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Using a Computer
Game to Develop
Advanced AI

A
lthough computer and video games have
existed for fewer than 40 years, they are
already serious business. Entertainment
software, the entertainment industry’s
fastest growing segment, currently gener-

ates sales surpassing the film industry’s gross revenues.
Computer games have significantly affected personal
computer sales, providing the initial application for
CD-ROMs, driving advancements in graphics tech-
nology, and motivating the purchase of ever faster
machines. Next-generation computer game consoles
are extending this trend, with Sony and Toshiba
spending $2 billion to develop the Playstation 2 and
Microsoft planning to spend more than $500 million
just to market its Xbox console.1

These investments have paid off. In the past five
years, the quality and complexity of computer games
have advanced significantly. Computer graphics have
shown the most noticeable improvement, with the
number of polygons rendered in a scene increasing
almost exponentially each year, significantly enhanc-
ing the games’ realism. For example, the original
Playstation, released in 1995, renders 300,000 poly-
gons per second, while Sega’s Dreamcast, released in
1999, renders 3 million polygons per second. The
Playstation 2 sets the current standard, rendering 66
million polygons per second, while projections indi-
cate the Xbox will render more than 100 million poly-
gons per second. Thus, the images on today’s $300
game consoles rival or surpass those available on the
previous decade’s $50,000 computers.

The impact of these improvements is evident in the
complexity and realism of the environments underly-
ing today’s games, from detailed indoor rooms and
corridors to vast outdoor landscapes. These games
populate the environments with both human and com-

puter controlled characters, making them a rich labo-
ratory for artificial intelligence research into develop-
ing intelligent and social autonomous agents.

Indeed, computer games offer a fitting subject for
serious academic study, undergraduate education, and
graduate student and faculty research. Creating and
efficiently rendering these environments touches on
every topic in a computer science curriculum. The
“Teaching Game Design” sidebar describes the bene-
fits and challenges of developing computer game design
courses, an increasingly popular field of study.

COMPUTER GAME AI
In computer games, designers can use AI to control

individual characters, provide strategic direction to
character groups, dynamically change parameters to
make the game appropriately challenging, or produce
a sports game’s play-by-play commentary.2,3 Com-
puter games offer an inexpensive, reliable, and sur-
prisingly accessible research environment, often with
built-in AI interfaces.

Moreover, computer games avoid many of the crit-
icisms leveled against research based on simulations:
Because researchers do not develop them, the games
avoid embodying preconceived notions about which
aspects of the world designers can simulate with ease
and which aspects they can simulate only with diffi-
culty. These games constitute real products that cre-
ate real environments with which millions of humans
can interact vigorously.

Development costs and the lack of processing power
prevent games for today’s computers and consoles from
exhibiting a high level of artificial intelligence. Currently,
developers devote more resources to advancing a game’s
graphics technology than to enhancing its AI. Within
two to three years, however, the emphasis on graphics
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will likely have run its course as incremental improve-
ments in the underlying technology lead to only mar-
ginal improvements in the game experience.

Game designers continually look for new ways to
distinguish their games, and companies already mar-
ket games based on their AI. Recently, AI has been
featured in two very successful games, The Sims and
Black and White. In the near future, more develop-
ment and runtime resources will be available to
increase game AI complexity and realism, at which
point we can expect to see a significant growth in the
role of AI in games. 

DEVELOPING QUAKE II AI
My research group uses computer games as its envi-

ronment for research on building human-level AI. We
do basic research on AI within computer games and

also demonstrate AI’s potential for future computer
games. Our most mature research involves building
AI bots that play the infamously violent action com-
puter game Quake II. We selected the game as an AI
development platform because its developer, id soft-
ware, publishes an interface that makes it possible to
control Quake II’s bots via external software.
Following id’s lead, other games, such as Unreal
Tournament and Half-Life, provide interfaces so that
anyone can write code to control characters in the
game through a dynamically linked library (DLL).
Other research groups are starting to pursue similar
research projects using Unreal Tournament, although
with an emphasis on team play.4

The bots included in the game provide challenging
opponents, but only because of their superhuman
reaction times and aiming skills, not because of their
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At their core, most computer games
simulate complex worlds. Games immerse
players in an alternative reality and chal-
lenge them to assume a role—be it adven-
turer, world-class sports figure, or ruler of
a civilization. Thus, a senior-level design
course on computer game development
provides the perfect integration of con-
cepts from across computer science, all
within the context of a highly motivating
topic. For once, a professor needn’t worry
about students finding the subject matter
unengaging—they dive into it, drawing
from all their previous education to build
their games.

Ironically, something as apparently
frivolous as playing computer games
makes students finally appreciate the
importance of the seemingly obscure
material they learned in earlier courses.
Nothing motivates students to under-
stand the computational complexity of
collision-detection algorithms like having
their game run slower and slower as they
add more enemy spaceships from the
Gamma Nebula.

Organizational lessons
Studying computer games also exposes

students to the world outside computer
science. Today, games development
requires more than two programmers
working together in a garage—it requires
collaboration among people from diverse
disciplines. A team normally includes pro-
ducers, game designers, programmers,
artists, sound engineers, and specialists
such as voice actors and motion-capture
experts. Each team member must under-
stand how all the pieces fit together, forc-
ing students to appreciate the importance

of art, music, literature, and social skills.
As an additional incentive, students

with game programming experience can
easily find interesting and challenging
summer and full-time jobs in the
videogame industry. Further, many game
companies searching for fresh talent run
summer internship programs.

A growing number of campuses offer
computer game design courses, including
North Texas University, the University 
of Michigan, Georgia Tech, Northwestern,
and the University of California, Irvine.
DigiPen and Full Sail offer degree pro-
grams in computer game design.

Our program
My course provides a rigorous intro-

duction to the technology, science, and art
behind computer game development. The
course assumes that students already have
a solid background in computer science,
including programming and algorithms.
In addition to four programming projects
designed to expose students to the breadth
of topics in computer game development,
the course also provides the opportunity
to build complete games. Students must
integrate both the technical and aesthetic
aspects of computer games. They must
design, implement, then iteratively refine
the game to enhance its entertainment
value. The course’s four projects, and the
goals for each, follow:

• Arcade game. We provide the stu-
dents with a shell package for Pong,
a game that runs under Windows on
a PC that uses Direct-X. The students
must devise, implement, and test
their own game. Students can reim-

plement classic arcade or console
games, but we encourage them to
develop novel games.

• Interactive fiction. The students use
the Inform interactive fiction author-
ing system to develop their own text-
based interactive fiction. Although
text-based interactive fiction went
out of fashion more than ten years
ago, this project forces students to
focus on the role of plot and story in
a game without having to worry
about graphics.

• Artificial intelligence. Students use
the Soar architecture to build a bot
that controls a tank in a simulated
maze world. We then hold an elimi-
nation tournament in which the stu-
dent bots fight for supremacy. The
project exposes students to AI pro-
gramming and to one approach to
encoding complex tactics.

• Final project. During the last five
weeks of the course, the students
work in teams to develop the game
of their choice. For their final project,
students must complete all the stan-
dard stages of game development:
creating a concept document, pitch-
ing the concept to the class, develop-
ing a design document, and drafting
the technical specification. The
course culminates in an open house
during which more than 150 people
come to play and rate the best games
developed in class.

These projects build on the coursework
and require the students to research both
the design and mechanics of developing
their game.
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complex tactics or game knowledge. In contrast, we
seek to create bots that use many of the tactics humans
use so that they beat you by outthinking you, not by
outshooting you.

Play mechanics
When multiple human and bot players engage in a

Quake II match at the same time, they exist in a level
that contains hallways and rooms. To explain the
game using its own terminology, the players move
through the level, acquiring power-ups such as
weapons, ammo, armor, and first-aid boxes. The play-
ers also fire their weapons in an attempt to injure their
enemies. When a player’s health reaches zero, the
player dies, then instantly reappears at one of the
level’s preset spawning sites. The first player to rack up
a prespecified number of kills wins the game. 

The game distributes power-ups in static locations
throughout the level. When a player takes a power-
up, a replacement automatically regenerates in 30 sec-
onds. Weapons vary according to their range,
accuracy, damage spread, reload time, ammo type,
and amount of damage they cause. For example, the
shotgun spreads its damage across a wide area at short
range, but does no damage if the player fires it at dis-
tant targets. In contrast, the railgun kills in a single
shot at any distance, but requires very precise aim
because it has zero spread.

Although it might appear from this description that
Quake II is a mindless point-and-shoot game, the fac-
tors I’ve listed—combined with the layout of the level’s
topology—make the game tactically complex, which
becomes obvious when watching an expert play.

The Quakebot
Our Quakebot uses Soar5—an engine for making

and executing decisions—as its underlying AI engine
for controlling a single player. We chose Soar as our
AI engine because our real research goal is to under-
stand and develop general integrated intelligent agents.
Soar embodies our current best hypotheses for the cog-
nitive architecture underlying general intelligent agents,
with research and refinement of it stretching back
twenty years. 

Figure 1 shows the overall structure of the system.
Quake II is the commercial version of the game, which
we have extended with the DLL. The DLL, written in
C, implements the Quakebot’s sensors and motor
actions, along with the Soar I/O, our intercomputer
communication code. Soar I/O provides a platform-
independent mechanism for transmitting all percep-
tion and motor information between the Quakebot

and the game. We encoded all knowledge for playing
the game into the Soar rules.

The underlying Quake II game engine updates the
world and calls the interface ten times a second. On
each of these cycles, it updates all changes to the bots
and initiates any requested motor actions. Soar runs
asynchronously to Quake II and executes its basic deci-
sion cycle anywhere from 30 to 50 times a second,
allowing it to take multiple reasoning steps for each
change in its sensors. Soar consumes 5 to 10 percent of
the processing power of a 400-MHz Pentium II that
runs Windows NT.

The Soar Quakebot’s design uses principles origi-
nally developed for controlling robots, then extended
in our research to simulate military pilots in large-scale
distributed flight simulations.6,7 In Soar, an operator—
the basic object of decision—consists of

• primitive actions that bots perform in the world
such as move, turn, or shoot;

• internal actions such as remembering the enemy’s
last position; or

• more abstract goals such as attack, get-item, or
goto-next-room that, in turn, must dynamically
decompose into simpler operators that ultimately
bottom out in primitive actions.

Soar continually proposes, selects, and applies oper-
ators to the current state via if-then rules that match
against the data structures that make up the current
state. When Soar selects an abstract operator that can-
not be applied immediately, such as collect-power-ups,
it generates a substate. Within a substate, Soar then
proposes, selects, and applies additional operators
until the original operator completes, or until the game
environment changes such that it triggers the proposal
and selection of another operator. These additional
operators may require further decomposition, leading
to the recursive dynamic generation of an operator
hierarchy.

Figure 2 shows a subset of the Quakebot’s opera-
tor hierarchy. Although a small part of the overall hier-
archy, this list includes some of the top-level operators,
such as wander, explore, attack, and other operators
that Soar uses to apply the collect-power-ups operator.

During a game, rules will propose top-level opera-
tors—such as wander, explore, and attack—by testing
information gleaned from the Quakebots sensors. For
example, if the Quakebot does not sense an enemy or
have a recent memory of one, and an inventory check
reveals that it’s missing some important power-ups, a
rule will propose the collect-power-ups operator.

Once Soar selects collect-power-ups, a substate will
generate in which rules propose the get-item operator
for each missing power-up. Additional rules will then
fire to create preferences so that the bot pursues the
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Figure 1. A graphic
depiction of the inter-
face between Quake II
and the Soar Quake-
bot, with Quake II on
the left, the interface
dynamic linked library
(DLL) in the middle,
and Soar and its asso-
ciated Quakebot rules
on the right. 



most important power-up first. After Soar selects 
get-item, another substate generates, and rules test
whether the item being pursued is in the current room
or another one. If the power-up is in the current room,
the rules further decompose the problem until primi-
tive operators, such as face-the-item and move-to-the-
item, are proposed, selected, and applied. 

Figure 3 shows the main tactics the Quakebot uses.
It implements these actions via the top-level operators
and their decompositions. Although Quakebots react
to different situations and opponents, they originally
did not anticipate other players’ behavior.

Anticipation’s role
The following quote from Dennis “Thresh” Fong,8

Quake’s Michael Jordan equivalent, gives some insight
into the importance of anticipation:

Say my opponent walks into a room. I’m visualizing
him walking in, picking up the weapon. On his way
out, I’m waiting at the doorway and I fire a rocket two
seconds before he even rounds the corner. A lot of peo-
ple rely strictly on aim, but everybody has their bad
aim days. So even if I’m having a bad day, I can still
pull out a win. That’s why I’ve never lost a tournament.

We can program these tactics manually for specific
locations within a specific level. For example, we
could add tests that direct a bot to set an ambush if
it occupies a specific location on a specific level and
hears a specific noise, such as the sound of an enemy
picking up a weapon. Computer games currently use
this approach, which requires a tremendous effort to
create a large number of tactics that work for each
specific level. 

An alternative to encoding behaviors for each of
these specific situations is to add a general capability
for anticipating an opponent’s actions. Anticipation is

a form of planning that AI researchers have studied
for 40 years. The power of chess and checkers pro-
grams comes directly from their ability to anticipate
opponent’s responses to their own moves. Anticipation
for bots in first-person shooters requires a few twists
that differentiate AI for the FPS genre from standard
AI techniques such as alpha-beta search:

• Unlike a chess or checkers player, an FPS player
lacks access to the complete game state. 

• The choices for a player’s actions in an FPS game
unfold continuously as time passes. At any time, the
player can move, turn, shoot, jump, or remain in
one place.

The breadth and depth of possible actions in an FPS
game quickly make search intractable and require more
knowledge about which actions might prove useful.

Internal representation. To support anticipation, the
first thing the Quakebot must have is the ability to
create its own internal representation of what it
believes to be the enemy’s internal state—what the
enemy is currently sensing. It builds this representa-
tion based on its observations of the enemy. The
Quakebot then predicts the enemy’s behavior by
using its own knowledge of tactics to select what it
would do if it were that enemy. Using simple rules to
internally simulate external actions in the environ-
ment, the bot forward projects until it either gets a
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Face-item Move-to-item Stop Notice-item-missing

Goto-item Goto-next-room

Get-item

Collect-power-ups ExploreWanderAttack

Figure 2. A subset 
of the Quakebot’s 
operator hierarchy,
which determines
how the bot reacts 
to its environment
and changing game
conditions. 

Collect-power-ups
Pick up items based on their spawn locations
Pick up weapons based on their quality
Abandon collecting items that are missing
Remember when missing items will respawn
Use shortest paths to get objects
Get first-aid kits and armor if needed
Pick up other quality weapons and ammo if accessible

Retreat
Run away if low on health or outmatched by the enemy’s weapon

Chase
Pursue the enemy based on sound of running
Proceed where enemy was last seen

Ambush
Wait in a corner of a room that can’t be seen by enemy coming into the room

Hunt
Go to nearest spawn room after killing enemy
Go to rooms enemy is often seen in

Attack
Use circle-strafe (walk sidewise while shooting)
Move to best distance for current weapon

Figure 3. A breakdown of Quakebot’s tactics, listing the accompanying actions for each operator.
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useful prediction or decides too much uncertainty
exists about what the enemy will do next. The bot
uses such predictions to, for example, set an ambush
or deny the enemy an important weapon or health
item.

Figure 4 shows an example in which the Quakebot,
pictured in the lower left, sees its enemy, pictured in
the upper center, heading toward a desirable object—
the heart. As the enemy quickly moves out of range,
the Quakebot decides to predict the enemy’s future
course of action. If the enemy turns toward the
Quakebot instead of continuing toward the heart, the
prediction process aborts so that the Quakebot can
immediately attack and not be caught planning.

Once it makes the decision to predict the enemy’s
behavior, the Quakebot creates an internal represen-
tation of the enemy’s state based on its perception of
the enemy. Figure 5 shows the Quakebot creating an
internal representation of the enemy’s situation that
it will use for its internal planning.

Quakebot prediction. In the next step, the Quakebot
uses its representation of the enemy’s state and its

knowledge of what it would do in the enemy’s state
to predict the enemy’s actions. Thus, we assume that
the enemy’s goals and tactics are essentially identical
to the Quakebot’s. In this example, the bot knows,
from prior explorations, that the power-up resides in
the small room at the top, and it now attributes that
knowledge to the enemy. The bot projects that its
adversary will collect the power-up, which leads to a
cascade of problem solving as it decides to execute
get-item and goto-next-room operations.

Once the Quakebot gets to this point, it internally
simulates the enemy’s movement from room to room.
It also can simulate the changes that will happen as
other operators apply, such as its health increasing if
it picks up a first-aid kit. The selection and applica-
tion of operators continues until the Quakebot deter-
mines that the enemy will take the power-up, as
Figure 6a shows. At that point, the Quakebot pre-
dicts the enemy will change top-level operators and
choose the wander operator. Figure 6b shows that,
because the room has only one exit, wander will
direct the enemy to exit, move back down the hall-
way, and finally reenter the room from which it
started—and which the Quakebot now occupies.

During the internal simulation, the bot continually
compares the distance in terms of the number of
rooms the enemy has traveled to the distance the
Quakebot requires to get to the same location. In the
preceding example, the Quakebot predicts that the
enemy will require four moves to get back to the room
that the Quakebot currently occupies. Why doesn’t
the Quakebot stop predicting at the point that the
enemy would be in the hallway—only three moves
for the enemy versus one for the bot? Because the
Quakebot knows an ambush cannot be set in a hall-
way, where there is no place to hide. Thus, it waits
until the enemy’s predicted location is a room, where
it knows it can set an ambush, as shown in Figure 7.

When the Quakebot predicts that the enemy will be
in another room that the bot can reach sooner, the
Quakebot attempts to set an ambush by moving to an
open location next to the door that its code predicts
the enemy will move through. In general, the bot tries
to shoot the enemy in the back or side as it enters the
room. If the bot carries a rocket launcher, it will take
a preemptive shot when it hears the enemy getting
close—just as star player Dennis Fong would. We
associate time limits with both of these ambush strate-
gies, however, so that the bot will not wait indefinitely
at the ambush site.

Our work with the Quakebot demonstrates that
we can successfully pursue serious research on
autonomous AI agents within the context of

computer games. Our research directly applies to
computer-generated forces,6,7 where we need to

Figure 4. The Quake-
bot, lower left,
decides to predict the
actions of its enemy,
which stands at the
threshold to the small
room at the top. The
bot predicts that the
enemy will continue
into the room to
obtain the heart, a
valuable game item.
If the enemy turns on
the bot, however, the
prediction process
aborts so that the bot
can respond to the
attack immediately.

Figure 5. The Quake-
bot, lower left, uses
its knowledge of what
it would do in the
enemy’s state to cre-
ate an internal repre-
sentation of the
enemy’s situation.



model realistic, entity-level behavior. We find com-
puter game environments useful in doing small stud-
ies on the effect of different cognitive parameters on
our Quakebot’s skill levels. Using Quake II, we have
successfully studied the impact on overall game per-
formance from changes in reaction time, tactics level,
and perceptual and motor skills.

From its scoring method, which rewards the high-
est number of kills, it’s obvious that Quake II epito-
mizes violent computer games. Although we have
found computer games to be a rich environment for
research on human-level behavior representation, we
do not believe that the future of AI in games lies in
creating more and more realistic arenas for violence.

Better AI in games has the potential for creating new
game types in which social interactions, not violence,
dominate. The Sims9 provides an excellent example
of how social interactions can be the basis for an
engaging game. Thus, we are pursuing further
research within the context of creating computer
games that emphasizes the drama that arises from
social interactions between humans and computer
characters. ✸
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Figure 6. The Quake-
bot projects that its
enemy will (a) move
into the upper room in
pursuit of the heart
power-up, then (b)
return to the room the
bot occupies. The bot
uses this knowledge
to plan and execute
its countermoves.

Figure 7. Since only a
room provides the
cover necessary to
set an ambush, the
Soar bot does not
attack the enemy
when it comes back
down the hallway.
Instead, the bot waits
until the enemy 
reenters the room 
and surprises it 
from behind.

(a) (b)


