATHl 
MTRANS2 
BELIEF9 
BELIEF15 
BELIEF16 
BELIEF13 

John makes a bargain with Fred in which John releases 
Mary and Fred gives $250,000 to John. 
John tells Fred he will release Mary if Fred gives him 
$250.000. 
John releases Mary. 
Fred gives John $250.000. 
Fred has $250.000. 

BELIEF14 
GOAL-PRIORITY4 

Fred has millions of dollars. 
Fred wants Mary free more than he wants $250,000. 
Fred has a positive interpersonal relationship with Mary. 
Fred is Mary’s parent. 
Fred is Mary’s father. 
John is holding Mary captive. 
John captures Mary. 
John finds out where Mary is. 
John moves Mary to his hotel room. 
John drives Mary to his hotel room. 
John threatens to shoot Mary unless she gets in his car. 
John aims a gun at Mary. 
John tells Mary he wants her to get in his car. 
Mary is in John’s hotel room. 
John locks Mary in his hotel room. 
Mary is free. 
Fred believes John is holding Maty captive. 
John contacts Fred and tells him he is holding Mary captive. 
John calls Fred and tells him he is holding Mary captive. 
John calls Fred on the telephone. 
John has a path of communication to Fred. 
John tells Fred he has Mary. 
John believes he is holding Mary Captive. 
John believes Fred has $250,000. 
John believes Fred has millions of dollars. 
John believes Fred wants Mary free more than he wants 
$250,000. 
John believes Fred is Mary’s father. 
John wants to have $250.000 more than he wants to hold 
Mary captive. 

GOAL9 John wants to have $250,000. 
ATTIRE1 Mary is wearing blue jeans. 

Link Types Definition 

P = Precondition A state may be a precondition for an action. 
E = Effect A state may be an effect of an action. 
I = Inference The occurrence of one state or action implies the occurrence of another 
C = Component An action may be a component of a plan. 
M = Motivation A goal state may motivate an action. 

Figure 5. A causally complete explanation of the kidnapping [DeJong and Mooney 19861. 
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1. Delete parts of the story representation that are 
not essential to the explanation. 
(a) Remove parts of the network that do not 

causally support the achievement of the main 
thematic goal. 

(h) Remove nominal instantiations of known sche- 
mata. 

(c) Remove actions and states that only support 
inferences to more abstract actions or states. 

2. Generalize the remaining schemata while main- 
taining the validity of each support link. 
(a) Extract the explanation structure ES from the 

explanation network. 
(b) Find the most general instantiation of ES that 

represents a valid explanation (EGGS proce- 
dure). 

3. Package the generalized network into a schema. 

Figure 6. Generalization procedure used by 
GENESIS. 

The first part of GENESIS’ generaliza- 
tion procedure is directed toward isolating 
the essential parts of the explanation 
(Step 1 in Figure 6). Some portions of the 
network representation of the story are not 
considered to be parts of the explanation 
per se and are pruned away by the system. 
To begin with, the system removes all ac- 
tions and states that are not topologically 
connected through “support” or “compo- 
nent” links to the main thematic goal 
(Step la in Figure 6). These nodes are 
removed because they do not causally con- 
tribute to the achievement of the goal. In 
the network of Figure 5, the node asserting 
that Mary was wearing blue jeans is re- 
moved for this reason. The system also 
prunes the nodes describing actions that 
are mere “nominal instantiations” of 
known composite schemata (Step lb in Fig- 
ure 6). These constituent actions do not 
contribute to the main thematic goal except 
through the effects of the corresponding 
composite schemata. Since the composite 
schemata remain unpruned, the constitu- 
ents are not needed. In the network of 
Figure 5, component actions of the 
“telephone” and “capture” schemata are 
removed. 

The final pruning step depends crucially 
on the fact that all action and state sche- 
mata are organized into an “isa” hierarchy. 

All inferences of the form “Schema A is an 
instance of Schema B” are deleted from the 
explanation, whenever “Schema A” serves 
no purpose other than supporting the 
inference to “Schema B” (Step lc in Fig- 
ure 6). For example, in Figure 5 the infer- 
ences that the “father” relationship is an 
instance of “parent,” which is itself an in- 
stance of “positive-ipt,” are deleted along 
with the “father” and “parent” nodes. 
These nodes are deleted since they are not 
needed to support the “goal-priority” node. 
The goal-priority node was created using 
an inference rule inherited from the “posi- 
tive-ipt” node. Since this rule applies to 
relationships more general than “father” or 
“parent,” these two nodes are overspecific 
and must be deleted. This step of the gen- 
eralization process also leads to deleting 
the “telephone” node and the inference that 
the telephone action is an instance of the 
“communicate” schema. 

After the nonessential parts of the expla- 
nation are pruned away, the next step is to 
generalize the remaining schemata (Step 2 
in Figure 6). The slot fillers on the remain- 
ing schemata are generalized as much as 
possible as long as the support links remain 
valid. Each support link was created by 
using some general inference rule from the 
knowledge base. While building the expla- 
nation, GENESIS annotated the support 
links with pointers to the inference rules 
from which the links were created. In order 
for the support links to remain valid, the 
schemata can only be generalized in such a 
way that they continue to match the pat- 
terns in the general inference rules. 

The schemata are generalized in a two- 
step process (Steps 2a and 2b in Figure 6). 
GENESIS first extracts the so-called ex- 
planation structure from the explanation 
network. The explanation structure may 
be defined as the result of replacing each 
support link in the network with the associ- 
ated general inference rule [Mitchell et al. 
1986; Mooney and Bennett 19861. The 
explanation structure represents an over- 
generalized version of the original expla- 
nation. In the second step, GENESIS uses 
a procedure called EGGS to specialize the 
explanation structure [DeJong and Moo- 
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ney 1986; Mooney and Bennett 19861. An 
outline of the EGGS algorithm is shown in 
Figure 7.* 

The EGGS procedure takes an explana- 
tion structure ES as its input. EGGS is 
charged with the task of finding the most 
general instantiation of ES that represents 
a valid explanation. In order that ES rep- 
resent a valid explanation, the rule patterns 
must be reinstantiated to some degree. In 
particular, if Rl and R2 are two rules inci- 
dent on a given node of ES, then the ap- 
propriate patterns from Rl and R2 must be 
instantiated to syntactically identical 
expressions.” EGGS first forms a list of all 
pairs of patterns that must be instantiated 
to identical expressions. Then EGGS finds 
the maximally general set of bindings for 
the pattern variables that will simultane- 
ously unify all equated pairs of patterns. 
Finally, all the rule patterns in ES are 
instantiated with these bindings. The re- 
sulting network is the most general instan- 
tiation of ES that represents a valid 
explanation. 

After the EGGS procedure is applied to 
the kidnapping expianation, some of the 
objects are generalized and others are con- 
strained. For example, the locations in the 
“hold-captive” and “bargain” schemata are 
generalized. The amount of money is con- 
strained to be any amount possessed by 
the target of the kidnapping. The victim 
of the “capture” schema is constrained to 
be the same person mentioned in the 
“positive-ipt” schema. The resulting gen- 
eralized explanation network is shown in 
Figure 8. 

The final step of GENESIS’ generaliza- 
tion procedure requires packaging the gen- 
eralized network into an action schema 
(Step 3 in Figure 6). The resulting schema 
contains “preconditions,” “effects,” and 

4 The algorithm shown in Figure 7 most closely resem- 
bles the version of EGGS presented by Mooney and 
Bennett [1986]; however, Mooney and Bennett’s pre- 
sentation contains a typographic error, omitting 
Steps 3a and 3b shown in Figure 7. 
“An additional constraint is mentioned by Mooney 
[1985]. This constraint requires that the pattern rep- 
resenting the main goal of the story match a thematic 
goal pattern. 

Given: An explanation structure ES. 

Find: The most general instantiation of ES that 
represents a valid explanation. 

Procedure: 
Let L be a list of all pairs of inference rule patterns 
in ES that must be instantiated to syntactically 
identical expressions. 
Initialize S to be the null substitution. 
For each pair (A, B) of equated patterns on the list 
L do: 
(a) Let A’ be the result of applying S to A. 
(b) Let B’ be the result of applying S to B. 
(c) Let T be the most general unifier of A’ and B’. 
(d) Let S be the composition of substitutions S and 

T. 
For each inference rule pattern P in ES do: 
(a) Let P’ be the result of applying S to P. 
(b) Modify ES by replacing P with P’. 

Figure 7. EGGS procedure. 

“expansion schemata.” The generalized 
preconditions include just the precondition 
nodes in the network that are not created 
as effects of any other node in the network. 
The generalized effects include the effect 
nodes in the network that are not undone 
by any other action in the network. The 
generalized expansion schemata are all the 
remaining nodes in the generalized expla- 
nation. 

The results of the GENESIS learning 
process can be evaluated in terms of the 
system’s question-answering ability [Moo- 
ney 19851. Before building the schema, 
GENESIS reads a test narrative and is 
unable to answer some questions about the 
narrative. In order to answer the questions, 
GENESIS would have to make some de- 
fault inferences. The inferences could be 
made by a plan-based story understander; 
however, GENESIS has only a rudimentary 
capability for plan-based story understand- 
ing and is unable to make the necessary 
inferences. After forming a generalized kid- 
napping schema, GENESIS can read the 
narrative and successfully answer the very 
same questions. GENESIS is able to make 
the necessary inferences by using the gen- 
eralized schema in a script-based story un- 
derstanding process. One can summarize 
the results of learning in GENESIS in the 
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POSSESS9 Person1 has Moneyl. 
BARGAIN1 Person 1 makes a bargain with Person2 in which Person 1 

releases Person3 and Person2 gives Money1 to Personl. 
POSSESS14 Person2 has Moneyl. 
GOAL-PRIORITY5 Person2 wants Person3 free more than he wants Moneyl. 
POSITIVE-IF’Tl There is a positive intqpersonal relationship between 

Person2 and Person3. 
HELD-CAPTIVE1 Person1 is holding Person3 captive. 
CAPTURE1 Person1 captures Person3. 
FREE1 Person3 is free. 
BELIEFS Person2 believes Person1 is holding Person3 captive. 
COMMUNICATE1 Person1 contacts Person2 and tells him he is holding 

Person3 captive. 
BELIEF9 Person1 believes he is holding Person3 captive. 
BELIEF15 Person1 believes Person2 has Moneyl. 
BELIEF13 Person1 believes Person2 wants Person3 free more than he 

wants Money I. 
BELIEF14 Person1 believes there is a positive interpersonal relationship 

between Person2 and Person3. 
GOAL-PRIORITY4 Person1 wants to have Money1 more than he wants to hold 

Person3 captive. 
GOAL9 Person 1 wants to have Moneyl. 

Figure 8. The generalized kidnapping network [DeJong and Mooney 19861. 

following way: Before learning, the knowl- 
edge base is suitable only for use by a 
plan-based understanding system. After 
learning, the knowledge base contains 
new schemata that can be used by a 
script-based system. This represents an 
improvement because plan-based under- 
standing requires more search than is 
necessary for script-based understanding 
[ Wilensky 19781. 

Although GENESIS has been presented 
as a program that learns by generalizing 
examples, it can also be viewed in other 
ways (see Figure 3). It can be regarded as a 
chunking system, which learns by combin- 
ing operators into macro operators. The 
generalized kidnapping schema may be 
viewed as a macro operator composed of 
the “capture, ” “communicate,” and “bar- 

gain” operators. GENESIS may also be 
viewed as a system that reformulates non- 
operational concept descriptions. Before 
learning, the system may be said to possess 
a nonoperational description of the concept 
“plans for obtaining money.” The pattern 
describing the thematic goal “obtain 
money,” together with the knowledge base 
of action schemata, could be viewed as a 
nonoperational specification of the collec- 
tion of all plans for obtaining money. The 
description is nonoperational since the in- 
formation about what constitutes a valid 
plan for obtaining money is scattered 
throughout the knowledge base. After 
learning, GENESIS has an operational de- 
scription of the concept in the form of a 
general schema. The schema explicitly de- 
scribes a set of plans. Any instantiat,ion of 
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the generalized schema is a valid plan for 
obtaining money. 

2.2.2 LEX-II (Mitchell and Utgoff) 

Another major effort to investigate EBL 
techniques was undertaken by Mitchell and 
co-workers at Rutgers University. A num- 
ber of different EBL systems were devel- 
oped by Mitchell’s group [Kedar-Cabeili 
1985; Keller 1983; Mahadevan 1985; Mitch- 
ell 198213; Mitchell 1983; Mitchell et al. 
1986; Steinberg and Mitchell 1985; Utgoff 
19861. One of the oldest of these systems is 
LEX-II, which learns search control heu- 
ristics in the domain of symbolic integra- 
tion. LEX-II was built as an extension to 
the LEX-I system. LEX-I uses purely em- 
pirical techniques for learning concepts 
from multiple examples [Mitchell et al. 
1981; Mitchell et al. 1983a]. LEX-II was 
built to combine the empirical techniques 
of LEX-I with analytical (EBL) learning 
methods for generalizing from single ex- 
amples [Mitchell 1982b, 19831. 

LEX-I and LEX-II both contain four 
main modules: the problem generator, the 
problem solver, the critic, and the general- 
izer. The problem solver is equipped with a 
set of operators that it uses in a best-first 
forward search process. Sample operators 
are shown in Figure 9. Each operator has a 
condition specifying the class of problem 
states to which the operator can be “val- 
idly” applied. The learning modules are 
charged with the task of finding more re- 
strictive conditions on the states to which 
the operators will be applied. For each op- 
erator the system tries to learn a concept 
describing the set of states to which the 
operator can be “usefully” applied in order 
to find a solution. The states to which an 
operator can be “usefully” applied is usually 
a proper subset of those states to which it 
can be “validly” applied. The restricted ap- 
plicability conditions limit the number of 
states created, leading to a faster search 
process and increasing the range of prob- 
lems that the system can solve within a 
fixed time limit. 

The learning process begins when a prob- 
lem is created by the problem generator. 
The problem solver attempts to solve the 

OPl: 

OP2: 

s sin(z) dx + c - cos(x). 

f(x)’ + f(x) f(x)“-“. 

OP3: s r f(x) dx --, r s f(x) dx. 

OP4: s 

xlr+ll 
LX’+-” dx --a m + c. 

Figure 0. Examples of operators used in LEX-I and 
LEX-II. 

Sl: 
s 7(x2) dx 
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OP3 
useful 

(x2) dx 

OP4 

:i!. ---l 

OP2 
useful not useful 

1 

3 
s3: 7 S xx dx 

Figure 10. Partial search tree labeled by critic 
module. 

problem. If a solution is found, a trace of 
the search tree is sent to the critic module. 
The critic labels some or all of the operator 
applications in the search tree as being 
“useful” or “not useful.” The operator ap- 
plications along the final solution path are 
considered “useful,” and those that lead 
away from the final solution path are 
considered to be “not useful” (Figure 10). 
The classification yields sets of positive 
and negative instances for each operator. 
These examples are used by the general- 
izer in order to learn restricted operator 
applicability conditions. 

LEX-I processes the labeled instances 
using Mitchell’s candidate elimination al- 
gorithm [Mitchell 19781, a purely empirical 
concept-learning technique. This algorithm 
searches through a “version space” contain- 
ing an initial set of candidate concept de- 
scriptions. The candidates are connected 
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(Vop, s) (POSZNST(op, s) ti USEFUL(op, s) j. 
(Vop, s)(USEFUL(op, s) ti [+OLVED(s) A SOLVABLE(APPLY(op, sl)]l. 
(Vop, s)(SOLVABLE(s) G= SOLVABLE(APPLY(op, s))). 
(Vop, s)(SOLVABLE(s) + SOLVED(APPLY(op, s))]. 

Figure 11. Rules defining the POSINST predicate in LEX-II. 

by “generalization-of” and “specialization- 
of” relations, which define a lattice.6 As 
each positive or negative instance is pro- 
cessed, the algorithm eliminates all candi- 
dates that are inconsistent with the critic’s 
classification of the example. This is 
achieved by recording two sets called “S” 
and “G.” These sets respectively contain 
the maximally specific (S) and maximally 
general (G) candidates that are consistent 
with all the instances observed so far. 
When observing a positive instance, each 
member of S is generalized just enough to 
include the new example. Negative in- 
stances are processed by specializing each 
member of G just enough to exclude the 
new example. If a sufficient number of ex- 
amples is observed, the sets S and G con- 
verge to contain only one possible 
candidate, assuming that the correct con- 
cept description is actually contained in the 
version space. 

LEX-II was developed with the intention 
of providing the learning modules with 
additional forms of knowledge that would 
enhance the effectiveness of the gener- 
alization process. In particular, LEX-II was 
given a description of the goal of the learn- 
ing process. LEX-II contains rules that 
provide an abstract definition of a positive 
instance predicate, POSINST, shown in 
Figure 11. These rules provide definitions 
of a whole collection of concepts, one con- 
cept for each operator. For example, when 
the rules are instantiated by letting “op” 
equal “OP3,” they define the concept 
including the set of states that satisfy 
“POSINST(OP3, s).” To paraphrase these 
rules, a state “s” is a positive instance for 

’ The version space is defined by a context-free gram- 
mar. Each sentential form in the language of the 
grammar corresponds to a learnable concept. The rules 
of the grammar correspond to the relations “general- 
ization of” and “specialization of,” which define the 
lattice. 
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Figure 12. Organization of the LEX-II generalizer. 

the operator “op” if the state “s” is not 
already solved and applying “op” to ‘Is” 
leads to a state that is either solved or is 
solvable by additional operator applica- 
tions. 

The organization of the LEX-II learning 
module is shown in Figure 12. LEX-II pro- 
cesses positive and negative examples 
somewhat differently. The positive exam- 
ples are submitted to an EBL procedure. 
The EBL procedure generalizes single pos- 
itive instances by making use of the rules 
defining the POSINST predicate. The gen- 
eralized positive instances are then submit- 
ted to the candidate elimination procedure. 
The negative instances are submitted di- 
rectly to the candidate elimination algo- 
rithm, just as they are in LEX-I. 

The EBL procedure used in LEX-II is 
shown in Figure 13. The input to this pro- 
cedure is a state and operator application 
pair, (OP, S), that was labeled as a positive 
instance by the critic module. The EBL 
procedure is charged with finding a gener- 
alization of S representing a set of states 
for which the operator OP will be “useful.” 
The LEX-II EBL procedure uses a two- 
step process similar to the one described 
above for the GENESIS system. First 
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Given: An example state and operator application pair, (OP, S), that was classified as a positive instance. 

Find: A generalization of S representing a set of states for which the operator OP will be “useful.” 

Procedure: 
1. Build an explanation showing how the pair, (OP, S), satisfies the definition of the POSINST predicate. 
2. Analyze the explanation in order to obtain a set of conditions sufficient for any state “s” to satisfy the 

predicate “POSINST(OP, s).” 
(a) Change the state constant “S” into a universally quantified variable “s.” 
(b) Extract a set of conditions satisfying the AND/OR tree representing the explanation. 
(c) Translate the conditions from the “operator language” into the “generalization language.” 

(1) Express the conditions in terms of restrictions on various states in the solution tree. 
(2) Propagate restrictions through the solution tree to obtain equivalent restrictions on the example 

problem state “s.” 

Figure 13. EBL procedure used in LEX-II. 

POSINST(OP3, Sl) 

7 
USEFUL(OP3, Sl) 

? 

f 

T 
SOLVABLE(APPLY(OP3, Sl)) +OLVED(SI) 

SOLVED(APPLY(OP4, APPLY(OP3, SI))) 

Figure 14. Proof tree built by LEX-II. 

LEX-II explains why the example is a pos- 
itive instance. Then LEX-II generalizes the 
example by analyzing the explanation. 

In order to illustrate the LEX-II EBL 
procedure, consider an example from the 
labeled search tree shown in Figure 10. The 
labeling indicates that the pair (OP3, Sl) 
is a positive instance. LEX-II begins pro- 
cessing this instance by verifying that the 
pair (OP3, Sl) does indeed meet the 
conditions given in the definition of the 
POSINST predicate. LEX-II verifies this 
example by building the AND/OR proof 
tree shown in Figure 14. The root of the 
explanation tree asserts that the example 
pair (OP3, Sl) is a positive instance. The 
leaves of the tree represent the facts on 
which the explanation is based. These leaf 
nodes make assertions about the structure 
of the search tree shown in Figure 10. 

After building an explanation verifying 
that (OP3, Sl) is a positive instance, LEX- 
II analyzes the explanation in order to gen- 
eralize the state Sl. The first two steps 

involve (1) changing the state constant 
“Sl” in the example into a universally 
quantified variable “s”~ and (2) extracting 
a set of nodes sufficient to satisfy the 
AND/OR proof tree (Steps 2a and 2b in 
Figure 13). Any set of nodes satisfying the 
AND/OR proof tree would constitute suf- 
ficient conditions. In practice, however, 
only leaf nodes are chosen. For the expla- 
nation tree in Figure 14, LEX-II forms the 
following clause: 

(Vs) (POSINST(OP3, s) 

e= [SOLVED(APPLY(OP4, 
APPLY (OP3, 
s))) 

A %SOLVED(s)]). 

’ For this step to be “justified” LEX-II should consult 
the definitions of the rules used in the proof to verify 
that the proof remains valid after the state constant 
is changed to a variable; however, Mitchell does not 
mention such a process. 
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This clause provides a set of conditions 
specifying when the operator OP3 can be 
usefully applied to a state. The conditions 
are sufficient, but not necessary, for a state 
to be a member of the set “states for which 
OP3 is useful.” The conditions are suf- 
ficient since the explanation tree will be 
satisfied by any state meeting these 
conditions. The conditions are not neces- 
sary, however, because there are other ex- 
planation trees that could prove the same 
result. 

The antecedents of the clause are written 
in the so-called “operator language” of 
LEX-II. In this form they are not particu- 
larly useful because they can only be tested 
by applying operators to states and exam- 
ining the results. LEX-II makes the clause 
more useful by translating the antecedent 
conditions into the “generalization lan- 
guage”’ (Step 2c in Figure 13). LEX-II 
begins the translation by applying 
the definitions of “SOLVED” and 
“+OLVED.” By substituting definitions 
of these predicates, LEX-II obtains a con- 
junction of statements of the form 
MATCH( (generalization), (state)), where 
“ (generalization) ” is a statement in the 
generalization language and “ (state) ” can 
refer to any state in the symbolic integra- 
tion state space. When these substitutions 
are applied to the clause shown above, the 
following result is obtained: 

(Vs) (POSINST(OP3, s) 

e= [MATCH( ( function), APPLY (OP4, 
APPLY(OP3, s))) 

A MATCH( J ( function) d3c, s)]). 

This clause contains references to several 
states in the search tree. The states are 
described by sequences of operator appli- 
cations as indicated by the APPLY func- 
tion. The final translation step removes the 
references to operator applications to ob- 
tain conditions expressed directly in terms 
of the example state “s.” In order to remove 
references to the APPLY function, a pro- 
cedure called constraint back-propaga- 
tion (CBP) is used [Utgoff 19861. The CBP 

’ The generalization language is specified by the same 
context-free grammar that defines the version space. 

technique is given the task of translating 
any statement in the form MATCH(P, 
APPLY(OP, s)) into an equivalent state- 
ment of the form MATCH(P’, s). This is 
essentially equivalent to calculating “weak- 
est preconditions” as formalized in Dijkstra 
[ 19761 and to performing goal regression 
[Nilsson 1980; Waldinger 19771. The pat- 
tern P’ must meet the requirement that a 
state S will match P’ if and only if the 
state APPLY(OP, S) matches P. The CBP 
procedure is implemented by writing one 
LISP function for each problem-solving op- 
erator. The LISP function represents the 
“inverse” of that operator.” The inverse for 
operator OP would take a pattern such 
as P and find the corresponding weakest 
precondition P ’ .l” After applying the CBP 
procedure to the antecedents in the 
clause shown above, the following result 
is obtained: 

(Vs)(POSINST(OP3, s) 

e= [MATCH( J r(~‘+“) dx, s) 
A MATCH( J ( function) dx, s)]) 

The power of the LEX-II generalization 
procedure can be illustrated by comparing 
this result to the original example shown 
in Figure 10. The original example only 
asserted the usefulness of applying operator 
OP3 to the single problem state Sl. The 
clause shown above asserts the usefulness 
of applying operator OP3 to a larger class 
of problem states. Two distinct generaliza- 
tions have been made. The coefficient “7” 
has been generalized to “r,” any real num- 
ber. Furthermore, the exponent “2” has 
been generalized to any real number “r,” 
other than “-1.” 

B Strictly speaking, these LISP functions are not true 
inverses of the corresponding operators. If OP maps 
problem states to problem states, the true inverse 
would map states to states. The so-called “inverse” 
used here maps patterns (sets of states) to other 
patterns. 
“I A difficulty arises when the precondition 1” cannot 
be expressed in the generalization language of LEX- 
II. When this happens, the system defines new terms 
to expand the generalization language so that it can 
express the desired precondition [Utgoff 19861. On 
one occasion the system was led to define a new term 
equivalent to “odd integer” in order to resolve such an 
impasse. 
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The final generalization step involves 
combining the results of (EBL) general- 
ization of single positive examples with 
the candidate elimination algorithm. The 
clause shown above provides sufficient (but 
not necessary) conditions for concept mem- 
bership. Therefore, every candidate con- 
cept description must be at least as general 
as this generalized positive instance. For 
this reason, the generalized instance can be 
processed by the candidate elimination al- 
gorithm just as if it were an actual positive 
instance. The algorithm must simply gen- 
eralize each member of the boundary set S 
just enough to include the generalized pos- 
itive instance. 

Although LEX-II does not use its EBL 
techniques to process negative examples, 
there is no reason in principle why this 
cannot be done. The system could be pro- 
vided with a set of rules for proving state- 
ments of the form lPOSINST(OP, S). By 
processing explanations of negative in- 
stances, the system could obtain general- 
ized negative instances. These could be 
used to refine the boundary set G, just as 
generalized positive instances are used to 
refine the boundary set S. In practice, ex- 
planations of negative instances might be 
large and difficult to analyze if the predi- 
cate POSINST is defined as above. A proof 
of lPOSINST(OP, S) would require show- 
ing that the state APPLY(OP, S) is a dead 
end. This would mean proving that no op- 
erators apply or that all applicable opera- 
tors lead to other dead-end states. In the 
worst cases, such proofs can require reason- 
ing about a large number of states along 
multiple paths in the search tree. Proofs of 
POSINST(OP, S) need only reason about 
states along a single solution path. 

The value of using EBL techniques in 
LEX-II can be assessed by observing the 
rate at which learning occurs. The candi- 
date elimination algorithm should converge 
faster in LEX-II than in LEX-I, because 
LEX-II uses generalized positive instances 
to refine the boundary set S. The EBL 
techniques effectively provide a stronger 
bias for inductive learning. LEX-I makes 
use of the bias contained in the definition 
of the generalization language. LEX-II uses 
this bias in addition to the constraints pro- 

vided by using EBL techniques to general- 
ize positive instances. The stronger bias 
and faster rate of convergence should lead 
to improved performance by the problem 
solver, since the learned heuristics are 
available earlier in LEX-II than in LEX-I. 

The learning component of LEX-II was 
able to improve the overall problem-solving 
performance of the system during the ini- 
tial stages of learning. Eventually a point 
was reached after which the acquisition of 
new heuristics failed to improve the overall 
performance of the system [Mitchell 19831. 
The difficulty results from the fact that the 
heuristics learned by LEX-II are capable of 
improving only some aspects of the sys- 
tem’s performance. Heuristics help decide 
what operator to apply, given a state to be 
expanded. They do not provide direct guid- 
ance about what state should be chosen for 
expansion. Eventually the system’s perfor- 
mance was limited by the decision of which 
state to expand, rather than which operator 
to apply. This “wandering bottleneck” 
problem results from the fact that only 
some aspects of the system’s perfor- 
mance fall within the scope of the learning 
module. 

Although LEX-II has been presented 
mainly as a system for generalizing from 
examples, it can also be viewed in other 
ways (see Figure 3). LEX-II can be viewed 
as a system that performs “chunking” of 
operator sequences to form macro opera- 
tors. In the example shown above, the sys- 
tem learns a condition describing the set of 
states for which the sequence OP3 followed 
by OP4 will lead to a solved state. The 
system could save this macro along with its 
applicability condition. Although LEX-II 
does not actually save such macro opera- 
tors, it could easily be extended to do so. 

LEX-II can also be viewed as a system 
that reformulates nonoperational con- 
cept descriptions. In the example shown 
above, the system translates the concept 
“POSINST(OP3, s)” into a conjunction of 
patterns in the system’s generalization lan- 
guage. LEX-II could, in principle, be mod- 
ified to reformulate concepts other than the 
POSINST predicate defined in Figure 11. 
As described by Mitchell [1982b], the rules 
defining POSINST could be changed so 
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that an operator application is considered 
to be useful only if it lies along a minimum 
cost path to a solution; however, this 
change was apparently never implemented. 
Were the rules so modified, they would 
probably lead to large and complex expla- 
nations that would be difficult to analyze, 
just as explanations for negative instances 
would be difficult to analyze. Proving a 
path to be minimal in cost would require 
reasoning about an entire search tree, 
rather than merely reasoning about a single 
solution path. 

2.2.3 Similar Work 

Several other investigators have developed 
EBL systems that are naturally viewed in 
terms of generalizing from examples. Min- 
ton [1984] implemented a variant of EBL 
called “constraint-based generalization.” 
He used the method in a program that 
learns forced win positions in games like 
tick-tat-toe, go-moku, and chess. Two sim- 
ilar EBL systems that operate in the do- 
main of logic circuit design were developed 
independently by Ellman [1985] and Ma- 
hadevan [ 19851. Ellman’s program is ca- 
pable of generalizing an example of a shift 
register into a schema describing devices 
for implementing arbitrary bit permuta- 
tions. The schema is created by a process 
that analyzes the proof of correctness of 
the example circuit. Mahadevan’s method 
is called “verification-based learning” 
(VBL). The VBL technique is intended to 
be a general method of learning problem 
decomposition rules. Mahadevan has tested 
VBL in the domains of logic circuit design 
and symbolic integration. Hill [1987] has 
developed similar methods for the domain 
of software design. His system uses expla- 
nation-based methods to generalize pro- 
gram abstractions to promote software 
reuse. 

A number of people working with DeJong 
developed EBL systems following up on 
GENESIS. O’Rorke built the “Mathema- 
tician’s Apprentice” program [O’Rorke 
1984, 19861, which uses explanation-based 
methods to create schemata summarizing 
successful theorem-proving episodes. Shav- 
lik [1985, 19861 built a system that learns 

concepts from classical physics. His 
“PHYSICS 101” system learns concepts 
like conservation of momentum, starting 
with only a knowledge of Newton’s laws 
and calculus. Segre developed a system that 
uses EBL methods to learn schemata 
describing robot manipulator sequences 
[Segre 1986; Segre and DeJong 19851. 

2.3 EEL = Chunking 

Chunking is usually understood in the con- 
text of problem spaces, problem states, and 
operators. A chunking system takes a linear 
or tree-structured sequence of operators as 
its input. The task of the chunking system 
is to convert the sequence of operators into 
a single “macrooperator,” or “chunk,” that 
has the same effect as the entire sequence. 
This process is sometimes described as 
“compiling” the operator sequence. 

As shown in Figure 3, chunking can be 
placed into rough correspondence with the 
EBL generalization techniques described in 
the preceding section. The process of form- 
ing an operator sequence out of primitive 
operators is analogous to forming an expla- 
nation out of explanation rules. Compiling 
an operator sequence into a macro corre- 
sponds to analyzing and generalizing an 
explanation. Problem states may be seen to 
play the role of training examples. The 
chunking process produces a precondition 
for the macro operator. The macro precon- 
dition represents a generalization of the 
example state. It is also possible to view an 
instantiated operator sequence as a train- 
ing example and view a generalized opera- 
tor sequence as the learned concept. 

2.3.1 SOAR (Laird, Newell, and Rosenbloom) 

The SOAR project is an ambitious attempt 
to build a system combining learning and 
problem-solving capabilities into an archi- 
tecture for general intelligence [Laird et al. 
1986a, 19871. The problem-solving meth- 
ods in SOAR are based on “universal 
subgoaling” (USG) [Laird 19841 and the 
“universal weak method” (UWM) [Laird 
and Newell 1983a, 1983bJ. Universal 
subgoaling is a technique for making all 
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(GOAL, SPACE, STATE, OPERATOR) four parts of the context: 

T 
l Change the operator to be applied to the 

(SUBGOAL, SPACE, STATE, OPERATOR) current state. 

t 

(SUBSUBGOAL, SPACE, STATE, OPERATOR) 

l Change the current state to be expanded. 
l Change the problem space used to solve 

the current goal. 
Figure 15. Hierarchy of goal contexts in SOAR. l Change the current goal to some other 

goal. 

search control decisions in a uniform man- 
ner. The universal weak method is an ar- 
chitecture that provides the functionality 
of all the weak methods [Newell 19691. 
The learning strategy of SOAR is based on 
the technique for “chunking” sequences of 
production rules that was developed by 
Rosenbloom and Newell [1986; Rosen- 
bloom 19831. The developers of SOAR have 
put forward the hypothesis that chunking 
is a universal learning method. They also 
believe that chunking techniques are espe- 
cially powerful when combined with the 
USG and UWM architecture. 

The production rules make search con- 
trol decisions in a two-phase process [Laird 
and Newell 1983a]. In the first, “elabora- 
tion” phase, all rules are applied repeatedly 
in parallel to the working memory. The 
rules assert “preferences” regarding which 
part of the context should be changed and 
how it should be changed. In the second, 
“decision” phase, the preferences are tallied 
to see if a unique “best” choice is de- 
termined; When a unique best choice is 
determined, SOAR makes the change au- 
tomatically. 

The architecture of SOAR is based on 
the “problem space hypothesis” [Newell 
19801, the notion that all intelligent activ- 
ity occurs in a problem space. This idea is 
embodied in SOAR by allowing all deci- 
sions to be made in a single uniform man- 
ner, that is, by searching in a problem 
space. At any point in time, SOAR is work- 
ing in a “current context” that describes 
the status of the search in whatever prob- 
lem space SOAR is currently using. More 
specifically, the current context consists of 
four parts: a goal, a space, a state, and an 
operator. The current context can be linked 
to previous contexts so that a goal and 
subgoal hierarchy is formed (Figure 15). 
The components of each context are an- 
notated with additional information called 
“augmentations.” The hierarchy of con- 
texts and associated augmentations make 
up the “working memory” of SOAR. 

SOAR uses a special mechanism for 
controlling search in problem spaces. Pro- 
duction rules contained in “long-term 
memory” are charged with the task of de- 
ciding which one of the four items in the 
current context should be changed and how 
it should be changed. There are four types 
of possible changes, corresponding to the 

Sometimes the production rules lack suf- 
ficient knowledge to make a search control 
decision. This problem is manifested when 
the decision phase fails to yield a unique 
best choice concerning how to change the 
current context. Under such circumstances 
the system is said to have reached an “im- 
passe.” For example, SOAR reaches a “tie 
impasse” when it cannot decide which of 
several operators should be applied to the 
current state. SOAR reaches a “no change 
impasse” when it does not know how to 
apply the current operator to the current 
state, because the operator is not directly 
implemented. An impasse is resolved in the 
same manner in which SOAR solves any 
other problem-by searching in a problem 
space. When the SOAR architecture de- 
tects that an impasse has occurred, it 
automatically sets up a subgoal and a 
new context to resolve the impasse. The 
“resolve-impasse” subgoal is solved in the 
usual way, by selecting a problem space, 
states, and operators. During processing of 
the subgoal, the system will hopefully ac- 
cumulate sufficient information to make 
the search control decision that resulted in 
the impasse. In that case the subgoal gets 
terminated and SOAR returns to th ’ orig- 
inal goal and context. 
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NTIAL. STATE DESIRED STATE 1. Gl solve-eight-puzzle 

m 1 ::;m 

Figure 16. Initial and goal states for &Puzzle [Laird 
et al. 1986a]. 4. 01 place-blank 

5. ==Xi2 (resolve-no-change) 
6. P2 eight-puzzle 

In order to illustrate the behavior of 
7. Sl 
8. ==>G3 (resolve-tie-operator) 

SOAR, consider the following example of Tu, P3 tie 
solving the g-PUZZLE. The g-PUZZLE in- S2 (left, up, down) 

volves moving tiles around on a rectangular 11. 05 evaluate-object(02(1eft)) 

grid. The initial state and goal state for the 
12. ==>G4 (resolve-no-change) 
13. 

puzzle are shown in Figure 16. In order to 
P2 eight-puzzle 

14. Sl 
solve the puzzle, one must find a sequence 15. 02 left 

of tile moves that transforms the initial 16. s3 

state into the goal state. A partial trace of 2 3 1 
SOAR’s solution is shown in Figure 17. 
SOAR starts with the goal “SOLVE- 
EIGHT-PUZZLE.” An abstract problem 
space called “EIGHT-PUZZLE-SD” is se- 
lected. The operators of the abstract space 
are called “PLACE-BLANK,” “PLACE-l,” 0 

8 4 

7 6 5 

“PLACE-2,” etc. Each such abstract oper- 17. 02 left 
ator is intended to achieve the function of 18. S4 
moving one particular tile or the space to 19. s4 

its goal position. SOAR chooses the opera- 
20. 08 place- 1 

tor “PLACE-BLANK” first. A “NO- Figure 17. Trace of SOAR execution on E&Puzzle 
CHANGE” impasse occurs because the 1Laird et al. lssaal. 
abstract operator is not implemented 
and SOAR does not know how to apply it 
to the current state. A “RESOLVE-NO- abstract operator “PLACE-BLANK” to 
CHANGE” goal is created to resolve the this particular initial state. 
impasse. SOAR attempts to solve the new The learning mechanism in SOAR is in- 
goal by working in the original “EIGHT- tended to acquire search control knowledge 
PUZZLE” problem space. Another impasse from problem-solving experience. In partic- 
occurs later when SOAR cannot decide ular, the chunking system creates new pro- 
which of the three operators, “LEFT,” duction rules that help SOAR to make 
“UP,” or “DOWN,” to apply. This leads to search control decisions more easily. The 
a new subgoal, and so on. The system even- new rules enable SOAR to make such de- 
tually accumulates enough information to cisions directly through the elaboration and 
resolve the sequence of impasses and their decision phases described above. The result 
associated subgoals. This occurs by line 16 is that fewer impasses occur and SOAR 
when SOAR has tried applying the operator avoids the need to process subgoals. The 
“LEFT” and discovers that the blank is chunking mechanism operates continu- 
now in its correct location. This means that ously. Whenever a subgoal terminates in 
SOAR has now found a way to apply the SOAR, the chunking mechanism is in- 
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voked.” The mechanism attempts to build 
a new rule that will summarize the results 
of processing the subgoal. When the same 
subgoal occurs in an identical or similar 
situation, the new rule will fire and help 
make a decision that previously led to an 
impasse. 

The chunking procedure is described 
by Laird et al. [1986a] and outlined in Fig- 
ure 18. Assuming that a subgoal G has just 
successfully terminated, the chunking pro- 
cess will create a new production rule R 
having the same effect as the entire se- 
quence of production rules that fired during 
the processing of goal G. The first step 
involves collecting conditions and actions 
for the new rule R. The conditions are 
found on a “referenced list” that was main- 
tained during the processing of goal G. The 
“referenced list” contains all working mem- 
ory elements that were created before goal 
G and were referenced by rules that fired 
during the processing of G. If these working 
memory elements were to be present in 
some other situation, they would enable the 
same sequence of rules to fire.‘” These 
working memory elements become the con- 
ditions of the new rule R. The actions of R 
are found by determining which working 
memory elements were created during pro- 
cessing of goal G and were passed on to 
supergoals of G by being attached as aug- 
mentations to the context of a supergoal of 
G. These actions are just the information 
that was remembered by the system after 
goal G was terminated. They constitute the 
information required to resolve the impasse 
that led to the creation of goal G. 

In order that the new rule R apply to a 
variety of situations, some of the constants 
in the conditions and actions of R need to 
be generalized. In particular, the “identi- 
fiers” must be changed to variables. This is 

” This capability requires that the system meet the 
“goal-architecturality constraint”: that is, the repre- 
sentation of goals must be defined in the system 
architecture itself IRosenbloom and Newell 19861. 
I” Strictly speaking, this requires that the system meet 
the “cryptoinformation constraint”; that is, the firing 
of rules must not be controlled by “hidden informa- 
tion” such as a conflict resolution strategy [Rosen- 
bloom and Newell 19861. 

Problem: 
a. Given a goal G that has successfully terminated. 
b. Create a new production rule R that has the same 

effect as the sequence of rules that were used to 
solve the goal G. 

Procedure: 
1. Collect conditions and actions. 

(a) Conditions of R include all working memory 
elements created before goal G that were ref- 
erenced during processing of goal G. 

(b) Actions of R include all working memory ele- 
ments created during processing of goal G that 
were passed on to supergoals of goal G. 

2. Variabilization of identifiers. 
(a) All occurrences of a single identifier in R are 

changed to a single variable. 
(b) Occurrences of distinct identifiers in R are 

changed to distinct variables. 
(c) A condition asserting that distinct variables 

must match distinct identifiers is added to R. 
3. Chunk optimization. 

Figure 18. Chunking procedure in SOAR. 

necessary since each identifier is unique to 
a working memory element. In order to 
choose variables, SOAR must determine 
which identifiers are required to be equal 
to each other and which are required to be 
distinct. The procedure shown in Figure 18 
makes the decision in a conservative way, 
leading to chunk applicability conditions 
that are. as restrictive as possible. It as- 
sumes that equal identifiers in the example 
are required to be equal and replaces them 
with a single variable. It also assumes that 
distinct identifiers in the example are re- 
quired to be distinct and replaces them with 
distinct variables. An additional constraint 
is added to guarantee that distinct variables 
match distinct identifiers. Aside from some 
exceptional cases reported in [Laird et al. 
1986131, the developers of SOAR claim this 
approach guarantees that no overgeneral- 
ized rules will be created, although overspe- 
cialized rules will sometimes be formed 
[Laird et al. 1986a]. The final step in Fig- 
ure 18 involves making the new rule more 
efficient by reordering the conditions 
and making other changes for the sake of 
efficiency. 

The chunking mechanism in SOAR has 
gone through several implementations. An 
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earlier implementation used a different cri- 
terion for deciding when chunking should 
occur [Rosenbloom and Newell 19861. The 
earlier criterion specified that chunking 
take place only for goals that were solved 
without invocation of subgoals. This re- 
sulted in “bottom-up” chunking, which was 
useful for cognitive modeling. A recent 
implementation uses a different method of 
finding the conditions that go into a rule 
created by the chunking mechanism [Laird 
et al. 1986a]. The new approach involves 
tracing dependencies from the results of a 
goal, through the sequence of rules that 
fired, back to working memory elements 
present before the goal was created. This 
approach leads to rules with greater gener- 
ality than the one described above. The new 
method excludes conditions that were ref- 
erenced by production rules that fired but 
did not contribute to the results of a goal 
because they led to dead ends.13 

When the chunking mechanism is ap- 
plied to the 8-PUZZLE problem, it gener- 
ates a collection of rules that implement 
the abstract operators such as “PLACE- 
SPACE,” “PLACE-l,” and “PLACE-2” 
described above. These rules are similar 
to the macro operators created for the 8- 
PUZZLE for Korf’s macro learning pro- 
gram [Korf 1985].14 An example of one 
of the abstract operators is shown in Fig- 
ure 19. The diagram shows how a sequence 

“I The dependency tracing technique is similar to the 
methods used in LEX-II and GENESIS. This raises 
the question of why SOAR does not retrieve defini- 
tions of fired production rules and analyze them using 
a procedure like EGGS. Such an approach might lead 
to a method of changing constants to variables that 
avoids problems of overspecialization. The developers 
of SOAR may have rejected this approach because 
SOAR is implemented in a variant of OPS5 [Forgy 
19811. Unlike the STRIPS type operators used in 
GENESIS, the OPS5 productions may be relatively 
difficult to analyze. 
I4 Although SOAR and Korf’s system create roughly 
the same macros, they do not apply macros in the 
same way. When SOAR forms the macro sequence 
OPl, . . . , OPN, it applies the operators one at a time. 
SOAR must make at least one search control decision 
between applying operators OP(i) and OP(i + 1). To 
make the decision, SOAR must go through elaboration 
and decision phases. Korf’s system can apply a macro 
sequence OPl, . , OPN as a group without making 
any search control decisions between applying opera- 
tors OP(i) and OP(i + 1). 

x x 1 

E!l!i 

X X 

x x x 

x x x 

Eli@ 

X X 

1 x x 

Figure 19. Abstract operator created by SOAR 
[Laird et al. 1986a]. 

of rules will guide the one-tile to the correct 
location whenever (a) the one-tile is at the 
upper right or lower left corner and (b) the 
blank is in the center. The “x” marks in- 
dicate that the rules apply regardless of the 
contents of the other cells. As suggested by 
Figure 19, the chunks apply to a variety of 
board situations, many of which SOAR has 
never seen before [Laird et al. 1986a]. 

In order to evaluate the chunking mech- 
anism in SOAR, it is useful to examine 
SOAR’s behavior before and after chunking 
takes place. Figure 17 shows how SOAR 
behaves before chunking takes place. 
SOAR was forced to resolve three impasses 
in order to apply the abstract operator 
“PLACE-BLANK.” After building new 
chunks, SOAR can solve this problem and 
similar ones without the occurrence of any 
impasses. This example illustrates that 
SOAR can create new rules to avoid im- 
passes and the searching that results from 
impasses. Statistics presented by Laird 
et al. [1984, 19871 show that chunking re- 
duces the total number of search control 
decisions that the system must make. 
Nevertheless, a question arises as to 
whether the number of search control de- 
cisions is an appropriate unit of measure- 
ment. Although chunking can reduce the 
number of control decisions by creating 
rules used in the elaboration and decision 
phases, these processes may run more 
slowly after chunking than before. The dif- 
ficult work may simply have been moved to 
a different part of the system. Tambe and 
Newell [1988] have measured absolute 
CPU time in SOAR. Their results show 
that chunking does improve overall perfor- 
mance on some tasks, but degrades others 
by creating chunks that ‘are expensive to 
match [Tambe and Newell 19881. 
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The developers of SOAR have claimed 
that the power of chunking is enhanced 
when used in the context of a problem- 
solving architecture such as SOAR [Laird 
et al. 1986a], because all parts of the system 
fall within the scope of the learning mech- 
anism. They argue that the SOAR archi- 
tecture allows chunking to improve any 
aspect of the behavior of a problem-solving 
system. This can enable SOAR to avoid 
“wandering bottleneck” problems, which 
have occurred in systems like LEX-II 
[Mitchell 19831. This potential capability 
results from the fact that all decisions in 
SOAR are made in the same manner, by 
searching in a problem space. The chunk- 
ing mechanism can create production rules 
that summarize the results of search. It 
follows that the learning system in SOAR 
has the potential to create rules to guide 
any of the decisions that the system makes 
in the course of problem solving. All deci- 
sions can be influenced by the chunking 
mechanism. More practical experience is 
needed to determine whether this conclu- 
sion is borne out in practice. 

Although SOAR has been described 
mainly in terms of chunking, it can also be 
viewed in other ways (see Figure 3). SOAR 
can also be viewed as a system that can 
generalize from a single example. After 
SOAR solves a goal in one situation, it 
creates a rule that can solve the same goal 
when it occurs again in other problem- 
solving contexts. SOAR is able to general- 
ize across problem-solving contexts by 
building rules whose conditions only in- 
clude working memory elements that are 
necessary for finding the solution of the 
goal. By omitting the irrelevant working 
memory elements, SOAR achieves a kind 
of “implicit generalization” [Laird et al. 
1986a]. The learning process in SOAR can 
also be viewed in terms of reformulation of 
non-operational concept descriptions. The 
combination of a goal G and the original 
production rules may be viewed as a nono- 
perational specification of the set of prob- 
lem states in which G can be solved 
[Rosenbloom and Laird 19861. The chunk- 
ing process creates a production rule with 
conditions that directly test whether the 
goal G can be solved. The conditions of the 

Initial world model: 
INROOM(ROBOT, Rl) 
INROOM(BOX1, R2) 
CONNECTS(D1, Rl, R2) 
CONNECTS(D1, R2, R3) 
BOX(BOX1) 

&x, y, z)[CONNECTS(x, y, z) 
==a CONNECTS(x, z, y)]. 

Goal formula: 
(3z)[BOX(x) A INROOM(x, Rl)]. 

Figure 20. STRIPS’ initial world model [Fikes et al. 
19721. 

new rule may be viewed as an operational 
description of the same concept. 

2.3.2 STRIPS (Fikes, Hart, and Nilsson) 

STRIPS is a system for building and gen- 
eralizing “robot plans” [Fikes et al. 19721. 
The robot plans are represented as 
sequences of “STRIPS-type operators,” 
When given a goal to achieve, STRIPS 
performs a search to find a sequence of 
operators that transforms the initial state 
into the goal state. The operator sequences 
are then combined into chunks called 
“MACROPS.” The sequences are also gen- 
eralized so that they can be applied to new 
situations. 

STRIPS uses a list of predicate calculus 
formulas to model the current situation of 
its world and to describe the goal that the 
robot plan is intended to achieve. An initial 
model and a goal are shown in Figure 20. 
The model describes some interconnecting 
rooms and the locations of a robot and a 
box. STRIPS is faced with the goal of get- 
ting a box into room Rl. The operators that 
STRIPS can use for this task are shown in 
Figure 21. Each operator has a set of pre- 
condition formulas that must be true in 
order for the operator to apply to a situa- 
tion. Before applying an operator, STRIPS 
uses a resolution theorem prover to verify 
that the preconditions of the operator are 
met. Each operator also has an “add list” 
and a “delete list,” which specify the effects 
of the operator. To apply an operator, 
STRIPS first instantiates the operator’s 
variables using bindings obtained from the 
process of proving preconditions. Then 
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GOTHRU(d, rl, r2) 
Precondition: INROOM(ROBOT, rl) A CONNECTS(d, rl, r2), 
Delete list: INROOM(ROBOT, rl), 
Add list: INROOM(ROBOT, r2). 

PUSHTHRU(b, d, rl, r2) 
Precondition: INROOM(ROBOT, rl) A CONNECTS(d, rl, r2) 

A INROOM(b, rl), 
Delete list: INROOM(ROBOT, rl) 

INROOM(b, rl), 
Add list: INROOM(ROBOT, r2) 

INROOM(b, r2). 

Figure 21. Examples of STRIPS operators [Fikes et al. 19721. 

* INROOM(ROBOT,Rl) 

* CONNECTS(Dl,Rl,R2) GOTHRU(D1,R1,R2) 

* lNROOM(BOX 1 ,R2) 

* CONNECTS(D1 ,R 1 ,R2) * lNROOM(ROBOT,R2) 

* CONNECTS(x,y,z) => 

CONNECTS(x,z,y) 

PUSHTHRU(BOXl,Dl,R2,Rl) 

lNROOM(ROBOT,Rl) 

INROOM(BOXl,Rl) 

0 1 2 

Figure 22. Example of a triangle table [Fikes et al. 19721. 

STRIPS deletes any formulas in the cur- 
rent world model that match an item on 
the delete list. Finally, STRIPS adds all the 
formulas on the add list to the current 
model. 

After finding a plan to achieve a goal, 
STRIPS builds a data structure known as 
a “triangle table.” The triangle table de- 
scribes the structure of the robot plan in a 
format that is useful for generalizing oper- 
ator sequences. An example of a triangle 
table is shown in Figure 22. A procedure 

for building such a table is shown in Figure 
23.‘” The triangle table is useful because it 
shows how operator preconditions depend 
on the effects of other operators and on 
facts from the initial world model. Any fact 
marked with an asterisk in the table indi- 
cates just such a dependency. For example, 
the marked fact INROOM(ROBOT, R2), 

” The example table departs slightly from the defini- 
tion. In column zero of the example, only the “marked” 
clauses are shown. 
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0. For an operator sequence of length N, number the 
rows from 1 to N + 1, and number the columns 
from 0 to N. 

1. Place the (i)th operator in the cell at column i, 
row i. 

2. In every cell at column 0, row i (; = 1,. , N), 
place the facts of the initial model that were true 
just before the (i)th operator was applied. 

zing: Programs and Perspectives 

1. “Lift” the triangle table. 
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3. In the cell at column 0, row N + 1, place the facts 
of the initial model that remained true in the final 
model. 

4. In every cell at column i (i = 1, . . , N - l), row j 
(j = i + 1,. , N), place the facts added by the 
(i)th operator that were true just before the (j)th 
operator was applied. 

5. In every cell at column i (; = 1,. , N), row 
N + 1, place the facts added by the (i)th operator 
that remained true in the final model. 

6. Use an * to mark each fact in row j (j = 1, . . . , N), 
that was used in the proof of the preconditions of 
the (j)th operator. 

Figure 23. Definition of a triangle table. 

in column 1, row 2 of Figure 22, indicates 
that the precondition of the PUSHTHRU 
operator depends on a fact added by the 
GOTHRU operator. Likewise, the presence 
of the marked fact INROOM(BOX1, R2), 
in column 0, row 2, indicates that the pre- 
condition of PUSHTHRU depends on a 
fact from the initial model. 

There are two main criteria that are used 
to determine how to generalize the robot 
plan represented by a triangle table. The 
first criterion involves maintaining the de- 
pendencies between operators. Operator (i) 
will add a clause supporting operator ( j ) in 
the generalized table if and only if the same 
dependency exists between operators (i) 
and (j) in the original table. The second 
criterion requires that the preconditions of 
operators in the generalized table be prov- 
able using the same proofs as used to verify 
preconditions in the original plan. 

STRIPS generalizes operator sequences 
using the procedure shown in Figure 24. 
This procedure makes use of both the tri- 
angle table and the proofs of operator pre- 
conditions that were created when the 
robot plan was formed. The first step re- 
places constants with variables leading to 
an overgeneralized table. The second step 
constrains the table in accordance with the 
two aforementioned criteria. The precon- 

(a) Replace each distinct constant in column zero 
with a distinct variable. 

(b) Replace each clause in column i (i = 1,. . . , N), 
with the corresponding clause from the unin- 
stantiated add list of the (i)th operator. 

(c) Rename variables so that clauses from distinct 
operator applications have variables with dis- 
tinct names. 

2. Rerun proofs of preconditions using isomorphic 
images of original proofs. 
(a) Each new proof will be supported by the gen- 

eralized versions of clauses that were marked 
in the original table. 

(b) Each new proof step performs resolution on 
pairs of clauses and unification on pairs of 
literals corresponding to the pairs matched in 
the same step of the original proof. 

(c) Substitutions generated during unification are 
applied throughout the entire table. 

Figure 24. STRIPS generalization procedure. 

dition proofs are performed once again. The 
supporting clauses of the new proofs are 
the generalized versions of the (marked) 
supporting clauses of the original proofs. 
For every step in the original proof that 
resolved clauses “a” and “b” and unified 
literals “i” and “j,” the new proof resolves 
the generalized versions of “a” and “b” and 
unifies the generalized versions of “i” and 
‘7.” This technique is similar to EGGS (Fig- 
ure 7), inasmuch as they both require that 
the same objects be unified in the general- 
ized proof as in the original proof. 

When the STRIPS generalization pro- 
cedure is used to process the triangle table 
of Figure 22, it produces the generalized 
table shown in Figure 25. Several interest- 
ing generalizations have been made. The 
object to be moved from one room to an- 
other has been generalized from a BOX to 
any object. Although the initial and final 
rooms were identical in the original plan, 
the room variables are distinct in the gen- 
eralized plan. STRIPS has also generalized 
the conditions of applicability of the oper- 
ator sequence. The marked clauses in the 
leftmost column of the generalized table 
indicate the generalized conditions under 
which the sequence is applicable. Initially, 
STRIPS only knows that the sequence ap- 
plies to the initial world model shown in 
Figure 20. After generalizing the triangle 
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* INROOM(ROBOT,p2) 

* CONNECTS(p3,p2,pS) 

* CONNECTS(p8,p9,pS) 
* INROOM(ROBOT,pS) 

* CONNECTS(x,y,z) => 

CONNECTS(x,z,y) 

0 1 

INROOM(ROBOT,p9) 

Figure 25. Generalized triangle table [Fikes et al. 19721. 

table, STRIPS knows the sequence is ap- 
plicable whenever the conditions in the 
leftmost column of the generalized table in 
Figure 25 are met. 

An obvious next step would be to create 
a new STRIPS operator representing the 
entire generalized operator sequence. The 
new operator would have the same effect in 
a single step as the entire sequence of op- 
erators used in the original plan. STRIPS 
does not actually build such a macro oper- 
ator. STRIPS keeps the generalized trian- 
gle table in the form shown in Figure 25 
instead. This means that the MACROP 
cannot be applied in a single step in the 
course of solving a new planning problem. 
The operators must be applied one by one. 
Nevertheless, the table does directly indi- 
cate the conditions under which an entire 
sequence will apply to a problem situation. 

STRIPS has been described above in 
terms of “generalization” and “chunking.” 
It can also be viewed in terms of reformu- 
lating nonoperational concept descriptions 
(see Figure 3). Given an operator sequence 

2 

OP1, . . . , OPN, STRIPS contains all the 
information needed to determine the con- 
dition of applicability of the entire se- 
quence. The information is only present 
implicitly, embedded in the definitions of 
the individual operators. One could view 
the sequence description “OP1, . . . , OPN” 
as a nonoperational description of the con- 
dition of application. STRIPS creates an 
operational description by building the gen- 
eralized triangle table. The marked clauses 
in the leftmost column constitute such an 
operational description of the condition of 
application. 

2.3.3 Similar Work 

Anderson’s ACT* system is similar to the 
chunking systems described here [Ander- 
son 1983a, 1983b, 19861. The ACT* system 
uses a learning mechanism called “knowl- 
edge compilation,” which is based on col- 
lapsing sequences of production rules into 
single rules. Each single rule has the same 
effect as the original sequence from which 
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it was compiled. Anderson describes his the task of reformulating the original 
ACT* system as a general architecture that expression in terms of data and actions that 
underlies all types of human cognition. are available to the agent. 

Minton and Benjamin have both devel- 
oped systems that perform chunking in 
architectures similar to SOAR [Benjamin 
1987; Minton 1988a; Minton and Carbonell 
19871. Like SOAR, each system makes a 
distinction between domain level operators 
and control rules that guide the application 
of domain level operators. As in SOAR, the 
chunks are used to make search control 
decisions. Minton’s PRODIGY system is 
distinguished by the fact that it learns from 
failure as well as success. Unlike SOAR, 
which creates chunks only after successful 
subgoals, PRODIGY has the additional ca- 
pability of chunking after subgoal failures. 
The resulting control rules enable PROD- 
IGY to avoid similar failures in the future. 

Many people have investigated methods 
of forming macro operators outside the con- 
text of explanation-based learning. Cheng 
and Carbonell have investigated methods 
of building macros with conditional and 
iterative constructs [Cheng and Carbonell 
19861. Korf developed a method for finding 
useful macro operators that applies to any 
problem exhibiting a property called “serial 
decomposability” [ Korf 19851. Iba investi- 
gated heuristics for determining when a 
sequence of operators will lead to a useful 
macro operator [ Iba 19851. The REFLECT 
system of Dawson and Siklossy also had a 
mechanism for creating macro operators 
[Dawson and Siklossy 19771. 

As shown in Figure 3, operationalization 
can be placed into rough correspondence 
with the EBL generalization processes de- 
scribed previously. The explanation rules 
used in systems like GENESIS or LEX-II 
may be viewed as nonoperational specifi- 
cations of the concepts that these systems 
learn. The rules “specify” the concepts be- 
cause they contain all the information 
needed to construct the learned concepts. 
The concept specifications are “nonopera- 
tional” because the rules only implicitly 
contain the information. The EBL tech- 
niques of GENESIS and LEX-II serve the 
purpose of making the concepts explicit. 
Building and analyzing an explanation is 
similar to the process of translating a non- 
operational concept into an operational 
one. The translation may be said to “ex- 
plain” how the operational concept descrip- 
tion meets the conditions given by the 
nonoperational concept description. 

2.4.7 FOO and BAR (/Vo.stow) 

The FOO and BAR programs were devel- 
oped by Mostow to investigate the problem 
of operationalizing “advice.” The older 
FOO program is described in Mostow 
[1981, 1983b]. BAR was developed as an 
extension to FOO and is described in Mos- 
tow [1983a, 1983c]. The programs were 
tested mainly in the domain of the card 
game Hearts. Some additional tests were 
run in the domain of music composition. 

2.4 EBL = Operationalization 

The term operationalization may be 
defined as a process of translating a 
“nonoperational” expression into an “op- 
erational” one. The initial expression might 
represent a piece of advice, as in Mostow’s 
FOO and BAR programs [Mostow 1981, 
1983a], or it might represent a concept, as 
in Keller’s LEXCOP program [Keller 
19831. The initial expression is said to be 
“nonoperational with respect to an agent” 
because it is not expressed in terms of data 
and actions available to the agent [Mostow 
1983a]. An operationalizing program faces 

As an example of a nonoperational 
expression from the hearts domain, con- 
sider the advice to “avoid taking points.“lG 
This advice is considered “nonoperational” 
because it is not written in terms of actions 
that a player can perform. The rules of the 
game do not allow one to refuse to take up 
the cards at the end of a trick merely be- 
cause they include point cards. The only 
actions available to a player are to choose 

l6 The phrase “taking points” means winning tricks 
that contain point cards. In the version of the game 
described previously, point cards are hearts. 
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Unfolding concept definitions: 
If F is a concept defined as (X(x,. . x,,,)e), then 
replace the expression (F e, . e.v) with the result 
of substituting e, eN for X, . .x.” through- 
out e. 

Approximation of a predicate (1): 
Given an expression containing (P S), where P is a 
predicate, replace (P S) with the expression (High 
(Probability (P S))). 

Approximation of a predicate (2): 
Given an expression containing (P S), where P is a 
predicate, replace (P S) with the expression (Possi- 
ble (P S)), where (Possible (P S)) is true unless 
(P S) is known to be false. 

Figure 26. Problem transformation rules [Mostow 
19831. 

to play one of the cards from his hand. As 
another example, consider the advice 
“Don’t lead a card of a suit in which an 
opponent is void.“17 This advice is not 
operational because it requires knowing 
one’s opponents’ cards. These data are not 
usually available to a player. Mostow’s pro- 
gram can translate the advice to “avoid 
taking points” into an operational expres- 
sion. After translation, the advice becomes 
“play a low card.” In this new form, the 
advice does directly specify an action avail- 
able to the player and is therefore consid- 
ered to be operational. 

In order to translate a piece of advice, 
Mostow’s programs make use of several 
types of knowledge. One part of the 
knowledge base contains a set of domain- 
independent “problem transformation 
rules.” Each rule has an action component 
specifying how to rewrite an expression 
representing some advice as well as con- 
ditions governing the applicability of the 
rule. Examples of such rules are shown in 
Figure 26. The transformation rules are 
progressively applied to the initial advice, 
gradually changing it into a form that meets 
the requirements of operationality. The 
knowledge base also contains domain-de- 
pendent “concept definitions” like those 
shown in Figure 27. 

” A player is said to be “void” in suit if he does not 
have any cards of that suit in his hand. 
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The FOO and BAR programs differ in 
the type of control structure used to choose 
a sequence of rule applications. FOO relies 
on a human user to pick an appropriate 
sequence of transformation rules [Mostow 
1983b]. BAR uses means-ends analysis to 
guide the choice of which rule to apply 
[ Mostow 1983a]. The rule sequences can be 
quite long, amounting to over 100 rule ap- 
plications in some cases. Even the BAR 
program is unable to work without some 
human guidance. 

In order to guide the search process, BAR 
needs to know which specific parts of an 
expression are not operational. This is done 
by annotating each “domain concept” with 
information that indicates the operation- 
ality of the concept [Mostow 1983a]. For 
example, the concept “point-cards” is 
marked as being operational since a player 
always knows which cards are worth points. 
The “void” predicate is not operational, 
since a player cannot generally know when 
an opponent is void in a suit. In general, 
predicates can be “evaluable” or “not eval- 
uable,” functions can be “computable” or 
“not computable,” events can be “control- 
lable” or “not controllable,” and constraints 
are “achievable” or “not achievable.” BAR 
also contains some general knowledge 
about operationality. For example, there is 
a rule stating that “a computable function 
of evaluable arguments is itself evaluable.” 
Another rule says that “an evaluable con- 
straint on a controllable variable is achiev- 
able.” This knowledge can be used to guide 
the search process by determining which 
parts of an expression are nonoperational 
and need to be transformed. 

In order to illustrate the operationaliza- 
tion techniques, consider the following ex- 
ample taken from Cohen and Feigenbaum 
[1982], which shows how the FOO program 
operates. FOO is initially given the advice 
“Avoid taking points,” which is represented 
internally by the expression 

(AVOID (TAKE-POINTS ME) (TRICK)). 

This expression may be interpreted as say- 
ing “Avoid an event in which the player 
‘me’ takes points during the current trick.” 
In order to translate this expression, FOO 
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POINT-CARDS = (LAMBDA ( ) (SET-OF C (CARDS) (HAS-POINTS C))), 
VOID = (LAMBDA (P SUIT) 

(NOT (EXISTS C (CARDS-IN-HAND P) 
(IN-SUIT C SUIT)))), 

AVOID = (LAMBDA (E S) (ACHIEVE (NOT (DURING S E)))), 
TRICK = (LAMBDA ( ) 

(SCENARIO (EACH P (PLAYERS) (PLAY-CARD P)) 
(TAKE-TRICK (TRICK-WINNER)))). 

Figure 27. Concept definitions [Mostow 19831. 

first uses the rule for unfolding concept 
definitions (Figure 26), along with the def- 
initions of the concepts “avoid” and “trick” 
(Figure 27). The system subsequently ap- 
plies several more transformations, includ- 
ing “case analysis, ” “intersection search,” 
“partial matching,” and “simplification” to 
translate the expression into the form 

(ACHIEVE (NOT (AND 

(= (TRICK-WINNER ME) 

(TRICK-HAS-POINTS))))). 

This expression says “Try not to win a trick 
that contains point cards.” After several 
additional transformations, the final form 
of the advice is obtained: 

(ACHIEVE 

(*(AND (IN-SUIT-LED 
(CARD-OF ME)) 

(POSSIBLE 
(TRICK-HAS-POINTS))) 

(LOW (CARD-OF ME)))). 

This expression asserts the advice “Play a 
low card when following suit in a trick that 
could possibly contain point cards.“” 

This final expression is not exactly 
equivalent to the original advice. There 
have been several modifications to the con- 
tent of the advice as well as the form of the 
advice. To begin with, the final form of the 
advice is specialized to a more limited range 
of situations than the original advice. The 
final advice only applies in situations when 
the player is “following suit.” The original 
advice purports to apply to any situation. 

I” A player is said to be “following suit” whenever he 
plays a card in the same suit as the card played by the 
leader of the current trick. 

In addition to specializing the advice, the 
system was forced to make approximations. 
One approximation replaced the expression 
(TRICK-HAS-POINTS) with (POSSI- 
BLE (TRICK-HAS-POINTS)). This was 
necessary because it is not possible to de- 
termine in advance whether a trick will 
have points. In order to have an operational 
rule, the system inserts a condition testing 
whether, based on current information, it 
is possible for the trick to eventually con- 
tain points. Another approximation re- 
placed the requirement of playing a card 
that will lose the trick with the weaker 
requirement of playing a low card. Since 
the player cannot generally determine 
whether a card will lose a trick, he must 
use the approximation of playing a low 
card. This example illustrates the need to 
sacrifice generality and accuracy in order 
to translate advice into an operational 
expression. 

The FOO and BAR programs have been 
described in terms of operationalizing “ad- 
vice.” As suggested by Figure 3, they may 
also be viewed in terms of operationalizing 
“concepts” in the following way: Initially 
the system is given the nonoperational con- 
cept description “cards that avoid taking 
points.” This description is translated into 
the operational form “low cards.” FOO and 
BAR can also be viewed in terms of chunk- 
ing. After translating the advice, the system 
may be said to possess a rule of the form 
“If a card is low, then the card avoids taking 
points.” This rule represents the result of 
forming a chunk out of the sequence of 
problem transformation rules used to 
translate the advice. Although FOO and 
BAR do not look at examples, they could 
be modified to implement a process of gen- 
eralizing from examples. The system could 
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(Vop, s)(POSINST(op, s) (= USEFUL(op, s)l, 
(Vop, s)(USEFUL(op, s) + 

[-6OLVED(s) 
A SOLVABLE(APPLY(op, s)) 
A APPLICABLE(op, s) 
A IWOOP) 

EQUAL(op, oop) 
V lAPPLICABLE(oop, s) 
V lSOLVABLE(APPLY(oop, s)) 
V GREATER-COST(APPLY(oop, s), APPLY(op, s))]]}, 

(Vop, s)(SOLVABLE(s) c= SOLVABLE(APPLY(op, s))}, 
(Vop, s){SOLVABLE(s) + SOLVED(APPLY(op, s))j. 

Figure 28. Rules defining the POSINST predicate in LEXCOP 
[Keller 19831. 

be given an example of a “card that avoids 
taking points.” The search for a translation 
could be constrained by imposing the re- 
quirement that the translated advice be 
capable of predicting the given example. 
Examples might help the system decide 
what types of approximations and special- 
izations are appropriate. 

2.4.2 LEXCOP and MetaLEX (Keller) 

The LEXCOP system [Keller 19831 is 
closely related to Mostow’s operationalizer. 
Like Mostow’s systems, LEXCOP is in- 
tended to translate nonoperational expres- 
sions into operational ones. The systems 
differ slightly in the types of expressions 
they reformulate. Whereas FOO and BAR 
are designed to reformulate “advice,” LEX- 
COP is explicitly intended to address the 
problem of reformulating “concept descrip- 
tions.” LEXCOP takes nonoperational 
concept descriptions as input and produces 
operational concept descriptions as output. 
Keller’s system is also distinct from Mos- 
tow’s because of its criterion for deciding 
when an expression is operational. In LEX- 
COP a concept description is operational if 
it allows instances to be “efficiently” tested 
for concept membership. LEXCOP uses 
the same basic methodology as FOO and 
BAR. The knowledge base contains a set of 
transformation rules that can rewrite con- 
cept descriptions. LEXCOP uses these 
rules to perform a heuristic search in a 
space of concept descriptions. Each state is 
a concept description and the transforma- 
tion rules are operators of the state space. 

LEXCOP was worked out on paper but 
apparently never implemented [Keller 
1987a]. 

Consider the following example from the 
domain of symbolic integration. A defini- 
tion of the concept “POSINST(op, s)” is 
shown in Figure 28. This definition asserts 
that a state “s” is a positive instance if 
applying “op” to “s” leads to a state along 
a minimum-cost solution path. In this form 
the concept description is considered to be 
“nonoperational.” For example, in order to 
test a state “s” for membership in the con- 
cept POSINST(OP1, s), it may be neces- 
sary to build a large search tree. LEXCOP 
attempts to reformulate this concept de- 
scription into something that can be tested 
more efficiently. Given the nonoperational 
description POSINST(OP1, s), LEXCOP 
could produce the description shown in Fig- 
ure 29. This new concept description can 
be tested more efficiently because it is writ- 
ten as a pattern match using the general- 
ization language of LEX [Mitchell et al. 
1983a]. Notice that the translated descrip- 
tion is a specialization of the original con- 
cept description. Like Mostow’s systems, 
LEXCOP is forced to sacrifice generality 
in order to make an expression more oper- 
ational. In order that the new concept de- 
scription be useful in a variety of situations, 
LEXCOP would have to create a conjunc- 
tion of several alternate specializations of 
the original concept description. 

Some of the transformation rules used in 
LEXCOP are shown in Figure 30, taken 
from [Keller 19831. The rules are divided 
into three main types. The “concept- 
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(Vs){POSINST(OPl, s) * MATCH(( function) J sin(x) dx, s)]. 

Figure 29. Translated concept description [Keller 19831. 

Concept-preserving transforms: 
1. Expand definition of a predicate. 
2. Constraint back-propagation. 
3. Enumerate the values of a universal variable. 

Concept-specializing transforms: 
1. Add a conjunct to an expression. 
2. Delete a disjunct from an expression. 
3. Instantiate a universal variable. 

Concept-generalizing transforms: 
1. Add a disjunct to an expression. 
2. Delete a conjunct from an expression. 

Figure 30. Transformation rules in LEXCOP 
[Keller 19831. 

preserving transformations” rewrite con- 
cepts without changing their meaning. 
The “concept-specializing” and “con- 
cept-generalizing” transformations make 
concepts more specialized and more 
generalized, respectively. A concept-spe- 
cializing rule creates a new expression rep- 
resenting sufficient conditions for concept 
membership. A concept-generalizing rule 
produces a new expression representing 
necessary conditions for concept member- 
ship. The sequences of transformations 
used in LEXCOP correspond closely to the 
explanation trees used in LEX-II [Mitchell 
19831; however, the explanation trees of 
LEX-II are built from concept-preserving 
and concept-specializing transformations 
only. This explains why LEX-II creates 
generalizations that represent sufficient, 
but not necessary, conditions for concept 
membership. Unlike the LEX-II system, 
LEXCOP would arrive at the translated 
concept description without making use of 
any training examples. 

Keller has developed a new system called 
MetaLEX, which builds on the ideas of 
LEXCOP [Keller 1987a]. MetaLEX is in- 
tended to show how learning systems can 
exploit explicit representations of contex- 
tual knowledge, that is, knowledge of the 
context in which learning takes place. 
Keller defines “contextual knowledge” to 
include (1) a description of the performance 

program to be improved by learning and 
(2) a specification of performance objec- 
tives, among other things. 

Keller argues that contextual knowledge 
is useful for several purposes. For example, 
he outlines a method by which a learning 
system can utilize contextual knowledge to 
automatically formulate its own learning 
tasks. By analyzing the algorithm used 
in the performance program, a learning 
system could formulate a plan to improve 
performance by inserting a concept 
membership test at some location in the 
performance program. The plan would ini- 
tially describe the concept in nonopera- 
tional terms. The learning system would 
then be faced with the task of translating 
the concept into an operational form. By 
formulating new learning tasks to attack 
bottlenecks as they move around in the 
system, this process may provide a solution 
to the “wandering bottleneck” problem. 

Unlike FOO, BAR, and LEXCOP, 
MetaLEX uses empirical information. In 
particular, MetaLEX collects data mea- 
suring the CPU time expended in evaluat- 
ing various parts of a concept description. 
By indicating which parts of an expression 
are the least operational and most in need 
of reformulation, these empirical data help 
to guide the search for an operational con- 
cept description. MetaLEX also collects 
data to help determine when a concept can 
be safely approximated. MetaLEX mea- 
sures the impact of various approximations 
on overall efficiency and accuracy. By com- 
paring these to the system’s performance 
objectives (i.e., contextual knowledge), 
MetaLEX can determine when approxi- 
mations are worthwhile. 

2.4.3 Similar Work 

Techniques for operationalization have not 
been studied extensively in the field of ma- 
chine learning. Some automatic program- 
ming methods can be viewed in terms of 
operationalization. The transformational 
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CUP 

b CAUSE 
AK0 

- IS + OPEN-VESSEL 

IS ) STABLE 
b LIFTABLE 

Figure 31. Functional definition of a cup [Winston et al. 19831. 

implementation methodology developed by 
Balzer is a case in point [Balzer et al. 19761. 
This technique takes a (nonoperational) 
program specification as input. A series of 
correctness-preserving transformations are 
then applied to the specification, gradually 
refining it into an executable (operational) 
program. This method has been used by 
Swartout to build knowledge-based expert 
systems for which human-oriented expla- 
nations can easily be generated [Swartout 
19831. A survey of program transformation 
systems is found in Partsch and Steinbriig- 
gen [1983]. The relation between EBL and 
program transformation is discussed in 
Prieditis [1988a]. 

2.5 EBL = Justified Analogy 

Techniques for performing “justified” an- 
alogical reasoning are discussed in this sec- 
tion. Traditional methods of reasoning by 
analogy require making a guess about what 
information should be transferred from a 
remembered analogous situation to a new 
situation. The “justified” version of anal- 
ogy tries to avoid guessing. One approach 
to justified analogy involves mapping se- 
quences of “inference rules,” or “explana- 
tions,” from analogs to target examples. 
The inference rules might encode “causal 
relations” as in Winston et al. [1983], 
Kedar-Cabelli [1985], and Gentner [1983], 
or they might represent problem-solving 
“derivation” steps as in Carbonell [1986] 
(see Figure 3). Since the inference rules 
contain their conditions of applicability, 
the system needs only to verify that the 
mapped rules apply to the new situation in 
order to avoid making guesses. This sug- 
gests that explanation-based analogy 

(EBA) would be a reasonable name for 
these techniques. 

2.5.1 ANALOGY (Winston) 

Winston and his co-workers have devel- 
oped the ANALOGY system [Winston 
et al. 19831. This program is intended to 
learn “physical” or “structural” descrip- 
tions of objects. The program is given 
“functional definitions” of objects as input. 
By finding analogies between “precedents” 
and “practice examples,” ANALOGY 
transforms the functional definition into a 
physical or structural description. 

The ANALOGY program is described 
using the example of a drinking cup. The 
input to the system is a functional defini- 
tion of a cup, shown in Figure 31. This 
definition gives three conditions that must 
be met in order that an object function as 
a drinking cup. The object must be a “sta- 
ble, liftable, open vessel.” These conditions 
are considered to be functional specifica- 
tions but not physical or structural prop- 
erties. A variety of physically different 
objects could fulfill these three functional 
criteria, In addition to a functional defini- 
tion, the system is also given an example 
of a cup, shown in Figure 32. ANALOGY 
so provided with a set of precedents that 
are used to reason by analogy. These prec- 
edents include descriptions of objects such 
as bricks, suitcases, and bowls, which are 
useful for establishing the connection be- 
tween physical properties and functional 
specifications. 

ANALOGY begins by trying to confirm 
that the example is indeed a cup. The func- 
tional definition network is retrieved and 
superimposed on the example network. 
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OBJECT i-?-m 
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UPWARD-POINTING 

Figure 32. Example of a cup [Winston et al. 19831. 

Next the system tries to establish each of 
the three criteria in the definition; that is, 
the program must show that the example 
is a “stable, liftable, open vessel.” Each 
condition can be established either by ver- 
ifying that the condition appears directly 
in the description of the example or by 
reasoning from a precedent. The suitcase 
precedent is used to show that the example 
is liftable. The description of the suitcase 
precedent contains a causal chain. This 
chain has two steps asserting that (1) “the 
suitcase is liftable because it is light 
and graspable” and (2) “the suitcase is 
graspable because it has a handle.” In 
order to use the chain, ANALOGY deter- 
mines a correspondence between parts of 
the cup example and parts of the suit- 
case precedent, using a method called 
“importance-dominated matching” [Win- 
ston 19821. While transferring the chain, 
the program tests whether the antecedents 
of the chain are found in the example. In 
this case the cup example does in fact con- 
tain the “light” and “handle” relations. 
This means the condition of being “liftable” 
is successfully established. In a similar 
manner, ANALOGY uses the brick prece- 
dent to show that the example is stable and 
the bowl precedent to show that the ex- 
ample is an open vessel. The final version 
of the example network is shown in Fig- 

ure 33. This diagram shows all the causal 
chains transferred from the precedents to 
the cup example. 

After establishing the example to be a 
cup, ANALOGY creates a general rule. The 
rule is intended to summarize the set of 
physical properties that enabled the exam- 
ple to function as a cup. An English para- 
phrase of the new rule is shown in 
Figure 34. The “IF” part of this rule was 
built from the antecedents of the causal 
chains transferred from precedents. The 
“THEN” part asserts an object to be a cup. 
The “UNLESS” conditions correspond to 
the intermediate nodes of the transferred 
causal chains. These conditions are in- 
cluded because the causal connections are 
not considered to be infallible. For example, 
the causal link asserting that “an object is 
graspable if it has a handle” might be wrong 
in some cases. By adding the “UNLESS” 
condition, the rule is understood to mean 
“an object is graspable if it has a handle, 
unless there is some reason to believe 
otherwise.” 

A question arises regarding whether the 
precedents are really necessary in the 
ANALOGY system. According to Winston, 
“The precedents are essential for otherwise 
there would be no way to know which as- 
pects of the example are relevant” [Win- 
ston et al. 1983, p. 4331. The precedents 
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CUP 
A 

b CAUSE 
AK0 
IS ) OPEN-VESSEL + 

+ CONCAVITY 0 

UPWARD-POINTING - 

Figure 33. Final version of example network [Winston et al. 19831. 

IF: AN OBJECT IS LIGHT AND HAS A 
HANDLE, A FLAT BOTTOM AND AN 
UPWARD POINTING CONCAVITY, 

THEN: THE OBJECT IS A CUP, 

UNLESS: THE OBJECT IS NOT STABLE, OR 
NOT LIFTABLE, OR NOT AN OPEN 
VESSEL, OR NOT GRASPABLE. 

Figure 34. Rule extracted from network. 

might appear to be necessary because they 
contain causal information in the form of 
links between causes and effects. ANAL- 
OGY may be said to possess an “exten- 
sional theory” of causes and effects in the 
form of precedents. This can be contrasted 
with an “intensional theory” in the form of 
general rules connecting causes and ef- 
fects [Mitchell et al. 19861. Nevertheless, 
Winston’s database of precedents is 
really an intensional theory in disguise. 
ANALOGY has the ability to extract causal 
relations from precedents and transfer 
them to new situations. This implies it can 
determine which conditions must hold for 

a causal link to be in effect. As observed by 
Mitchell, the ANALOGY program impli- 
citly assumes a causal link such as 
“FEATUREl(A) + FEATURES(A)” is 
supported by a general rule of the form 
“(Vx)(FEATUREl(x)+FEATURE2(x)J” 
[Mitchell et al. 19861. If a database of rules 
were created by extracting causal links 
from the precedents, the result would be a 
program looking more like GENESIS or 
LEX-II. There may be a reason for storing 
causal rules in the context of precedents. 
The causal rules may be faulty. When con- 
tradicted by future information, they will 
need revision. The precedents might help 
determine how to revise faulty rules. 

Winston’s ANALOGY program can also 
be viewed in terms of generalization, 
chunking, and operationalization (see Fig- 
ure 3). The rule in Figure 34 can be taken 
as a generalization of the single example of 
a cup, which was provided to the system. 
The rule may also be seen as an operation- 
alization of the functional definition of a 
cup. The original definition of a cup in 
Figure 31 may be considered to be “non- 
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operational” because it describes a cup 
in functional terms. The final rule in Fig- 
ure 34 is operational because it describes 
cups in physical or structural terms. Win- 
ston’s program also performs chunking. 
Three causal chains are taken from three 
precedents, the suitcase, the brick, and the 
bowl, and are spliced together to build an 
explanation of the cup example. The expla- 
nation is then collapsed into a single rule 
representing a chunk. 

2.5.2 Derivational Analogy (Carbonell) 

Derivational Analogy (DA) was developed 
by Carbonell to investigate analogical rea- 
soning in the context of problem solving 
[Carbonell1983a, 19861. The DA technique 
solves a new problem by making use of a 
solution derivation that was generated 
while solving a previous problem. The new 
problem is solved by recreating sequences 
of decisions and justifications for decisions 
that were used to solve a precedent prob- 
lem. Carbonell uses derivations in a way 
similar to the manner in which Winston 
uses causal networks. Carbonell proposes 
transferring derivations between examples, 
whereas Winston proposes transferring 
causal networks. Derivations and causal 
networks are both types of dependencies or 
justifications. Inasmuch as DA involves 
transferring justifications from a precedent 
to a new situation, it may be seen as a type 
of justified analogical reasoning. 

The DA method was originally developed 
to remedy a limitation of earlier work on 
analogy in problem solving. Carbonell’s 
earlier work involved solving new problems 
by directly modifying solutions to previ- 
ously solved problems [Carbonell 1983b]. 
For example, one might try to write a sort- 
ing program by directly modifying the code 
used in a previous sorting program. The 
difficulty can be illustrated by considering 
the following problem from Carbonell 
[ 19861: Suppose one wanted to write a LISP 
sorting program, and one had already writ- 
ten a Pascal program implementing quick- 
sort. The approach of directly modifying 
the Pascal program would either fail com- 
pletely or lead to a poor LISP program. 
This would happen because a good LISP 

implementation of quicksort would look 
quite different from the Pascal program 
owing to differences in the structures of 
these languages. Nevertheless, the LISP 
and Pascal programs might share the same 
underlying design strategy. They could 
both use a divide and conquer approach 
manifested in terms of partitioning sets. 
This strategic information is ignored by an 
analogy process that directly transforms 
the code of one program into the code of 
another. DA avoids this problem since it 
does not try to directly transform one 
solution into another. The DA method 
transfers information at the level of “deri- 
vations” rather than “solutions.” DA would 
solve the sorting problem by transforming 
the derivation of the Pascal program into a 
derivation of a LISP program. 

Carbonell gives a detailed specification 
of the sorts of information that should be 
contained in a derivation [Carbonell1983a, 
19861. A derivation is supposed to include 
the “hierarchical goal structure” used to 
generate the solution. The goal structure is 
represented in terms of the “sequence of 
decisions” made while solving a problem. 
For each decision, the derivation should list 
the alternative that was chosen as well as 
those that were considered, but not chosen. 
The record of a decision should include the 
reasons for the decision (i.e., the derivation 
might record an explanation of the decision 
along with dependency links to aspects of 
the problem specification and dependency 
links to general knowledge). The derivation 
should also indicate how each decision de- 
pends on prior decisions and influences 
subsequent decisions. Finally, the deriva- 
tion should record the initial segments of 
any dead-end paths that were explored, 
along with reasons the paths appeared 
promising and reasons the paths ultimately 
failed. 

In order to use the DA method to solve a 
problem, it is necessary to find prior prob- 
lem situations that are analogous to the 
current situation. DA begins solving a prob- 
lem by using general techniques, for ex- 
ample, application of weak methods or 
instantiation of a general problem-solving 
schema like divide and conquer [Carbonell 
19861. A trace is maintained to record these 
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initial stages of the problem-solving pro- 
cess. Appropriate analogous problems are 
found by matching the initial analysis trace 
of the current problem with the initial 
analysis of previous problems. 

After finding an analogous problem, the 
derivation of the analogous problems’ so- 
lution is retrieved and applied to the new 
situation. A derivation may be transferred 
to a new problem in the following way: The 
system must follow the sequence of deci- 
sions in the derivation and reconsider each 
one in the context of the current problem. 
In order to reconsider each decision, the 
system must examine the reasons for the 
decision. This can be done by examining 
the dependency links to the previous prob- 
lem situation and to general knowledge. If 
the relevant aspects of the problem speci- 
fication are the same and the general 
knowledge applies to the new situation, 
then the same decision can be made. Oth- 
erwise, the system must reconsider the de- 
cision. Carbonell actually provides a more 
detailed description of how to transfer a 
derivation from one problem to another 
[Carbonell 19861. 

2.5.3 Analogy versus Generalization 

The explanation-based versions of analogy 
and generalization differ mainly on the 
issue of schema formation. Systems like 
GENESIS and SOAR are naturally viewed 
as generalizers because they convert deri- 
vations (explanations, operator sequences) 
into schemata (chunks). The schemata rep- 
resent compiled versions of the derivations 
and need only to be instantiated to apply 
to new problems. The process of schema 
instantiation solves a new problem in a 
single step, bypassing all the intermediate 
steps of the derivation. In contrast, Car- 
bonell’s DA method is more naturally 
viewed in terms of analogy because it does 
not convert a derivation into a schema, but 
rather keeps the derivation in its original 
form. In order to solve a new problem, DA 
must pass through all the steps in the orig- 
inal derivation, possibly modifying them to 
some degree. 

Each approach has advantages. When a 
new problem actually matches an existing 

schema, the process of schema instantia- 
tion is usually more efficient than replaying 
an entire derivation. Schemata suffer from 
the disadvantage of not being immediately 
useful when a new problem falls outside 
their scope. Derivational analogy does not 
suffer from this problem. If one assumes 
that DA can modify derivation steps so the 
derivation can apply to a new problem, then 
the original derivation does not have a fixed 
range of application. 

2.5.4 Similar Work 

The EBA methods discussed in this section 
are similar to other recent research in an- 
alogical reasoning. In particular, they are 
similar to Gentner’s “structure-mapping” 
theory of analogy [Gentner 19831. This 
theory involves using a principle called 
“systematicity” to determine what infor- 
mation should be mapped from the analog 
to the target example. According to the 
systematicity principle, analogy processes 
should transfer “systems of relations.” A 
system of relations involves “first-order” 
relations that are governed by “higher or- 
der” relations. Causal relations are one type 
of higher order relation. The systematicity 
criterion often leads to transferring net- 
works of causal relations from one example 
to another. The causal nets can be inter- 
preted as explanations. For this reason the 
systematicity principle often results in 
transferring explanations from the analog 
to the target, just as in explanation-based 
analogy. Despite this similarity, structure 
mapping is different from EBA in one 
crucial respect. Although the structure- 
mapping theory often leads to transfer of 
explanations, it does not actually require 
that all analogical inferences be logically 
sound. 

A method of justified analogical reason- 
ing, called “Purpose-Directed Analogy” 
(PDA), has been proposed by Kedar- 
Cabelli [1985]. PDA is intended to address 
the question of deciding which causal net- 
work should be transferred from the ana- 
log to the target, in cases when the 
analog contains many possible causal 
networks. Kedar-Cabelli argues that the 
methods of Winston and Gentner are not 
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able to operate unless the relevant network 
is specified in advance. PDA tries to avoid 
this limitation by using the “purpose of the 
analogy” to select the relevant network 
from among many. 

Derivational analogy has been applied to 
the logic circuit design domain in several 
systems. For example, the REDESIGN sys- 
tem [Mitchell et al. 1983b; Steinberg and 
Mitchell 19851 serves as an assistant to a 
human for the purpose of designing new 
circuits by analogy with existing ones. 
REDESIGN combines causal reasoning 
about circuit behavior with knowledge 
about the design plan of the original circuit 
in order to focus attention on the parts that 
must be modified. Other applications of 
derivational analogy to circuit design in- 
clude the BOGART system [Mostow and 
Barley 19871 and the ARGO system 
[Huhns and Acosta 19871. 

Mostow has investigated the applicabil- 
ity of derivational analogy to design prob- 
lems in general, including both circuit 
design and program generation [Mostow 
19861. He has examined some difficulties 
that arise in the course of attempting to 
replay derivations. This study has led him 
to propose criteria about the types of infor- 
mation that should be included in deriva- 
tions. Mostow has also done a comparative 
analysis of several derivational analogy sys- 
tems in design domains [Mostow 1987a]. 

An entirely different approach to justi- 
fied analogy has been developed by Davies 
and Russell [1987]. Their technique in- 
volves utilizing “determinations,” for ex- 
ample, a rule asserting that “the value of 
feature A determines the value of feature 
B.” A system in possession of determina- 
tions can make logically sound inferences 
from precedents to new examples. Other 
knowledge-intensive approaches to analog- 
ical reasoning are discussed in Prieditis 
[1988b]. 

2.6 Additional EBL Research 

Several additional research projects are re- 
lated to explanation-based learning in the 
sense that they use explanations to guide 
learning; however, they do not fit neatly 
into any of the four categories: generaliza- 

tion, chunking, operationalization, or anal- 
ogy. Systems developed by Silver and by 
Schank fall into this group. Silver [1986a] 
has built a program called LP, which learns 
heuristics for solving algebraic equations. 
LP uses an analytic learning technique 
called “precondition analysis” (PA). The 
PA method is used to infer the strategic 
purpose of an operator, when the LP sys- 
tem sees it used within a sequence of 
operators. Suppose that the two operators, 
Pi and Pi+,, appear within the sequence, 
PI, . * -9 Pi-17 P,, Pi+19 . . . , PN. The PA 
method will assume that Pi was used to 
achieve some preconditions of Pi,,. Sup- 
pose that A is a set containing all the 
preconditions of operator P,+l and that B 
is a set containing members of A that are 
true before Pi was applied. The set differ- 
ence, A - B, represents those preconditions 
of p,+, that were brought about by the 
operator Pi. PA would then infer that 
these conditions are the “strategic purpose” 
of Pi. After learning the purpose of an 
operator, LP would use the information as 
a search control heuristic in future problem 
solving. Precondition analysis is related to 
EBL methods in two ways. It can learn 
from a single observation of an operator 
sequence applied to an algebra problem. It 
also relies on background knowledge about 
the preconditions of operators. Precondi- 
tion analysis differs somewhat from ana- 
lytical techniques like constraint-back 
propagation (CBP) and EGGS. PA can be 
applied to operators that are ill behaved in 
certain ways that would cause these meth- 
ods to fail [Silver 1986b]. 

Schank and co-workers have been work- 
ing on a theory of learning and memory 
that is similar to EBL. Schank envisions a 
role for explanations in learning; however, 
he uses explanations in a somewhat differ- 
ent way than the EBL systems described 
above. He has proposed a theory called 
“failure-driven memory” (FDM) based on 
the idea that learning is possible whenever 
a person encounters a failure of expecta- 
tions [Schank 19821. In the course of at- 
tempting to explain the failure, a person is 
reminded of previous episodes that can be 
understood using the same explanation. 
Such reminding is possible if memory is 
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indexed in terms of “patterns of explana- 
tion.” Schank has proposed a typology of 
standard explanation patterns [Schank 
19871. Hammond has used the FDM 
method in his CHEF program [Hammond 
1986, 19871. 

Schank’s FDM theory can be compared 
with EBL in the following way: According 
to FDM, if event A causes one to be re- 
minded of event B, then A and B share a 
common explanation. In the context of 
EBL, if A and B are instances of a single 
generalization, then they can both be 
understood using the same explanation. 
Owing to the emphasis that Schank places 
on case-based reasoning, his work bears 
an especially strong resemblance to 
explanation-based analogy. 

3. FORMALIZATIONS OF 
EXPLANATION-BASED LEARNING 

3.1 Mitchell’s EBG Formalism 

A formalism called explanation-based 
generalization (EBG)” has been pro- 
posed by Mitchell et al. [1986]. EBG at- 
tempts to capture the essential elements of 
most explanation-based learning systems 
that have been proposed. EBG is similar in 
spirit to Mitchell and Utgoff’s LEX-II sys- 
tem; however, it uses a more uniform set of 
methods and is cast in a form that is more 
clearly applicable to other domains. Mitch- 
ell describes the EBG framework as a 
“domain independent method . . . for using 
domain dependent knowledge to guide gen- 
eralization” [Mitchell et al. 1986, p. 491. 

The EBG formalism consists of two parts 
called the “EBG Problem” and the “EBG 
Method.” A formal specification of the 
problem is shown in Figure 35. The EBG 
problem is defined in terms of four param- 
eters that are necessary for all EBG sys- 
tems. The “goal concept” represents the 
objective of the learning program. This pa- 
rameter provides a nonoperational specifi- 
cation of the concept that the system will 
attempt to learn. In Mitchell’s presentation 
of EBG, the goal concept is represented as 

Is In the remaining sections, the term EBG shall refer 
to Mitchell’s specific formalism, whereas EBL refers 
to any explanation-based learning system. 

Given: 
(1) Goal concept, 
(2) Training example, 
(3) Domain theory, 
(4) Operationality criterion, 

Find: 
A new concept description that is 
(a) a generalization of the training example, 
(b) a sufficient condition for the goal concept, and 
(c) that satisfies the operationality criterion. 

Figure 35. The EBG problem. 

an atomic predicate calculus formula, pos- 
sibly containing free variables (e.g., vari- 
ables “s” and “obj” in POSINST(OP3, s) 
and CUP(obj)). The “operationality crite- 
rion” specifies the types of concept descrip- 
tions that are considered to be operational. 
Mitchell represents the criterion as a list 
of predicates that are observable or easily 
evaluable. A concept description is con- 
sidered operational if and only if it is 
expressed entirely in terms of predicates 
from this list. The “training example” is a 
description of an object that is an instance 
of the goal concept. The training example 
parameter is described in operational 
terms, that is, using predicates from the 
list of operational predicates. Finally, the 
“domain theory” parameter is a set of rules 
describing the domain from which the ex- 
ample and goal concept are drawn. The 
rules must be capable of proving that the 
training example meets the conditions for 
being an instance of the goal concept. In 
Mitchell’s presentation, the domain theory 
is represented as a set of Horn clauses. 

The EBG system is charged with the task 
of reformulating the goal concept into an 
expression that meets the operationality 
criterion. The new concept description 
need not be exactly equivalent to the orig- 
inal goal concept, so long as it is both (1) a 
specialization of the goal concept and 
(2) a generalization of the training example. 
In order to create such a concept descrip- 
tion, the EBG system uses a two-step 
process similar to the ones described 
above for GENESIS and LEX-II. First the 
system uses the domain theory to build an 
explanation tree proving that the training 
example satisfies the goal concept defini- 
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Training example -+ Operational concept description. 

Chunking: 
Domain theory + Concept membership test rule. 

Operationalization: 
Goal concept + Operational concept description. 

Analogy: 
Training and test examples -P Test example classification. 

Figure 36. Four interpretations of EBG. 

tion. Then the system “regresses” the goal 
concept formula through the explanation 
tree to obtain a generalized operational 
concept description at the leaves. For this 
step, EBG uses a procedure called modi- 
fied goal regression (MGR) [Mitchell 
et al. 19861.” MGR is a modified version 
of the goal regression technique described 
in Nilsson [1980] and Waldinger [1977]. 
MGR fulfills conceptually the same func- 
tion as Dijkstra’s method of calculating 
weakest preconditions [Dijkstra 19761, 
Utgoff’s constraint-back propagation 
[Utgoff 19861, STRIPS’ method of gener- 
alizing resolution proofs [Fikes et al. 1972 1, 
and Mooney and DeJong’s EGGS proce- 
dure [DeJong and Mooney 1986; Mooney 
and Bennett 19861. 

Mitchell’s EBG formalism is valuable for 
the conceptual clarity it provides. It is es- 
pecially helpful in making the “goal con- 
cept” and “operationality criterion” into 
explicit parameters. In previously existing 
EBL systems, these two parameters were 
present only implicitly. By making them 
into explicit parameters, the EBG formal- 
ism raises the question of how they may be 
obtained. As outlined by Keller [1987a], 
these parameters might be generated auto- 
matically by a learning program in posses- 
sion of “contextual knowledge” describing 
the task and internal architecture of the 
performance element. 

The EBG formalism is also useful for 
clarifying the relation between generaliza- 

“’ The version of MGR in Mitchell et al. [1986] con- 
tains an error that was pointed out and corrected in 
DeJong and Mooney [1986]. 

tion, chunking, operationalization, and 
analogy. Figure 36 suggests how EBG can 
be interpreted in terms of each of these 
processes. Each interpretation involves em- 
phasizing one input and one output and 
ignoring the others. If the training example 
is the input and the operational concept 
description is the output, EBG looks like 
generalization. In order for EBG to look 
like chunking, the domain theory is taken 
as the input. The output is a concept mem- 
bership test rule of the form “if OCD, then 
GC,” where OCD is the operational concept 
description and GC is the goal concept. 
EBG looks Iike operationalization if the 
input is the nonoperational goal concept 
and the output is the operational concept 
description. In order for EBG to look like 
analogy, the system would be given the 
training example and a “test” example as- 
inputs. The output would be the classifica- 
tion of the “test” example as a member or 
nonmember of the goal concept. 

3.2 Other Formalizations 

DeJong has recently presented a detailed 
critique of EBG, covering a number of spe- 
cific areas in which he claims EBG is defi- 
cient [DeJong and Mooney 19861. Among 
other things, DeJong argues that EBG suf- 
fers from problems of undergeneralization. 
He points out that EBG cannot generalize 
the predicates appearing in domain theory 
rules and cannot generalize the structure of 
the explanation itself. DeJong also dis- 
cusses other problems with EBG. He claims 
that the operationality criterion used in 
EBG is deficient. He also argues that the 
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EBG generalization procedure fails to take 
adequate account of the source of the ex- 
planation, that is, whether the explanation 
is built by the system or provided by a 
human expert. According to DeJong, many 
of these problems can be solved by organiz- 
ing the system’s knowledge base in terms 
of a hierarchy of schemata. He presents his 
own formalism as an alternative to EBG 
[DeJong and Mooney 19861. 

Several other authors have attempted to 
formally describe the relations among EBL 
programs. Laird and Rosenbloom [1986] 
examine the relation between EBG and 
SOAR. Mostow [1987b] compares the types 
of knowledge used in several EBL programs 
by viewing each as performing a search for 
operational concept descriptions. EBG is 
shown to be equivalent to “partial evalua- 
tion” of logic programs in [Prieditis 1988a] 
and [Van Harmelen and Bundy 19881. A 
domain-independent definition of the term 
explanation structure is presented by Moo- 
ney and Bennett [1986]. An early attempt 
to formalize EBL was made by Minton 
[ 19841. A formalization of explanation- 
based analogy is presented by Kedar- 
Cabelli [ 19851. 

4. AN EVALUATION OF EBL 

The EBG formalism clarifies a number of 
outstanding issues in the field of explana- 
tion-based learning. Mitchell’s formalism 
draws attention to the fact that an EBG 
system must be provided with a “domain 
theory” and a “goal concept” at the outset, 
before learning can occur. Several ques- 
tions are suggested by this fact: 

l Are training examples necessary for EBG 
systems? 

l Do EBG systems only learn things al- 
ready contained in the domain theory? 

l In what sense can EBG be said to im- 
prove an intelligent system? 

The first question results from the fol- 
lowing observation: If an EBG system 
possesses a domain theory capable of 
explaining an example, the same theory 
might be sufficient for generating the 
example in the first place. If the system 

can generate its own example, the training 
example parameter appears not to be 
necessary. 

In some domains the ability to explain 
an example is not equivalent to the ability 
to generate an example in the first place. 
To illustrate, consider the 8-QUEENS 
problem. Suppose an EBG system were 
given the goal concept “mutually nonat- 
tacking positions of 8 queens.” Given a 
theory about how queens can attack, a sys- 
tem could easily verify that a solution sat- 
isfies the goal concept. Nevertheless, it is 
much more difficult to find a solution than 
to verify the correctness of a solution pro- 
vided by a teacher. This argument applies 
to the whole class of NP-complete prob- 
lems, of which the N-QUEENS problem is 
an instance. The NP-complete problems all 
have the property that solutions are easy 
to verify but difficult to find. For such 
problems an example solution provided by 
a teacher can be very useful. 

Mitchell’s EBG method might actually 
be modified to operate without training 
examples. This would require omitting 
the step that involves explaining how the 
example satisfies the goal concept. The fol- 
lowing “explanation step” would be used 
instead: The system would find any expla- 
nation tree that has the goal concept at the 
root and only operational statements at the 
leaves. The modified explanation process 
would be permitted to use any operational 
predicate as an assumption in the expla- 
nation. The resulting explanation process 
might be more time consuming than that 
occurring if an example were being ex- 
plained. Some search control techniques 
that would be useful in the presence of a 
training example would not apply to the 
modified explanation process. If Mitchell’s 
EBG method were modified in this way, the 
result would look very much like Keller’s 
LEXCOP system. 

Training examples provided by a teacher 
may be useful, even if an EBG system could 
generate its own, or operate without them. 
A human teacher may be able to select 
examples that are “typical” of those likely 
to be encountered by a system in the course 
of future problem solving. In order to see 
why typical examples are important, con- 
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sider that EBG normally does not produce 
an exact reformulation of the goal concept. 
It usually creates a specialization of the 
original goal concept instead. If EBG were 
applied to an atypical example, it might 
produce a concept specialization that ap- 
plies to few typical examples. On the other 
hand, were a teacher to provide a typical 
example to the EBG system, the resulting 
operational concept description is guaran- 
teed to apply to at least one typical exam- 
ple. If the teacher chooses the example 
carefully, the resulting concept description 
might be expected to have wide applica- 
tion.” 

Considering that EBG creates concept 
recognition rules that are deducible from 
the initial domain theory, one is led to ask 
whether EBG systems can learn anything 
that they do not already know. One answer 
to this question is provided by Dietterich’s 
definition of “knowledge-level learn- 
ing” [Dietterich 19861. A system is said to 
perform knowledge-level learning only 
when there is a change in the “deductive 
closure” of its domain theory. The deduc- 
tive closure of a set of axioms is defined to 
include the axioms themselves, plus all 
facts derivable from the axioms using an 
arbitrary number of inference steps. The 
concept membership test rules created by 
EBG are all contained in the deductive 
closure of the initial domain theory. There- 
fore, EBG does not change the deductive 
closure of a knowledge base and does not 
perform knowledge-level learning. The 
same criticism applies to most, if not all, of 
the EBL systems described above. 

Russell has proposed an alternate form 
of justified generalization that does per- 
form knowledge-level learning [Russell 
19861. He suggests that a generalization 
system’s background knowledge may con- 
tain rules describing “high-level regulari- 
ties.” One type of high-level regularity is a 
“determination” rule of the type mentioned 

” This may explain a difficulty encountered by LEX- 
II. LEX-II does make use of training examples, but 
the examples are generated internally by the problem- 
generator and problem-solver modules. The learning 
process in LEX-II was ultimately limited, in part, 
by the problem generator’s inability to choose good 
examples [Mitchell 19831. 

above in the context of Russell’s justified 
version of analogy (Section 2.5). Given a 
determination rule plus a training example, 
a system can logically deduce a generaliza- 
tion. Nevertheless, the generalization is 
not derivable from the determination rule 
alone, in the absence of the training 
example. 

Since EBG does not perform knowledge- 
level learning, one is led to ask what type 
of learning EBG actually does perform. 
Subramanian and Smith [1988] have pro- 
posed the idea of “limited knowledge-level 
learning” to address this issue. Their ap- 
proach is based on the observation that the 
complete deductive closure is not generally 
obtainable in real systems with limited 
computational resources. One may there- 
fore consider the “knowledge of a system” 
to include all facts derivable under some 
limited inference procedure, for example, 
one using at most a fixed number of infer- 
ence steps. From this point of view, EBG 
does change the knowledge contained in a 
system, by creating chunked rules that en- 
able some theorems to be proved in fewer 
steps. Thus, EBG may be said to perform 
limited knowledge-level learning. 

The preceding observations suggest that 
EBG is useful chiefly for the purpose of 
improving the efficiency of an inference 
process. It is clear that EBG can produce 
new rules enabling shorter proofs of some 
theorems. Nevertheless, this may not im- 
prove the overall efficiency of a perfor- 
mance program. As observed by Minton 
[1985] and Fikes et al. [1972], an EBL 
system might create rules that are rarely 
useful. The useless rules consume storage 
space. Time efficiency may also be de- 
graded if the system is forced to waste time 
attempting to apply the useless rules. As 
argued by Minton [1988b], indexing meth- 
ods or parallel processing may mitigate the 
problem, but cannot eliminate it entirely. 

Several investigators have attempted to 
empirically measure the efficiency change 
resulting from EBL. Minton has performed 
tests showing that EBL can improve 
or degrade performance, depending on 
whether the technique is applied in a selec- 
tive or an uncontrolled fashion. His mea- 
surements show that uncontrolled chunk 
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formation can degrade performance [Min- 
ton 1985,1988a, 1988131. He also shows that 
EBL can improve performance, provided 
that heuristics are used to decide when to 
create and retain chunks [Minton 1988b] 
(see Section 5.1). Similar empirical results 
have been reported by Tambe and Newell 
[1988] and Markovitch and Scott [1988]. 
Tambe and Newell have performed mea- 
surements of CPU time in SOAR. They 
show that chunking does improve overall 
performance on some tasks, but degrades 
others by creating chunks that are expen- 
sive to match (see Section 2.3.1). Markov- 
itch and Scott have done an empirical study 
showing that performance degrades if too 
many macros are formed, but that improve- 
ments result from either random or selec- 
tive deleting of excess macros. Additional 
empirical tests of EBL are described by 
O’Rorke [1987] and Prieditis and Mostow 
[1987]. 

This section has provided only partial 
answers to the three questions listed above. 
To some extent these questions remain un- 
answered. By focusing attention on these 
issues, Mitchell’s formalism raises ques- 
tions about the value of explanation-based 
learning. EBG may turn out to be a case of 
premature formalization. Future research 
may demonstrate that the real value of 
explanation-based learning comes in situ- 
ations that do not fit into the EBG frame- 
work. In particular, explanation-based 
learning may be most useful in cases where 
the initial domain theory is defective. 

5. CURRENT AND FUTURE 
EBL RESEARCH 

A large number of problems in the EBL 
field remain unsolved. Directions for future 
work may be categorized according to the 
position they take with respect to a criti- 
cism of EBG described in the last sec- 
tion, that is, that EBG does not perform 
knowledge-level learning. One category can 
be called “EBL and theory reformulation.” 
This approach would accept the view that 
EBL can only reformulate an existing 
domain theory without changing its sub- 
stantive content. EBL is nevertheless 
considered worthwhile because it reformu- 

lates the theory to make it more “useful.” 
This is the point of view taken in Mitchell’s 
EBG formalism. Even if one works within 
the EBG paradigm, many problems remain 
unsolved. Most of this research would ex- 
amine the question of what makes a theory 
useful and how EBL should be practiced to 
guarantee a maximally useful reformulated 
theory. Another category can be called 
“EBL and theory revision.” This research 
would seek to take EBL beyond Mitchell’s 
EBG formalism to include methods that 
change the substantive content of an initial 
domain theory. The “imperfect theory 
problem,” described below, is included in 
this category. An additional line of research 
would seek to develop “integrated” learning 
methods that combine the analytical ap- 
proach of EBL with empirical learning 
methods. To some extent this category cuts 
across the others. As suggested below, in- 
tegrated methods may be useful in the con- 
text of both theory reformulation and 
theory revision. 

5.1 EBL and Theory Reformulation 

5.1.1 Optimization of Reformulated Theories 

Researchers who continue to work in the 
“theory reformulation” paradigm must de- 
velop methods to guarantee that EBL really 
does produce a reformulated theory that is 
more useful than the initial theory. As dis- 
cussed in the last section, EBL may or may 
not improve overall performance, depend- 
ing on whether the technique is applied 
selectively or indiscriminately. This prob- 
lem can be factored into several parts. One 
part involves deciding which examples 
should be processed by EBL to form general 
schemata. Another part involves deciding 
which schemata should be retained in mem- 
ory over the lifetime of a program. 

5.1.2 When Is Schema Formation Warranted? 

In order to avoid creating useless schemata, 
an EBL program might try to predict in 
advance whether an example will generalize 
into a useful schema. A number of investi- 
gators have proposed heuristics for deciding 
when to create schemata. DeJong [1986] 
proposed a series of questions that a learn- 

ACM Computing Surveys, Vol. 21, No. 2, June 1989 



Explanation-Based Learning: Programs and Perspectives l 205 

ing system should ask when deciding 
whether to generalize an observed example 
plan. His questions are directed mainly to- 
ward determining whether the solved goal 
will occur often and whether the gener- 
alized plan will apply in a variety of 
situations. Schank’s theory of “failure- 
driven learning” suggests paying attention 
to anomalous situations [ Schank 19821. 
Lebowitz [1986a] has proposed “interest- 
ingness” as a criterion for determining 
when learning should occur. 

Heuristics applying to search spaces with 
evaluation functions were studied by Iba 
[1985] and Minton [ 19851. Iba’s heuristic 
suggests forming a chunk whenever an op- 
erator sequence is found to span two peaks 
of an evaluation function. Minton’s crite- 
rion says that generalization should occur 
when a tough problem is solved in a sur- 
prisingly simple way, for example, when a 
heuristic evaluation function grossly over- 
estimates the cost of a solution. His PROD- 
IGY program also uses “training example 
selection heuristics” to select those exam- 
ples that appear likely to result in useful 
rules [Minton 1988b]. SOAR implements a 
criterion requiring that learning occur 
whenever the system must perform search 
to resolve an impasse [Laird et al. 1986a]. 

5.1.3 Which Schemata Should Be Retained? 

After a schema is formed, empirical meth- 
ods can be used to determine whether it is 
useful in practice [Markovitch and Scott 
1988; Minton 1988b; Silver 19881. Minton’s 
PRODIGY system collects statistics that 
help to evaluate the “utility” of learned 
rules. PRODIGY uses a measure of utility 
that involves (1) the cost of testing a rule 
for applicability, (2) the frequency with 
which the rule is applicable, and (3) the 
savings that results from using the rule. 
The measure is designed so that rules with 
positive utility will improve overall perfor- 
mance. Rules are retained in memory only 
as long as they are estimated to have posi- 
tive utility. 

Mostow and Cohen [1985] have exam- 
ined this issue in a slightly different con- 
text. They have investigated the cost 
effectiveness of software “caches” that 

avoid recomputing functions by storing and 
reusing the results of computations. They 
list several criteria bearing on the question 
of which computations should be cached, 
including the hit rate, the lookup cost, and 
the cost of the original computation. Cache 
formation is similar to EBL schema for- 
mation inasmuch as both processes imple- 
ment a “store versus compute trade-off” 
[Rosenbloom and Newell 19861. Thus, 
these criteria may also be relevant for de- 
termining when schema formation is war- 
ranted and when schemata should be 
retained. 

5.1.4 Schema Optimization 

Assuming that a rule is kept in the memory 
of an EBL system, the cost of using the 
rule may be diminished through the use 
of expression simplification techniques. 
Minton’s PRODIGY system performs 
“compression analysis,” which can simplify 
individual rules and combine several rules 
into one [Minton 1988b]. Prieditis’ PRO- 
LEARN program uses partial evaluation to 
simplify some expressions [ Prieditis and 
Mostow 19871. SOAR optimizes rules by 
reordering the conditions [Laird et al. 
1986a]. Other optimizations for SOAR are 
discussed in Tambe and Newell [1988]. 

51.5 Basic Methods for Analyzing Explanations 

Numerous techniques have been developed 
for analyzing explanations to produce 
chunks or generalized schemata. A sum- 
mary of these techniques is shown in 
Table 1. The methods are categorized ac- 
cording to the language used to represent 
the domain theory from which explanations 
are built. Methods have been developed for 
analyzing explanation structures built from 
STRIPS operators, Horn clauses, and 
OPS5 operators, among others.2” Each 
performs a function conceptually similar 
to Waldinger’s goal regression proce- 
dure [Nilsson 1980; Waldinger 19771 or 
Dijkstra’s notion of weakest preconditions 

” Inasmuch as Horn clauses may he viewed as special 
cases of STRIPS operators, the methods listed as 
applying to STRIPS operators should apply to Horn 
clauses as well, with at most minor modifications. 
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Table 1. Methods of Analyzing Explanations 

Method Operator language Reference 

EGGS 
STRIPS 
EBS 
MGR 
PROLOG-EBG 
MRS-EBG 
PROLEARN 
SOAR 
Unnamed 
EGR 

STRIPS operators 
STRIPS operators 
STRIPS operators 
Horn clauses 
Horn clauses 
Horn clauses 
Horn clauses 
OPS5 operators 
OPS5 operators 
Black boxes 

Mooney and Bennett [1986] 
Fikes et al. [1972] 
Minton and Carbonell I1987 1 
Mitchell et al. [1986] - . 
Kedar-Cabelli and McCarty [1987] 
Hirsh [1987] 
Prieditis and Mostow [1987] 
Laird et al. [1987] 
Benjamin [1987] 
Porter and Kibler ]1986] 

[Dijkstra 19761. For a comparison of MGR, cause additional cells would require cor- 
EGGS, and the STRIPS proof generalizer, rectness proofs with a greater number of 
see Mooney and Bennett [ 19861. inference steps. 

Kibler and Porter [ 19861 have developed 
a technique called “experimental goal 
regression” to handle types of operators for 
which all known analytical methods fail. 
This empirical technique has the advantage 
of not requiring access to the internal rep- 
resentation of the operators; however, it 
has the disadvantage that only approxi- 
mate weakest preconditions are found. Por- 
ter and Kibler [1985] have also presented 
some criteria that operator description lan- 
guages must meet in order for analytical 
goal regression to succeed. Additional re- 
search is needed to extend the range of 
operator languages that can be analyzed 
and to determine the types of languages 
that are analyzable in principle. 

51.6 Enhanced Methods for Analyzing 
Explanations 

A number of techniques have recently been 
developed to create schemata of greater 
generality than can be obtained with the 
methods listed in Table 1. The basic meth- 
ods generalize explanations into schemata 
that are provable using the original expla- 
nation structure. Thus, the resulting sche- 
mata are no more general than the original 
explanation structure. As observed by 
DeJong [DeJong and Mooney 19861, it may 
be necessary in some cases to generalize the 
explanation structure itself. For example, 
this need arises in the shift-register exam- 
ple described by Ellman [1985]. The num- 
ber of cells in the register cannot be 
generalized by the standard methods be- 

Methods for generalizing the number of 
inference steps in an explanation are dis- 
cussed by Shavlik and DeJong [1987a, 
1987b], Cohen [ 19881, Cheng and Carbonell 
[ 19861, and Prieditis [ 19861. Shavlik’s 
BAGGER system uses a technique that 
transforms a single rule into a schema rep- 
resenting the effect of repeated applications 
of the rule. Cohen’s ADEPT system ana- 
lyzes explanations to produce finite-state 
automata. The automata are used to deter- 
ministically guide a theorem prover. Moo- 
ney has developed an extension of EGGS 
that can generalize the order of operators 
in a macro operator [Mooney 19881. Given 
a sequence of STRIPS operators, his 
method finds the most general partial or- 
dering of the sequence-preserving con- 
straints related to interaction of operator 
preconditions and effects. Empirical meth- 
ods for generalizing the explanation struc- 
ture are discussed in Kedar-Cabelli [1985] 
and Flann and Dietterich [1986]. By com- 
paring explanation structures taken from 
multiple examples, commonly used sub- 
structures can be identified, extracted, and 
generalized. 

5.1.7 Representation of Domain Theories 
and Explanations 

The results of EBL appear to depend crit- 
ically on the representation of domain the- 
ories and explanations. A number of 
authors have commented on this relation. 
Gupta [1988] has identified cases in which 
the generality of learned rules is influenced 
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by details of the domain theory represen- 
tation. DeJong has argued that a schema- 
based representation is important to the 
success of EBL systems [DeJong and Moo- 
ney 19861. Several authors have observed 
that EBL generalization can be influenced 
by the grain size of a domain theory [Brav- 
erman and Russell 1988; Roy and Mostow 
19881. Although there appears to be wide- 
spread agreement that the representation 
is critical, very little is known in general 
about what makes a representation good 
for the purposes of EBL. Future research 
might attempt to identify a set of guidelines 
to be used by people encoding the initial 
domain theories used in EBL. 

5.1.8 Generality and Operationality 

Much of the foregoing discussion has as- 
sumed that general schemata are to be pre- 
ferred over specific ones. Although a 
general schema will have wider applicabil- 
ity than a specific schema, general ones are 
not always better. In order to apply to new 
examples, schemata must be instantiated. 
General schemata are presumably harder 
to instantiate than specific ones. A more 
general schema may therefore be deemed 
less operational owing to the high cost of 
instantiation. This issue has been discussed 
by several authors in terms of the “opera- 
tionality/generality trade-off” [Segre 1987; 
Shavlik and DeJong 1987c]. Segre presents 
some preliminary empirical evidence for 
the existence of this trade-off. Keller argues 
that the operationality/generality trade-off 
does not occur in all contexts in which EBL 
systems can be used [Keller 1988a]. He 
suggests that generality and operationality 
should be seen as separate, potentially 
independent dimensions. 

The existence of an operationality/gen- 
erality trade-off would place two demands 
on EBL systems. To begin with, EBL sys- 
tems need the capability of generating sche- 
mata at various levels of generality. 
Methods of controlling schema generality 
are presented by Segre [1987] and Braver- 
man and Russell [ 19881. Given the ability 
to generate schemata of varying generality, 
EBL systems also need methods of deter- 
mining which ones will have the most 

favorable impact on overall performance. 
The empirical techniques described above 
for deciding when to retain schemata may 
be useful in this context. 

5.1.9 Criteria of “Operationality” 

Several researchers have offered new meth- 
ods of defining the term operationality for 
the purpose of explanation-based learning. 
EBG considers a concept description to be 
“operational” if it is expressed using pred- 
icates drawn from a predefined list of 
operational predicates; otherwise the de- 
scription is “nonoperational” (see Section 
3.1). DeJong points out that operationality 
can sometimes depend on the arguments to 
a predicate, as well as the predicate itself 
[DeJong and Mooney 19861. He also argues 
that operationality can vary with the 
knowledge contained in the system. DeJong 
suggests that a goal be considered “opera- 
tional” whenever the system possesses a 
schema for solving the goal. As the system 
acquires more schemata, more goals are 
considered operational. In contrast to the 
binary operational/nonoperational distinc- 
tion used by Mitchell et al. [1986] and 
DeJong and Mooney [1986], both 
MetaLEX [Keller 1987a, 1987b] and 
PRODIGY [Minton 1988a, 1988b] use con- 
tinuous measures of operationality. Contin- 
uous measures seem more appropriate 
when operationality is intended to capture 
some notion of computational efficiency. 

Keller and Segre have each argued that 
efficiency alone is not sufficient for defin- 
ing operationality. Segre suggests a set of 
criteria would be more appropriate to real- 
world planning problems [Segre 19881. His 
five criteria include efficiency, generality, 
robustness, recoverability, and obvious- 
ness. Keller takes the position that no sin- 
gle set of criteria will be appropriate in all 
learning situations [Keller 1988b]. He pro- 
poses that operationality be defined in re- 
lation to the context in which learning 
occurs. The operationality of a concept de- 
scription will depend on (1) the perfor- 
mance system using the description and 
(2) the performance objectives of the sys- 
tem. When the context changes, the defi- 
nition of operationality changes as well. 
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Several authors have argued that EBL 
systems should be given the power to ex- 
plicitly reason about operationality [De- 
Jong and Mooney 1986; Hirsh 1988a; Keller 
1988b]. Mostow’s BAR program and 
Hirsh’s ROE program both use special rules 
to reason about the operationality of 
expressions [Hirsh 1988a; Mostow 1983a, 
1987b]. Keller’s MetaLEX and Minton’s 
PRODIGY programs each perform empir- 
ical tests of the operationality of concept 
descriptions [Keller 198713; Minton 1988131. 

5.1.10 Automatic Formulation of Learning Tasks 

In order to attack the problem of “wander- 
ing bottlenecks” [Mitchell 19831, systems 
must have the ability to automatically for- 
mulate their own learning tasks. Keller 
[1987a] has outlined an approach to this 
problem in the context of his MetaLEX 
system (see Section 2.4.2). Taking a de- 
scription of the performance system and 
the performance objectives as input, his 
method would automatically generate the 
goal concept and operationality criterion 
used by EBG. Kedar-Cabelli’s PurForm 
system does something similar [Kedar-Ca- 
belli 19871. PurForm automatically gener- 
ates a goal concept describing an everyday 
artifact, when given the “purpose” of the 
artifact as input. SOAR may also achieve a 
similar capability to deal with wandering 
bottlenecks. “Universal subgoaling” is in- 
tended to provide a framework within 
which SOAR can formulate goals to im- 
prove any aspect of the system’s perfor- 
mance (see Section 2.3). All these 
approaches require tackling serious knowl- 
edge representation problems. The repre- 
sentation must support reasoning about the 
presence of bottlenecks within the system’s 
performance element, and reasoning about 
potential methods of alleviating the bottle- 
necks. 

5.1.11 Interacting with Humans 

for EBL to be truly useful as a knowledge 
acquisition tool, it must not make inordi- 
nate demands on human experts’ time. 
LEAP requires a human expert to supply 
the initial domain theory. Building the ini- 
tial theory may be as difficult for a human 
as directly building the “expert” theory that 
the EBL system would produce. Perhaps 
the cost of building an initial theory could 
be amortized over time as the theory gets 
reformulated for a variety of purposes. In 
any case, only practical experience will 
determine whether EBL can make eco- 
nomical use of a human expert’s time. 

Other issues of human-computer inter- 
action must also be addressed. Human ex- 
perts will inevitably supply examples that 
are erroneous or suboptimal. An EBL sys- 
tem may be able to use the domain theory 
to detect and correct such errors; however, 
it must do so in an unobtrusive manner. 
DeJong has suggested that an EBL system 
can use the domain theory to improve sub- 
optimal plans [DeJong and Mooney 19861. 
Lebowitz [1986a] has discussed filtering out 
erroneous examples by combining EBL 
with empirical learning techniques. 

5.2 EBL and Theory Revision 

Most EBL methods are based on the as- 
sumption that the initial domain theory is 
adequate to explain all the examples to be 
processed by the learning system. Although 
this condition may be met in highly con- 
strained domains, it will not be met in the 
context of most real-life situations. If the 
domain theory cannot explain a training 
example, then the EBG method will fail to 
operate. Methods must be developed that 
enable explanation-based learning to pro- 
ceed in the absence of an adequate domain 
theory. Of course, this objective is not an 
end in itself. The real purpose of learning 
is to improve the system’s domain theory. 
Methods must be developed by which EBL 
can remedy the deficiencies in an initial 

A final group of issues involves so-called domain theory. 
“Learning Apprentice” programs such as An initial domain theory can suffer from 
the LEAP system [Mitchell et al. 19851. a number of distinct deficiencies. A classi- 
LEAP is intended to use EBL methods to fication of defects is shown in Figure 37. 
learn by watching a human expert in the This diagram shows four dimensions along 
course of normal problem solving. In order which an initial theory can be evaluated, 
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Completeness: Does the theory ent.ail at least one 
positive or negative classification for each example 
in the domain? 

Consistency: Does the theory entail at most one 
positive or negative classification for each example? 

Correctness: Are all the predictions entailed by the 
theory actually correct? 

Tractability: Can explanations of all examples be 
constructed without exhausting specified time and 
space resources? 

Figure 37. Classification of theory defects. 

including “completeness,” “correctness,” 
“consistency,” and “tractability.” Two sim- 
ilar typologies are outlined by Mitchell 
et al. [1986] and Rajamoney and DeJong 
[1987]. These differ from the present 
typology in failing to distinguish between 
incomplete and incorrect theories. In 
addition to classifying imperfect theories, 
Rajamoney and DeJong enumerate some 
of the possible causes of incompleteness, 
inconsistency, and intractability. They 
also discuss methods of detecting such 
imperfections. 

this definition, an “incomplete” theory is 
not necessarily “incorrect.” A theory might 
be perfectly correct as far as it goes. It 
nevertheless would be incomplete if it fails 
to say anything about some examples, or 
some parts of examples. The distinction 
between incomplete and incorrect theories 
is important. A correct but incomplete 
theory presents less difficulty than an in- 
correct theory. If a theory is merely 
incomplete, the EBG method may succeed 
on some examples. If any explanation 
can be found, it is certain to be correct, 
and the generalization process can proceed 
as if the theory were perfectly adequate. 
In comparison, an incorrect theory might 
produce an explanation of an example 
that omits key details, leading to incorrect 
generalizations. 

In some contexts the distinctions be- 
tween imperfect theory types can become 
blurred. Consider the case of a nonmono- 
tonic theory, that is, a theory in which the 
addition of new information can invalidate 
previously derived explanations. If some 
rules are missing, the theory may entail 
conclusions that would be considered in- 
correct if the missing rules were present. 
Thus, incompleteness can cause incorrect- 
ness. Another ambiguity involves intracta- 
ble theories. An intractable theory becomes 
incomplete if explanations exceeding re- 
source limits are forbidden. It becomes 
incorrect if approximations are used to 
simplify the theory. Owing to these blurred 
distinctions, some of the techniques dis- 
cussed in the following sections may be 
validly understood as addressing more than 
one of the imperfect theory types. 

5.2.1 Incomplete Domain Theories 

A number of techniques use “partial ex- 
planations” to handle incomplete theories 
[Berwick 1985; Hall 1988; Pazzani 1988; 
Roy and Mostow 1988; Sleeman et al. 1987; 
VanLehn 1987; Wilkins 19881. When faced 
with an example that cannot be fully ex- 
plained, these systems attempt to explain 
as much as possible. By focusing on gaps in 
the resulting partial explanations, they 
identify and conjecture new rules that 
would make the explanations complete. In 
most cases, more than one alternative rule 
can complete an explanation. Methods are 
therefore needed to guide the generation 
and evaluation of alternative conjectures. 
Analytic methods that evaluate alterna- 
tives using a separate “confirmation the- 
ory” are described by Wilkins [1988] and 
Hall [1988]. Empirical methods would also 
appear to be relevant; that is, multiple 
examples could be used to choose among 
alternative conjectures [Pazzani 19881. 
Partial explanations appear to be most ef- 
fective when the initial domain theory is 
nearly complete, or when a teacher care- 
fully selects and orders examples to intro- 
duce one new rule at a time [VanLehn 
19871. Inasmuch as these techniques add 
new rules, but do not revise or retract old 
ones, they implicitly assume the correct- 
ness of the initial, incomplete theory. 

A domain theory is considered “incom- Incomplete theories can be handled by 
plete” if it fails to explain some examples approaches that combine both empirical 
from the domain under study. According to and analytical learning techniques. Given 
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an initial domain theory, one could con- 
struct a version space containing only con- 
cept descriptions that are consistent with 
the theory. As long as the initial theory is 
incomplete, the space will contain more 
than one concept description. The candi- 
date elimination algorithm [Mitchell 19781 
then could be used to process training ex- 
amples and pare down the set of candidates 
(see Section 2.2.2). Russell and Grosof have 
shown how an incomplete theory contain- 
ing “determinations” can be used to prune 
an initial, unbiased version space [Russell 
1988; Russell and Grosof 19871. Mahade- 
van and Tadepalli [ 19881 have analyzed the 
information complexity of learning from 
such incomplete theories represented in the 
form of determinations. 

5.2.2 Incorrect Domain Theories 

A variety of explanation-based methods 
have been developed to deal with incorrect 
domain theories. These methods can be 
best understood by considering two pro- 
cesses involved in revising an incorrect the- 
ory that is found to commit an error. The 
first step is “blame assignment,” that is, 
identifying the parts of the theory that 
caused the error. After identifying the 
faulty portions of the theory, suitable 
changes to these parts must be found. 

Blame assignment is sometimes handled 
with the technique of tracing dependency 
links [Bylander and Weintraub 1988; Clan- 
cey 1988; Doyle 1979; Pazzani 1988; Smith 
et al. 19851. By starting at the erroneous 
conclusion and tracing backward through 
the explanation structure, it is possible to 
identify pieces of domain knowledge that 
might have caused the error. In most cases, 
the flawed knowledge cannot be uniquely 
identified, In order to ameliorate this dif- 
ficulty, Smith’s system uses an enriched 
representation that can describe “belief 
types” and “error types,” among other 
things [Smith et al. 19851. The system 
propagates error types through the network 
and can reason about the relation between 
error types and belief types. As a result, the 
search for faulty knowledge is more tightly 
constrained than that in simpler methods 
of tracing dependencies. 

Blame can also be assigned by special 
domain-dependent rules for identifying 
faulty knowledge [Carbonell and Gil 1987; 
Hunter 1988; Rajamoney 19881. Such rules 
classify errors and associate possible causes 
with each error type. Rajamoney’s system 
uses special domain-dependent rules to 
generate “high-level explanations” of errors 
in the domain of chemical processes. For 
example, a high-level explanation might 
conclude that “some process has erroneous 
effects” or “some process has erroneous 
preconditions.” Each high-level explana- 
tion makes an “abstract hypothesis” about 
which piece of knowledge is faulty; that is, 
the fault is characterized in a general way, 
but not specifically identified. 

Blame assignment takes a special form 
when an incorrect domain theory can be 
viewed as an “abstraction” or “approxima- 
tion” of another, more accurate theory, as 
in Doyle [ 19861 and Davis [1985]. These 
systems explicitly represent the approxi- 
mations or abstractions that were applied 
to the accurate theory to generate the in- 
correct one. Blame assignment then re- 
duces to the problem of finding faulty 
approximations or abstractions. This view- 
point is especially relevant to the problem 
of diagnosing faults in devices. Diagnosis is 
sometimes viewed as a problem of revising 
an ideal model of device behavior by relax- 
ing abstractions underlying the ideal model 
[Davis 19851. 

After faulty parts of an incorrect theory 
are identified, the theory must be revised. 
In most cases, more than one revision will 
be possible. This occurs if blame cannot be 
uniquely assigned or if faults can be cured 
in multiple ways. Several people have in- 
vestigated “experimentation” as a method 
of resolving such ambiguity [Carbonell and 
Gil 1987; Rajamoney and DeJong 19881. 
Rajamoney’s system can propose experi- 
ments to discriminate between alternative 
“abstract hypotheses.” It also designs ex- 
periments that help select between various 
remedies after a fault is identified. 

5.2.3 Inconsistent Domain Theories 

An inconsistent domain theory is one that 
contains statements that lead to logically 
contradictory predictions. Inconsistency 

ACM Computing Surveys, Vol. 21, No. 2, June 1989 



Explanation-Based Learning: Programs and Perspectives l 211 

can lead to serious problems if proof by 
contradiction is used in the system. The 
problems of inconsistent and incorrect the- 
ories are closely related. Both involve “in- 
consistency” in a broader sense. In one 
case, the inconsistency is internal to the 
theory, and in the other case, the incon- 
sistency exists between the theory and ob- 
servations. For this reason many of the 
methods for handling incorrect theories 
should apply to inconsistent theories (e.g., 
assigning blame by tracing dependencies). 

As an example of inconsistency, consider 
the so-called “promiscuous theories.” 
These theories have the property that they 
can generate plausible explanations of 
nearly anything that might be observed. 
Considering the congressional voting do- 
main as an example, one can imagine ex- 
planations of why a liberal senator from 
Connecticut would vote either “yes” or “no” 
on a defense-spending bill. As a liberal, he 
should vote “no.” Coming from a state with 
a large defense industry, he should vote 
“yes.” Lebowitz [1986a] has attacked the 
problem of inconsistent, promiscuous the- 
ories by combining EBL with empirical 
learning techniques. Riesbeck [1983] has 
also developed explanation-based methods 
for dealing with promiscuous theories in 
the domain of macroeconomics. 

5.2.4 Intractable Domain Theories 

A theory is considered “intractable” if it 
cannot be used to make predictions or 
explain observations without consuming 
inordinate computational resources. For 
example, consider the game of chess. In 
order to fully explain a training example 
from chess, an EBL system would exhaus- 
tively search the game tree-a task that is 
not possible in practice. An intractable the- 
ory may be complete and correct in princi- 
ple. Time and space limitations make it 
behave as an incomplete theory since many 
consequences of the theory cannot be in- 
ferred in a reasonable length of time. 

The intractable theory problem might be 
solved by finding simplifying assumptions 
or approximations that make the theory 
more tractable. By introducing approxi- 
mations into a correct but intractable the- 
ory, one hopes to trade accuracy in return 

for a gain in efficiency. A difficulty arises 
when a theory can be approximated in mul- 
tiple, inconsistent ways. In such cases, em- 
pirical methods can be used to determine 
which of several alternative approxima- 
tions yields the most accurate predictions. 

Quite a variety of approximation types 
have been considered by investigators tak- 
ing the approach outlined above. These in- 
clude (1) making functions or expressions 
invariant with respect to their arguments, 
in algebraic domains [Bennett 1987; Ell- 
man 1988; Keller 1987b; Mostow and Faw- 
cett 19871; (2) assuming the absence of 
counterplanning by adversaries in planning 
domains and games [Chien 1987a; Tade- 
palli 19861; (3) ignoring constraints limit- 
ing possible causal interactions among 
physical devices [Doyle 19861; (4) assuming 
persistence of state variables after state 
changes [Chien 1987b]; and (5) treating 
random variables as independent or equi- 
probable [Ellman 19881. 

Two general architectures have been sug- 
gested for systems that learn approxima- 
tions to intractable theories. One involves 
generating a search space in which each 
point corresponds to a different approxi- 
mate theory [Ellman 1988; Keller 1987b; 
Mostow and Fawcett 19871. Explanations 
of training examples are used to guide a 
search through the approximate theory 
space. Another approach uses a simple, 
highly approximate theory until a failure 
is generated. Analysis of the failure leads 
to revising or retracting approximations 
[Chien 1987a, 1988; Doyle 1986; Gupta 
1987; Mostow and Bhatnagar 1987; Tade- 
palli 1986; Zweben and Chase 19881. 

5.3 Integrated Learning 

A major outstanding problem in machine 
learning involves the relation between the 
analytical techniques of explanation-based 
learning and empirical learning methods. 
Several reasons for integrating EBL with 
empirical methods have been discussed in 
previous sections. Integrated methods were 
shown to be relevant in the context of “EBL 
and theory reformulation” for several rea- 
sons. These include (1) empirically evalu- 
ating the utility of schemata; (2) comparing 
explanations of multiple examples to find 
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common parts; (3) handling noisy or erro- 
neous examples; and (4) experimental goal 
regression. In the context of “EBL and 
theory revision,” integrated learning meth- 
ods have been suggested to remedy each of 
the types of imperfect theories. 

Several investigators have built systems 
that incorporate both explanation-based 
and empirical methods in a single architec- 
ture. These fall into three main groups: 
(1) using explanations to process the results 
of empirical learning [Lebowitz 1986a]; 
(2) using empirical methods to process the 
results of an explanation phase [Carpineto 
1988; Danyluk 1987; Dietterich and Flann 
1988; Flann and Dietterich 1986; Salzberg 
19831; and (3) using integrated combina- 
tions of explanation-based and empirical 
methods [Bergadano and Giordana 1988; 
Danyluk 1988; Swaminathan 19881. Hirsh 
[1988b] describes a framework for charac- 
terizing these hybrid systems in terms of 
a space of possible generalizations. The 
relative importance of empirical and 
explanation-based methods is discussed by 
Lebowitz [ 1986b] and Pazzani et al. [ 19861. 

In order to illuminate such hybrid sys- 
tems, it helps to consider the ways in which 
empirical and explanation-based methods 
can enhance each other. First consider 
how empirical methods can improve 
explanation-based learning. When empiri- 
cal methods are used before an explanation 
phase, the process of building an explana- 
tion can become computationally simpler. 
This occurs in Lebowitz’s UNIMEM sys- 
tern [Lebowitz 1986a], which uses empirical 
methods to filter out erroneous and irrele- 
vant features that would slow down the 
explanation process. When empirical meth- 
ods are used after an explanation phase, 
they can filter out erroneous explanations 
that are inconsistent with the empirical 
data, [Dietterich and Flann 19881. 

Now consider how explanations can en- 
hance empirical learning methods. When 
the explanation phase occurs before empir- 
ical learning, the explanations can improve 
the representation of training examples. 
Explanations can be used to derive features 
that are only implicit in the training data 
[Buchanan and Mitchell 1978; Carpineto 
1988; Danyluk 1987; Flann and Dietterich 

1986; Mitchell 19831. They can also be used 
to remove irrelevant features [Danyluk 
1987; Salzberg 19831. When the explana- 
tion phase occurs after an empirical phase, 
it can act as a filter on the results of em- 
pirical learning. By discarding empirical 
generalizations that cannot be explained, 
the results will be less influenced by coin- 
cidental correlations in the data. 

No one has yet formulated a principled 
method of combining explanation-based 
and empirical learning methods. Such prin- 
ciples might well result from analyzing the 
relation between EBL and the inductive 
bias used by empirical techniques. As sug- 
gested above, EBL may be equivalent to a 
“bias toward explainability” represented in 
terms of a declarative domain model (see 
Section 1). This relation might be clarified 
by trying to express traditional types of 
inductive bias in a declarative manner. 
Some initial efforts in this direction have 
been made by Russell and Grosof [Russell 
1988; Russell and Grosof 19871 and by 
Dietterich [ 19861. If biased generalization 
languages and algorithms are expressed in 
a declarative representation, they might be 
equated with the initial domain theory used 
in explanation-based learning. The dis- 
tinction between explanation-based and 
empirical methods would be reduced to 
an instance of the declarative/procedural 
controversy. 

6. SUMMARY 

This paper has provided an overview of t.he 
field of explanation-based learning. The 
EBL field was placed in the context of other 
knowledge-intensive approaches to ma- 
chine learning. EBL was described as a 
merging of four trends in machine learning 
research, including generalization, chunk- 
ing, operationalization, and analogy. Ex- 
amples of EBL programs from each of these 
areas were discussed. In this paper an 
attempt to formally define EBL methods 
and the problems they can handle was also 
described. The formalization raises fun- 
damental questions about the types of 
learning that EBL can and cannot perform. 
Directions for future research were also 
discussed. Three main areas for future 
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work are “EBL and theory reformulation,” 
“EBL and theory revision,” and “integrated 
learning.” 

7. GLOSSARY OF SELECTED TERMS 

Analytic learning: Any learning method 
that relies mainly on processing preexist- 
ing background knowledge and requires 
few, if any, externally provided examples 
(contrasts with empirical learning) 
[Mitchell 1982b] (Introduction). 

Bias: Any criteria used by a concept 
learning program to choose among alter- 
native generalizations that are each 
consistent with the observed training 
instances [Mitchell 19801 (Section 1.1). 

CBP: See Constraint back-propagation. 
Chunking: In the context of explanation- 

based learning, chunking is a process of 
compiling a linear or tree-structured 
sequence of operators into a single oper- 
ator. The single operator has the same 
effect as the entire original sequence [Ro- 
senbloom and Newell 19861 (Sections 1.2 
and 2.3). 

Constraint back-propagation (CBP): 
A procedure used in LEX-II for analyzing 
goals and operator sequences. Given an 
operator OP and a goal pattern P, CBP 
finds a new pattern P’ such that the state 
OP(S) matches P if and only if S matches 
P’ [Utgoff 19861 (Section 2.2.2). 

Contextual knowledge: Knowledge of 
the context in which learning takes place. 
Contextual knowledge has several com- 
ponents [Keller 1987a], including (1) a 
description of the performance element 
to be improved by learning and (2) a 
specification of performance objectives, 
among other things (Section 2.4.2). 

EBA: See Explanation-based analogy. 
EBG: See Explanation-based generaliza- 

tion. 
EBL: See Explanation-based learning. 
EGGS: An algorithm used in GENESIS 

for generalizing explanations [Mooney 
and Bennett 19861. Given an explanation 
structure ES as input, EGGS finds the 
most general instantiation of ES that 
represents a valid explanation (Section 
2.2.1). 

Empirical learning: Any learning tech- 
nique that relies mainly on examining 
multiple, externally provided training 
examples and requires little or no back- 
ground knowledge of the domain under 
study (contrasts with Analytic learning) 
[Langley 1986; Mitchell 1982131 (Intro- 
duction and Section 5.3). 

Explanation-based analogy (EBA): A 
method of analogical reasoning that in- 
volves transferring explanations, deriva- 
tions, or networks of causal relations 
from analogs to target examples (Section 
2.5). 

Explanation-based generalization 
(EBG): A formalism that attempts 
to capture the elements of most 
explanation-based learning programs. 
EBG takes as input a domain theory, a 
goal concept, an operationality criterion, 
and a training example. It finds an op- 
erational concept description that in- 
cludes the example and is a sufficient 
condition for the goal concept [Mitchell 
et al. 19861 (Section 3.1). 

Explanation-based learning (EBL): A 
type of analytic learning, the definition 
of which constitutes the subject of this 
paper (Introduction). EBL is intended 
to include explanation-based generaliza- 
tion and explanation-based analogy, as 
well as certain types of chunking and 
operationalization (it may also include 
explanation-based concept specialization 
[DeJong and Mooney 19861). 

Explanation structure: An “overgener- 
alized” explanation that results from 
replacing each instantiated rule in an 
explanation with the associated general 
rule (using unique variables for distinct 
rule applications) [Mitchell et al. 1986; 
Mooney and Bennett 19861 (Sections 
2.2.1 and 3.1). 

Generalization: The word generalization 
can refer to either a concept or a process 
of concept formation. In the first sense 
of the word, a concept is a “generaliza- 
tion” of an example if it includes the 
example. In the second sense of the word, 
“generalization” is a process that takes 
one or more training examples as input 
and produces a concept that includes 
all the positive examples and excludes all 
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the negative examples. A discussion 
of the term generalization is found 
in Langley [1986] (Introduction and 
Section 2.2). 

Goal regression: A procedure for analyz- 
ing sequences of STRIPS operators. 
Given an operator sequence S and a goal 
G, a goal regression finds a condition C 
such that, for any state X, APPLY(S, X) 
satisfies G if and only if X satisfies C 
[Nilsson 1980; Waldinger 19771 (Sec- 
tions 2.2.2, 3.1, and 5.1). 

Justified analogy: A logically sound 
procedure for reasoning by analogy. 
Given some initial background knowl- 
edge B, an analog example X, and a tar- 
get example Y, find a feature F such that 
F(X) is true, and infer that F(Y) is true. 
The conclusion F(Y) must be a logical 
consequence of F(X) and the background 
knowledge B [Davies and Russell 19871 
(Sections 1.2 and 2.5). 

Justified generalization: A logically 
sound procedure for generalizing from 
examples. Given some initial background 
knowledge B and a set of training exam- 
ples T, justified generalization finds a 
concept C that includes all the positive 
examples and excludes all the negative 
examples. The learned concept C must 
be a logical consequence of the back- 
ground knowledge B and the training 
example set T [Russell 19861 (Sections 
1.2 and 2.2). 

Knowledge-level learning: A system is 
said to perform knowledge-level learning 
when there is a change over time of the 
deductive closure of its knowledge. The 
deductive closure of a set of axioms is 
defined to include the axioms them- 
selves, plus all facts derivable from 
the axioms using an arbitrary number 
of inference steps [Dietterich 19861 
(Section 4). 

MGR: See Modified goal regression. 
Modified goal regression (MGR): A 

procedure used in explanation-based 
generalization (EBG) to analyze proof 
trees [Mitchell et al. 19861. Given a goal 
concept literal G and an explanation 
(tree) structure T, MGR finds a set of 
generalized antecedents A. Any instance 
of A can be proven to satisfy the goal 

concept G using the explanation (tree) 
structure T (Section 3.1). 

Operationalization: A process of trans- 
lating a nonoperational expression into 
an operational one. The initial nonoper- 
ational expression may be a set of in- 
structions (as in operationalizing advice 
[Mostow 1983a, 1983c]) or a concept 
(as in concept operationalization [Keller 
19831). Concepts and instructions are 
considered to be operational with respect 
to an agent if they are expressed in terms 
of actions and data available to the agent 
[Mostow 1983a] (Sections 1.2 and 2.4). 

Similarity-based learning: A synonym 
for Empirical learning (see Empirical 
learning). The term similarity-based 
learning is defined by Lebowitz [1986a]. 
Issues related to the use of this term are 
discussed by Langley [ 19861 (Introduc- 
tion and Section 5.3). 

Weak method: A problem-solving tech- 
nique that can be used when specific 
domain knowledge is not available. Ex- 
amples include means-ends analysis and 
hill climbing, among others [Newell 
19691 (Section 2.3.1). 
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