
Enhancing the Performance of Dynamic Scripting in
Computer Games

Pieter Spronck1, Ida Sprinkhuizen-Kuyper1, and Eric Postma1

1 Universiteit Maastricht, Institute for Knowledge and Agent Technology (IKAT), P.O. Box
616, NL-6200 MD Maastricht, The Netherlands

{p.spronck, kuyper, postma}@cs.unimaas.nl

Abstract. Unsupervised online learning in commercial computer games allows
computer-controlled opponents to adapt to the way the game is being played.
As such it provides a mechanism to deal with weaknesses in the game AI and to
respond to changes in human player tactics. In prior work we designed a novel
technique called “dynamic scripting” that is able to create successful adaptive
opponents. However, experimental evaluations indicated that, occasionally, the
time needed for dynamic scripting to generate effective opponents becomes un-
acceptably long. We investigated two different countermeasures against these
long adaptation times (which we call “outliers”), namely a better balance be-
tween rewards and penalties, and a history-fallback mechanism. Experimental
results indicate that a combination of these two countermeasures is able to re-
duce the number of outliers significantly. We therefore conclude that the per-
formance of dynamic scripting is enhanced by these countermeasures.

1 Introduction

The quality of commercial computer games is directly related to their entertainment
value [1]. The general dissatisfaction of game players with the current level of artifi-
cial intelligence for controlling opponents (so-called “opponent AI”) makes them
prefer human-controlled opponents [2]. Improving the quality of opponent AI (while
preserving the characteristics associated with high entertainment value [3]) is desired
in case human-controlled opponents are not available.

In complex games, such as Computer RolePlaying Games (CRPGs), where the
number of choices at each turn ranges from hundreds to even thousands, the incorpo-
ration of advanced AI is difficult. For these complex games most AI researchers resort
to scripts, i.e., lists of rules that are executed sequentially [4]. These scripts are gener-
ally static and tend to be quite long and complex [5]. Because of their complexity, AI
scripts are likely to contain weaknesses, which can be exploited by human players to
easily defeat supposedly tough opponents. Furthermore, because they are static,
scripts cannot deal with unforeseen tactics employed by the human player and cannot
scale the difficulty level exhibited by the game AI to cater to both novice and experi-
enced human players.

In our research we apply machine-learning techniques to improve the quality of

scripted opponent AI. When machine learning is used to allow opponents to adapt
while the game is played, this is referred to as “online learning”. Online learning al-
lows the opponents to automatically repair weaknesses in their scripts that are ex-
ploited by the human player, and to adapt to changes in human player tactics. While
supervised online learning has been sporadically used in commercial games [6], unsu-
pervised online learning is widely disregarded by commercial game developers [7],
even though it has been shown to be feasible for games [8,9,10].

We designed a novel technique called “dynamic scripting” that realises online ad-
aptation of scripted opponent AI, specifically for complex games [10]. While our
evaluations showed that dynamic scripting meets all necessary requirements to be
generally successful in games, we noted that, occasionally, chance causes adaptation
to a new tactic to take too long. In the distribution of adaptation times, these excep-
tionally long adaptation times are outliers. The present research investigates two coun-
termeasures against the occurrence of outliers, namely penalty balancing and history
fallback.

The outline of the remainder of the paper is as follows. Section 2 discusses oppo-
nent AI in games and describes dynamic scripting. It also discusses the results
achieved with dynamic scripting in a simulation and in the state-of-the-art CRPG
NEVERWINTER NIGHTS. Section 3 presents the two countermeasures, and the results
obtained by applying them in dynamic scripting. Section 4 discusses the results. Fi-
nally, section 5 concludes and points at future work

2 Online Learning of Game Opponent AI with Dynamic Scripting

Online learning of computer game AI entails that the AI is adapted while the game is
being played. In subsection 2.1 we present dynamic scripting as a technique that is
designed specifically for this purpose. Those interested in a more detailed exposition
of dynamic scripting are referred to [10]. Subsection 2.2 discusses online learning
requirements for games and how dynamic scripting meets them. Subsection 2.3 pre-
sents the results of an evaluation of the effectiveness of dynamic scripting.

2.1 Dynamic Scripting

Dynamic scripting is an unsupervised online learning technique for commercial com-
puter games. It maintains several rulebases, one for each opponent type in the game.
The rules in the rulebases are manually designed using domain-specific knowledge.
Every time a new opponent of a particular type is generated, the rules that comprise
the script that controls the opponent are extracted from the corresponding rulebase.
The probability that a rule is selected for a script is influenced by a weight value that
is associated with each rule. The rulebase adapts by changing the weight values to
reflect the success or failure rate of the corresponding rules in scripts. A priority
mechanism can be used to let certain rules take precedence over other rules. The dy-
namic scripting process is illustrated in figure 1 in the context of a commercial game.

The learning mechanism in our dynamic scripting technique is inspired by rein-

forcement learning techniques [11]. It has been adapted for use in games because
regular reinforcement learning techniques are not sufficiently efficient for online
learning in games [12]. In the dynamic scripting approach, learning proceeds as fol-
lows. Upon completion of an encounter, the weights of the rules employed during the
encounter are adapted depending on their contribution to the outcome. Rules that lead
to success are rewarded with a weight increase, whereas rules that lead to failure are
punished with a weight decrease. The remaining rules get updated so that the total of
all weights in the rulebase remains unchanged. The size of the weight change depends
on how well, or how badly, a team member performed during the encounter.

 human-

controlled

Rulebase for
computer-
controlled

opponent A

generate
script Generated

script for
computer-
controlled

opponent A

scripted
control

A

Combat
between the
two teams

update weights by encounter results

Rulebase for
computer-
controlled

opponent B

generate
script

Generated
script for
computer-
controlled

opponent B

scripted
control

B

computer-
controlled

human
control

human
control

human
player

Fig. 1. The dynamic scripting process. For each computer-controlled opponent a rulebase
generates a new script at the start of an encounter. After an encounter is over, the weights in the
rulebase are adapted to reflect the results of the fight

2.2 Online Learning Requirements and Dynamic Scripting

For unsupervised online learning of computer game AI to be applicable in practice, it
must be fast, effective, robust, and efficient. Below we discuss each of these four
requirements in detail.
1. Fast. Since online learning takes place during gameplay, the learning algorithm

should be computationally fast. This requirement excludes computationally inten-
sive learning methods such as model-based learning. Dynamic scripting only re-
quires the extraction of rules from a rulebase and the updating of weights once
per encounter, and is therefore computationally fast.

2. Effective. In providing entertainment for the player, the adapted AI should be at
least as challenging as manually designed AI (the occasional occurrence of a non-
challenging opponent being permissible). This requirement excludes random
learning methods, such as evolutionary algorithms. Dynamic scripting extracts the
rules for the script from a rulebase, which contains only rules that have been
manually designed using domain knowledge. Since none of the rules in the script

will be ineffective, the script as a whole won’t be either, although it may be inap-
propriate for certain situations.

3. Robust. The learning mechanism must be able to cope with a significant amount
of randomness inherent in most commercial gaming mechanisms. This require-
ment excludes deterministic learning methods that depend on a gradient search,
such as straightforward hill-climbing. Dynamic scripting is robust because it uses
a reward-and-penalty system, and does not remove rules immediately when pun-
ished.

4. Efficient. In a single game, a player experiences a limited number of encounters
with similar groups of opponents. Therefore, the learning process should rely on
just a small number of trials. This requirement excludes slow-learning techniques,
such as neural networks, evolutionary algorithms and reinforcement learning.
With appropriate weight-updating parameters dynamic scripting can adapt after a
few encounters only. We have evaluated the efficiency of dynamic scripting with
experiments that are discussed in subsection 2.3.

2.3 Evaluation of the Efficiency of Dynamic Scripting

To evaluate the efficiency of dynamic scripting, we implemented it in a simulation of
an encounter of two teams in a complex CRPG, closely resembling the popular
BALDUR’S GATE games (the simulation environment is shown in figure 2). We also
implemented dynamic scripting in an actual commercial game, namely the state-of-
the-art CRPG NEVERWINTER NIGHTS (NWN). Our evaluation experiments aimed at
assessing the adaptive performance of a team controlled by the dynamic scripting
technique, against a team controlled by static scripts. If dynamic scripting is efficient,
the dynamic team will need only a few encounters to design a tactic that outperforms
the static team, even if the static team uses a highly effective tactic. In the simulation,
we pitted the dynamic team against a static team that would use one of four, manually
designed, basic tactics (named “offensive”, “disabling”, “cursing” and “defensive”) or
one of three composite tactics (named “random party”, “random character” and “con-
secutive party”). In NWN we pitted the dynamic team against the AI programmed by
the developers of the game.

Of all the static team’s tactics the most challenging is the consecutive party tactic.
With this tactic the static team starts by using one of the four basic tactics. Each en-
counter the party will continue to use the tactic employed during the previous encoun-
ter if that encounter was won, but will switch to the next tactic if that encounter was
lost. This strategy is closest to what human players do: they stick with a tactic as long
as it works, and switch when it fails.

To quantify the relative performance of the dynamic team against the static team,
after each encounter we calculate a so-called “fitness” value for each team. This is a
real value in the range [0,1], which indicates how well the team did during the past
encounter. It takes into account whether the team won or lost, and, if the team won,
the number of surviving team members and their total remaining health. The dynamic
team is said to outperform the static team at an encounter if the average fitness over
the last ten encounters is higher for the dynamic team than for the static team.

Fig. 2. The simulation environment used to test dynamic scripting

In order to identify reliable changes in strength between parties, we define the turn-
ing point as the number of the first encounter after which the dynamic team outper-
forms the static team for at least ten consecutive encounters. A low value for the turn-
ing point indicates good efficiency of dynamic scripting, since it shows that the dy-
namic team consistently outperforms the static team within a few encounters only.

The results of our evaluation experiments are summarised in table 1. Since the op-
ponent AI in NWN was significantly improved between NWN version 1.29 (which we
used in earlier research) and version 1.61, turning points have been calculated for both
of them. From the results in this table we observe that the turning points achieved are
low, especially considering the fact that rulebases started out with equal weights for all
rules. We therefore conclude that dynamic scripting is efficient and thus meets all
requirements stated in subsection 2.2.

However, from the surprising differences between the average and median values
for the turning points, and from the fact that some of the highest turning points found
are extremely high, we conclude that, although turning points are low in general, there
occasionally are cases where they are too high for comfort. These so-called “outliers”
are explained by the high degree of randomness that is inherent to these games. A long
run of encounters where pure chance drives the learning process away from an opti-
mum (for instance, a run of encounters wherein the dynamic team is lucky and wins
although it employs inferior tactics, or wherein the dynamic team is unlucky and loses
although it employs superior tactics) may place the rulebase in a state from which it
has difficulty to recover. To resolve the problem of outliers, we investigated two coun-
termeasures, which are discussed in the next section.

Table 1. Turning point values for dynamic scripting pitted against nine different tactics. The
columns, from left to right, present the following: (1) the name of the tactic, (2) the number of
experiments done with this tactic, (3) the average turning point found, (4) the median turning
point found, (5) the standard deviation, (6) the standard error of the mean, (7) the highest turn-
ing point found, and (8) the average of the highest five turning points found

Tactic #exp x median σ xσ highest 5topx

Offensive 100 58 53 35.0 3.5 314 155
Disabling 100 12 11 5.2 0.5 51 31
Cursing 100 137 35 333.6 33.4 1767 1461
Defensive 100 31 27 18.8 1.9 93 77
Random Party 100 56 34 74.4 7.4 595 310
Random Character 100 53 27 67.0 6.7 398 289
Consecutive Party 100 72 47 100.3 10.0 716 424
NWN AI 1.29 50 21 16 8.8 1.2 101 58
NWN AI 1.61 31 35 32 18.8 3.4 75 65

3 Reducing the Number of Outliers

To reduce the number of outliers, we propose two countermeasures, namely (1) pen-
alty balancing, and (2) history fallback. Subsection 3.1 explains the first countermea-
sure, and subsection 3.2 the second. The results of the experiments used to test the
effectiveness of the countermeasures are presented in subsection 3.3.

3.1 Penalty Balancing

The magnitude of the weight adaptation in a rulebase depends on a measure of the
success (or failure) of the opponent whose script is extracted from the rulebase. Typi-
cally, the measure of success of an opponent is expressed in the form of an individual
fitness function that, besides the team fitness value, incorporates elements of the op-
ponent’s individual performance during an encounter. The individual fitness takes a
value in the range [0,1]. If the value is higher than a break-even value b, the weights of
the rules in the script that governed the opponent’s behaviour are rewarded, and oth-
erwise they are penalised. The weight adjustment is expressed by the following for-
mula for the new weight value W:

{ }

{ }

≥

−
−⋅+

<

 −⋅−

=
bFW

b

bF
RW

bF
b

Fb
PWW

W

org

org

maxmax

maxmin

,
1

min

,max
(1)

where Worg is the original weight value, Wmin and Wmax respectively are the minimum
and maximum weight values, Rmax and Pmax respectively are the maximum reward and
penalty, F is the individual fitness, and b is the break-even value.

Penalty balancing is tuning the magnitude of the maximum penalty in relation to the
maximum reward to optimise speed and effectiveness of the adaptation process. The
experimental results presented in section 2 relied on a maximum reward that was sub-
stantially larger than the maximum penalty (namely, Pmax=30 for the simulation ex-
periments, and Pmax=50 for the NWN experiments, while Rmax=100 for both). The
argument for the relatively small maximum penalties is that, as soon as an optimum is
found, the rulebase should be protected against degradation. This argument seems to
be intuitively correct, since for a local optimum a penalty can be considered equiva-
lent to a mutation as used in an evolutionary learning system, and the effectiveness of
a learning system improves if the mutation rate is small in the neighbourhood of an
optimum [13]. However, if a sequence of undeserved rewards occurs, the relatively
low maximum penalty will have problems reducing the unjustly increased weights.
Penalty balancing, whereby Pmax is brought closer to the value of Rmax, gives dynamic
scripting better chances to recover from undeserved weight increases, at the cost of
higher chances to move away from a discovered optimum.

3.2 History Fallback

In the original formulation of dynamic scripting [10], the old weights of the rules in
the rulebase are erased when the rulebase adapts. With history fallback all previous
weights are retained in so-called “historic rulebases”. When learning seems to be stuck
in a sequence of rulebases that have inferior performance, it can “fall back” to one of
the historic rulebases that seemed to perform better.

However, caution should be taken not to be too eager to fall back to earlier rule-
bases. The dynamic scripting process has shown to be quite robust and learns from
both successes and failures. Returning to an earlier rulebase means losing everything
that was learned after that rulebase was generated. Furthermore, an earlier rulebase
may have a high fitness due to chance, and returning to it might therefore have an
adverse effect. We confirmed the wisdom of this caution by implementing dynamic
scripting with an eager history-fallback mechanism in NWN, and found its perform-
ance to be much worse than that of dynamic scripting without history fallback. There-
fore, any history-fallback mechanism should only be activated when there is a high
probability that a truly inferior rulebase is replaced by a truly superior one.

Our implementation of history fallback is as follows. The current rulebase R is used
to generate scripts that control the behaviour of an opponent during an encounter.
After each encounter i, before the weight updates, all weight values from rulebase R
are copied to historic rulebase Ri. With Ri are also stored the individual fitness Fi, the
team fitness Ti, and a number representing the so-called “parent” of Ri. The parent of
Ri is the historic rulebase whose weights were updated to generate Ri (usually the
parent of Ri is Ri–1). A rulebase is considered “inferior” when both its own fitness
values, and the fitness values of its N immediate ancestors, are low. A rulebase is
considered “superior” when both its own fitness values, and the fitness values of its N
immediate ancestors, are high. If at encounter i we find that Ri is inferior, and in Ri’s
ancestry we find a historic rulebase Rj that is superior, the next parent used to generate
the current rulebase R will not be Ri but Rj. In our experiments we used N=2.

Though unlikely, with this mechanism it is still possible to fall back to a historic
rulebase that, although it seemed to perform well in the past, actually only did so by
being lucky. While this will be discovered by the learning process soon enough, we
don’t want to run the risk of returning to such a rulebase over and over again. We
propose two different ways of alleviating this problem. The first is by simply not al-
lowing the mechanism to fall back to a historic rulebase that is “too old”, but only
allow it to fall back to the last M ancestors (in our experiments we used M=15). We
call this “limited distance fallback” (LDF). The second is acknowledging that the
individual fitness of a rulebase should not be too different from that of its direct ances-
tors. By propagating a newly calculated fitness value back through the ancestry of a
rulebase, factoring it into the fitness values for those ancestors, a rulebase with a high
individual fitness that has children that have low fitness values, will also have its fit-
ness reduced fast. We call this “fitness propagation fallback” (FPF). Both versions of
history fallback allow dynamic scripting to recover earlier, well-performing rulebases.

3.3 Experimental Results

To test the effectiveness of penalty balancing and history fallback, we ran a series of
experiments in our simulation environment. We decided to use the “consecutive party
tactic” as the tactic employed by the static team, since this tactic is the most challeng-
ing for dynamic scripting. We compared nine different configurations, namely learn-
ing runs using maximum penalties Pmax=30, Pmax=70 and Pmax=100, combined with the
use of no fallback (NoF), limited distance fallback (LDF), and fitness propagation
fallback (FPF).

We also ran some experiments with NWN. In these experiments we used for the
static team the standard AI of NWN version 1.61, and we ran also some experiments
using so-called “cursed AI”. With cursed AI in 20% of the encounters the game AI
deliberately misleads dynamic scripting into awarding high fitness to purely random
tactics, and low fitness to tactics that have shown good performance during earlier
encounters. We did NWN experiments both with no fallback and fitness propagation
fallback. We did not change the maximum penalties since in our original experiments
for NWN we already used higher maximum penalties than for the simulation.

Table 2 gives an overview of both the simulation and the NWN experiments. Fig-
ure 3 shows histograms of the turning points for each of the series of simulation ex-
periments. From these results we make the following four observations: (1) Penalty
balancing is a necessary requirement to reduce the number of outliers. All experiments
that have a higher maximum penalty than our original Pmax=30 reduce the number and
magnitude of outliers. (2) If penalty balancing is not applied, history fallback seems to
have no effect or even an adverse effect. (3) If penalty balancing is applied, history
fallback has no adverse effect and may actually have a positive effect. (4) In the NWN
environment history fallback has little or no effect.

As a final experiment, we applied a combination of penalty balancing with Pmax=70
and limited distance fallback to all the different tactics available in the simulation

Table 2. Turning point values for dynamic scripting pitted against the consecutive party tactic
in the simulation and against the NWN AI 1.61, in different circumstances, which are specified
in column 1. Columns 2 to 8 present equal information as in table 1

Situation #exp x median σ xσ highest 5topx

Sim, Pmax=30, NoF 100 72 47 100.3 10.0 716 424
Sim, Pmax=30, LDF 100 99 49 229.3 22.9 2064 837
Sim, Pmax=30, FPF 100 80 54 145.0 14.5 971 605
Sim, Pmax=70, NoF 100 62 44 69.4 6.9 336 301
Sim, Pmax=70, LDF 100 52 37 56.2 5.6 393 238
Sim, Pmax=70, FPF 100 60 32 57.3 5.7 391 245
Sim, Pmax=100, NoF 100 66 59 59.5 6.0 322 246
Sim, Pmax=100, LDF 100 68 60 56.7 5.7 271 225
Sim, Pmax=100, FPF 100 57 53 50.6 5.1 331 202
NWN, NoF 31 35 32 18.8 3.4 75 65
NWN, FPF 30 32 24 26.7 4.9 104 71
NWN cursed, NoF 21 33 24 21.8 4.8 92 64
NWN cursed, FPF 21 32 18 28.1 6.1 115 69

Pmax=30, NoF

0

10

20

30

40

0 100 200 300 400 500

Pmax=30, LDF

0

10

20

30

40

0 100 200 300 400 500

Pmax=30, FPF

0

10

20

30

40

0 100 200 300 400 500

Pmax=70, NoF

0

10

20

30

40

0 100 200 300 400 500

Pmax=70, LDF

0

10

20

30

40

0 100 200 300 400 500

Pmax=70, FPF

0

10

20

30

40

0 100 200 300 400 500

Pmax=100, NoF

0

10

20

30

40

0 100 200 300 400 500

Pmax=100, LDF

0

10

20

30

40

0 100 200 300 400 500

Pmax=100, FPF

0

10

20

30

40

0 100 200 300 400 500

Fig. 3. Histograms of the turning points for the simulation experiments in table 2. The turning
points have been grouped in ranges of 25 different values. Each bar indicates the number of
turning points falling within a range. Each graph starts with the leftmost bar representing the
range [0,24]. The rightmost bars in the topmost three graphs represent all turning points of 500
or greater (the other graphs do not have turning points in this range)

environment. The results are summarised in table 3. A comparison of table 3 and table
1 shows a significant, often very large reduction of the both the highest turning point
and the average of the highest five turning points, for all tactics except for the “dis-
abling” tactic (however, the “disabling” tactic already has the lowest turning points in
both tables). This clearly confirms the positive effect of the two countermeasures.

Table 3. Turning point values for dynamic scripting pitted against different tactics, using
Pmax=70 and limited distance fallback. The columns present equal information as in table 1

Tactic #exp x median σ xσ highest 5topx

Offensive 100 53 52 24.8 2.5 120 107
Disabling 100 13 11 8.4 0.8 79 39
Cursing 100 44 26 50.4 5.0 304 222
Defensive 100 24 17 15.3 1.5 79 67
Random Party 100 51 29 64.5 6.5 480 271
Random Character 100 41 25 40.7 4.1 251 178
Consecutive Party 100 52 37 56.2 5.6 393 238

4 Discussion

In this section we discuss the results presented in the previous section. Subsection 4.1
examines the experimental results obtained using the countermeasures. Subsection 4.2
discusses the usefulness of dynamic scripting enhanced with the countermeasures.

4.2 Interpretation of the results

The results presented in table 2 indicate that penalty balancing has an undeniable
positive influence on dynamic scripting, especially in reducing the number of outliers.
In combination with penalty balancing, history fallback can have an extra positive
impact. A qualitative explanation of the history fallback effect is the following. In
subsection 3.1 we stated that penalty balancing runs the risk of losing a discovered
optimum due to chance. History fallback counteracts this risk, and may therefore im-
prove dynamic scripting even further.

In the NWN environment we observed that history fallback had little or no effect.
This may be due to the following three reasons. (1) The effect of history fallback is
small compared to the effect of penalty balancing. (2) Since even static opponents that
use cursed AI do not cause significantly increased turning points, it seems that dy-
namic scripting in NWN is so robust that remote outliers do not occur, and therefore
countermeasures are not needed. (3) Dynamic scripting in the NWN environment has
two extra enhancements compared to the implementation in the simulation, namely the
ability to decrease script length, and a rulebase that contains more general tactics as
rules. These enhancements may also reduce the occurrence of outliers.

4.2 Usefulness

It is clear from the results in table 2 that the number of outliers has been significantly
reduced with the proposed countermeasures. However, occasionally exceptionally
long learning runs still occur in the simulation experiments, even though they are rare.
Does this mean that dynamic scripting needs to be improved even more before it can
be applied in a commercial game?

We argue that it does not. Dynamic scripting is ready to be applied in commercial
games. Our argument is twofold. (1) Because dynamic scripting is a non-deterministic
technique, outliers can never be prevented completely. However, entertainment value
of a game is guaranteed even if an outlier occurs, because of the domain knowledge in
the rulebase (this is the requirement of effectiveness from subsection 2.2). (2) Excep-
tionally long learning runs mainly occur because early in the process chance increases
the wrong weights. This is not likely to happen in a rulebase with pre-initialised
weights. When dynamic scripting is implemented in an actual game, the weights in the
rulebase will not all start out with equal values, but they will be initialised to values
that are already optimised against commonly used tactics. This will not only prevent
the occurrence of outliers, but also increase the speed of weight optimisation, and
provide history fallback with a likely candidate for a superior rulebase.

We note that, besides as a target for the history fallback mechanism, historic rule-
bases can also be used to store tactics that work well against a specific tactic em-
ployed by a human player. If human player tactics can be identified, these rulebases
can simply be reloaded when the player starts to use a particular tactic again after
having employed a completely different tactic for a while.

5 Conclusion and Future Work

Dynamic scripting is a technique that realises unsupervised online adaptation of oppo-
nent AI in complex commercial computer games such as CRPGs. It is based on the
automatic online generation of AI scripts for computer game opponents by means of
an adaptive rulebase. Although dynamic scripting has been shown to perform well,
exceptionally long learning runs (“outliers”) tend to occur occasionally. In this paper
we investigated two countermeasures against the outliers, namely penalty balancing
and history fallback. We found that penalty balancing has a significant positive effect
on the occurrence of outliers, and that history fallback may improve the effect of pen-
alty balancing even further. We conclude that the performance of dynamic scripting is
enhanced by these two countermeasures, and that dynamic scripting can be success-
fully incorporated in commercial games.
 Our future work aims at applying dynamic scripting in other game types than
CRPGs, such as Real-Time Strategy games. We will also investigate whether offline
machine learning techniques, which can be very effective in designing tactics [14], can
be used to “invent” completely new rules for the dynamic scripting rulebase. Finally,
since our main aim is to use online learning against human players, it is essential that
we extend our experiments to assess if online learning actually increases the enter-

tainment value of a game for human players. After all, for commercial game develop-
ers entertainment value is of primary concern when deciding whether or not to incor-
porate online learning in their games.

References

1. Tozour, P.: The Evolution of Game AI. In: Rabin, S. (ed.): AI Game Programming Wisdom.
Charles River Media (2002) 3–15

2. Schaeffer, J.: A Gamut of Games. In: AI Magazine, Vol. 22, No. 3 (2001) 29–46
3. Scott, B.: The Illusion of Intelligence. In: Rabin, S. (ed.): AI Game Programming Wisdom.

Charles River Media (2002) 16–20
4. Tozour, P.: The Perils of AI Scripting. In: Rabin, S. (ed.): AI Game Programming Wisdom.

Charles River Media (2002) 541–547
5. Brockington, M. and Darrah, M.: How Not to Implement a Basic Scripting Language. In:

Rabin, S. (ed.): AI Game Programming Wisdom. Charles River Media (2002) 548–554
6. Evans, R.: Varieties of Learning. In: Rabin, S. (ed.): AI Game Programming Wisdom.

Charles River Media (2002) 567–578
7. Woodcock, S.: Game AI: The State of the Industry. In: Game Developer Magazine, August

(2002)
8. Demasi, P. and Cruz, A.J. de O.: Online Coevolution for Action Games. In: Gough, N. and

Mehdi, Q. (eds.): International Journal of Intelligent Games and Simulation, Vol. 2, No. 2
(2003) 80–88

9. Demasi, P. and Cruz, A.J. de O.: Anticipating Opponent Behaviour Using Sequential Predic-
tion and Real-Time Fuzzy Rule Learning. In: Mehdi, Q., Gough, N. and Natkin, S. (eds.):
Proceedings of the 4th International Conference on Intelligent Games and Simulation
(2003) 101–105

10.Spronck, P., Sprinkhuizen-Kuyper, I. and Postma, E.: Online Adaptation of Game Opponent
AI in Simulation and in Practice. In: Mehdi, Q., Gough, N. and Natkin, S. (eds.): Proceed-
ings of the 4th International Conference on Intelligent Games and Simulation (2003) 93–
100

11.Russell, S. and Norvig, P.: Artificial Intelligence: A Modern Approach, Second Edition.
Prentice Hall, Englewood Cliffs, New Jersey (2002)

12.Manslow, J.: Learning and Adaptation. In: Rabin, S. (ed.): AI Game Programming Wisdom.
Charles River Media (2002) 557–566

13.Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New
York (1996)

14.Spronck, P., Sprinkhuizen-Kuyper, I. and Postma, E.: Improving Opponent Intelligence
Through Offline Evolutionary Learning. In: International Journal of Intelligent Games and
Simulation, Vol. 2, No. 1 (2003) 20–27

