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Abstract- To play a game well a player needs to under-
stand the game. To defeat an opponent, it may be suf-
ficient to understand the opponent’s weak spots and to
be able to exploit them. In human practice, both ele-
ments (knowing the game and knowing the opponent)
play an important role. This article focuses on opponent
modelling independent of any game. So, the domain
of interest is a collection of two-person games, multi-
person games, and commercial games. The emphasis is
on types and roles of opponent models, such as specula-
tion, tutoring, training, and mimicking characters. Vari-
ous implementations are given. Suggestions for learning
the opponent models are described and their realization
is illustrated by opponent models in game-tree search.
We then transfer these techniques to commercial games.
Here it is crucial for a successful opponent model that
the changes of the opponent’s reactions over time are
adequately dealt with. This is done by dynamic script-
ing, an improvised online learning technique for games.
Our conclusions are (1) that opponent modelling has a
wealth of techniques that are waiting for implementa-
tion in actual commercial games, but (2) that the games’
publishers are reluctant to incorporate these techniques
since they have no definitive opinion on the successes of
a program that is outclassing human beings in strength
and creativity, and (3) that game AI has an entertain-
ment factor that is too multifaceted to grasp in reason-
able time.

1 Introduction

Ever since humans play games they desire to master the
game played. Obviously, gauging the intricacies of a game
completely is a difficult task; understanding some parts is
most of the time the best a player can aim at. The latter
means solving some sub-domains of a game. However, in
a competitive game it may be sufficient to understand more
of the game than the opponent does in order to win a com-
bat. Remarkably, here a shift of attention may take place,
since playing better than the opponent may happen (1) by
the player’s more extensive knowledge of the game or (2)
by the player’s knowledge of the oddities of the opponent.
In human practice, a combination of (1) and (2) is part of
the preparation of a top grandmaster in Chess, Checkers
or Shogi. Opponent modelling is an intriguing part of a
player’s match preparation, since the preparing player tries
to understand the preferences, strategies, skill, and weak
spots of his1 opponent.

In the following we distinguish between the player and
the opponent if a two-person game is discussed. In multi-

1In this article we use ‘he’ (‘his’) if both ‘he’ and ‘she’ are possible.

person games and in commercial games we will speak of
agents. Opponent modelling is a research topic that was en-
visaged already a long time ago. For instance, in the 1970s
chess programs incorporated a contempt factor, meaning
that against a stronger opponent a draw was accepted even if
the player was +0.5 ahead, and a draw was declined against
a weaker opponent even when the player had a minus score.
In the 1990s serious research in the domain of opponent
modelling started [5, 19]. Nowadays opponent modelling
also plays a part in multi-person games (collaboration, con-
spiracy, opposition) and in commercial games. Here we see
a shift from opponent modelling towards subject modelling
and even environmental entertainment modelling.

The course of the article is as follows. Section 2 de-
fines types and roles of opponent models. In section 3 we
provide a brief overview of the development of opponent
models currently in use in Roshambo, the Iterated Prisoner’s
Dilemma, and Poker. We extrapolate the development to
commercial Games. Section 4 lists six possible implemen-
tations of the opponent models. A main question is dealt
with in section 5, viz. how to learn opponent models. We
describe two methods, refer to a third one, and leave the
others undiscussed. Section 6 focuses on the three imple-
mentations in game-tree search: OM search, PrOM search,
and symmetric opponent modelling. Section 7 presents dy-
namic scripting as a technique for online adaptive game AI
in commercial games. Finally section 8 contains our con-
clusions.

2 Roles of Opponent Models

In general, an opponent model is an abstracted description
of a player or a player’s behaviour in a game. There are
many different types. For instance, a model can describe a
player’s preferences, his strategy, skill, capabilities, weak-
nesses, knowledge, and so on.

For each type we may distinguish two different roles in a
game program. The first role is to model a (human or com-
puter) opponent in such way that it informs the player ap-
propriately in classical two-person games. Such opponent
model can be implicit in the program’s strategy or made
explicit in some internal description. The task of such an
opponent model is to understand and mimic the opponent’s
behaviour, in an attempt either to beat the opponent (see
section 2.1) or to assist the opponent (section 2.2).

The second role is to provide an artificial opponent agent
for the own agent (program or human player) using the pro-
gram (see section 2.3), or an artificial agent that participates
in an online multi-person game (section 2.4). Iteratively,
such an opponent agent could bear in itself an opponent
model of its own opponents. In most cases, the task of an



opponent model in this second role is to manifest an inter-
esting and entertaining opponent to human players.

Regardless of its internal representation, an opponent
model may range from statically defined in the program to
dynamically adaptable. Opponent models that are dynam-
ically adapted (or adapt themselves) to the opponent and
other elements of the environment are to be preferred.

Below we will detail the four appearances in which op-
ponent models are of use.

2.1 Speculation in heuristic search

The classical approach in Artificial Intelligence to board
games, such as Chess, Checkers and Shogi, is heuristic
search. It is based on the Minimax procedure for zero-sum
perfect-information games as described by Von Neumann
and Morgenstern [41]. However, the complexity of board
games makes Minimax infeasible to be applied directly to
the game tree. Therefore, the game tree is reduced in its
depth by using a static heuristic evaluation, and quite fre-
quently also in its breadth by using selective search. More-
over, during the detection of the best move to play next,
much of the reduced game tree is disregarded by using αβ
pruning and other search enhancements. Actual game play-
ing in this approach consists of solving a sequence of re-
duced games. Altogether, the classical approach has proven
to be successful in Chess, Checkers, and a range of other
board games.

In the classical approach, reasoning is based on defend-
ing against the worst case and attempting to achieve the best
case. However, because heuristic search is used, it is not cer-
tain that the worst case and the best case are truly known. It
means that it might be worthwhile to use additional knowl-
edge during heuristic search in order to increase the chance
to win, for instance, knowledge of the opponent. It is clear
that humans use their knowledge of the opponent during
game playing.

There are numerous ways in which knowledge of the
(human) opponent can be used to improve play by heuristic
search. One can use knowledge of the opponent’s prefer-
ences or skills to force the game into positions that are con-
sidered to be less favourable to the opponent than to oneself.
In the case that a player is facing a weak position, the player
may try to speculate on positions in which the opponent is
more likely to make mistakes. If available, a player may
use the opponent’s evaluation function to speculate (or even
calculate) the next move an opponent will make and thus
adopt its strategy to find the optimal countermoves. We will
concentrate on the last approach in section 5.

2.2 Tutoring and Training

An opponent model can be used to assist the human player.
We discuss two different usages: tutoring and training.
Commercial board game programs (can) increase their at-
tractiveness by offering such functionality.

In a tutoring system [20], the program can use the model
of the human opponent to teach the player some aspects
of the game in a personalized manner, depending on the

type of knowledge present in the opponent model. If the
model includes the player’s general weaknesses or skills, it
can be used to lead apprentices during a game to positions
that help them to learn from mistakes. When the model in-
cludes the strategy or preferences of the player, then this
knowledge can be employed to provide explicit feedback to
the user during play, either by tricking the player into po-
sitions in which a certain mistake will be made and explic-
itly corrected by the program, or by providing verbal advice
such as: ”you should play less defensive in this stage of the
game”.

A quite different way to aid the apprentice is to provide
preset opponent types. Many game programs offer an op-
tion to set the playing strength of the program. Often, this is
arranged by limiting the resources (e.g., time, search depth)
available to the program. Sometimes, the preferences of
a program can be adjusted to allow a defensive or aggres-
sive playing style. An explicit opponent model could assist
even the experienced players to prepare themselves for a
game against a specific opponent. In order to be useful, the
program should in this case be able to learn a model of a
specific player. In Chess, some programs (e.g., CHESS AS-
SISTANT2) offer the possibility to adjust the opening book
to a given opponent, on the basis of previously stored game
records.

2.3 Non-player Characters

The main goal in commercial computer games is not to play
as strong as possible but to provide entertainment. Most
commercial computer games, such as computer roleplay-
ing games (CRPGs) and strategy games, situate the human
player in a virtual world that is populated by computer-
controlled agents, which are called ”non-player characters”
(NPCs). These agents may fulfil three roles: (i) as a com-
panion, (ii) as an opponent, and (iii) as a neutral, back-
ground character. In the first two roles, an opponent model
of the human player is needed. In practice, for most (if not
all) commercial games this model is implemented in an im-
plicit way. The third role, however commercially interest-
ing, is not relevant in the subject area of opponent mod-
elling, and thus it is not discussed below.

In the companion role, the agent must behave accord-
ing to the expectations of the human player. For instance,
when the human player prefers a stealthy approach to deal-
ing with opponents agents, he will not be pleased when the
computer-controlled companions immediately attack every
opponent agent that is near. If the companions fail to pre-
dict with a high degree of success what the human player
desires, they will annoy the human player, which is detri-
mental for the entertainment value of the game. Nowa-
days, companion agents in commercial games use an im-
plicit model of the human player, which the human player
can tune by setting a few parameters that control the behav-
iour of the companion (such as ”only attack when I do too”
or ”only use ranged weapons”).

In the opponent role, the agent must be able to match the

2See: http://store.convekta.com.



playing skills of the human player. If the opponent agent
plays too weak a game against the human player, the human
player loses interest in the game [34]. In contrast, if the
opponent agent plays too strong a game against the human
player, the human player gets stuck in the game and will quit
playing too [25]. Nowadays, commercial games provide a
‘difficulty setting’ which the human player can use to set
the physical attributes of opponent agents to an appropriate
value (often even during gameplay). However, a difficulty
setting does not resolve problems when the quality of the
tactics employed by opponent agents is not appropriate for
the skills of the human player.

The behaviour of opponent agents in commercial games
is designed during game development, and does not change
after the game has been released, i.e., it is static. The
game developers use (perhaps unconsciously) a model of
the human player, and a program behaviour for the opponent
agents appropriate for this model. As a consequence, the
model of the human player is implicit in the programmed
agent behaviour. Since the agent behaviour is static, the
model is static. In reality, of course, human players may
be very different, and thus it is to be expected that for most
games a static model is not ideal. A solution to this problem
would be that the model, and thus the behaviour of the op-
ponent agent, is dynamic. However, games’ publishers are
reluctant to release games where the behaviour of the oppo-
nent agents is dynamic, since they fear that the agents may
learn undesirable behaviour after the game’s release.

The result is that, in general, the behaviour of opponent
agents is unsatisfying to human players. Human players
prefer to play against their own kind, which is a partial ex-
planation for the popularity of multi-person games [33].

2.4 Multi-person games

In multi-person games, opponent models can be used to pro-
vide NPCs as well. Clearly, the problem mentioned in the
previous subsection is also present here, only in a much
harder form for the opponent agents, since they have to
deal with many human players with many different levels
of skills in parallel.

Yet another role of opponent models comes into sight in
multi-person games. There are situations in which a player
is not able or willing to continue playing, but the charac-
ter representing the player remains ‘alive’ inside the game.
Such a situation could arise from (i) a connection interrupt
in an online game, (ii) a ‘real-world’ interruption of the hu-
man player, or (iii) a human player wanting to enter multiple
copies of himself in the game. An opponent model could be
used in those instances to take over control of the human’s
alter-ego in the game, while mimicking the human player’s
behaviour. Of course, such a model should be adaptable to
the player’s characteristics.

3 Towards Commercial Games

Below we deal with three actual implementations of oppo-
nent models (3.1), viz. in Roshambo, the Iterated Prisoner’s
Dilemma, and Poker. From here we extrapolate the develop-

ment to commercial games (3.2) with an emphasis on adap-
tive game AI.

3.1 Opponent models used Now

Many of the usages of opponent models as presented in the
previous section are still subject of current and future re-
search. However, in a number of games, adaptive opponent
models are an essential part of successful approaches. It
is especially the case in iterated games. These are mostly
small games that are played a number of times in sequence;
the goal is to win the most games on average. Two famous
examples of iterated games are Roshambo (Rock-Paper-
Scissors) and the Iterated Prisoner’s Dilemma (IPD). Both
games consist of one simultaneous move after which the
score is determined. Roshambo has three options for each
move and zero-sum scores, IPD has only two options, but
has nonzero-sum scores. Both games are currently played
by computers in tournaments.

In Roshambo, the optimal strategy in an infinitely re-
peated game is to play randomly. However, in an actual
competition with a finite number of repetitions, a random
player will end up in the middle of the pack and will not
win the competition. Strong programs, such as IOCAINE
POWDER [12] apply opponent modelling in order to predict
the opponent’s strategy, while at the same time they attempt
to be as unpredictable as possible.

Although IPD seems not so different from Roshambo,
the opponent model must take another element into account:
the willingness of the opponent to cooperate. In IPD, the
players receive the highest payoff if both players cooper-
ate. Since the first IPD competition by Axelrod in 1979 [2],
the simple strategy ‘Tit-for-Tat’ has won most of the com-
petitions [23]. However, the 2004 competition was won by
a team that used multiple entries and recognition codes to
‘cheat’. Although this is not strictly opponent modelling,
the incident caused the birth of a new IPD competition at
CIG’05 in which multiple entries and recognition codes are
allowed. IPD illustrates an aspect of opponent modelling
that will play a role, in particular, in multi-person games,
viz., how to measure the willingness to cooperate and how
to tell friendly from hostile opponents?

A more complex iterated game is Poker. The game offers
more moves than Roshambo and IPD, involves more play-
ers in one game and has imperfect information. However,
the game does not need heuristic search to be played. Al-
though many Poker-playing programs exist that do not use
any opponent model, the strong and commercially available
program POKI ([3]) is fully based on opponent-modelling.
Schaeffer states: “No poker strategy is complete without a
good opponent-modelling system. A strong poker player
must develop a dynamically changing (adaptive) model of
each opponent, to identify potential weaknesses.” Oppo-
nent modelling is used with two distinct goals: to predict
the next move of each opponent and to estimate the strength
of each opponent’s hand.



3.2 The Future is in Commercial Games

The answer to the question “Are adaptive opponent mod-
els really necessary?” is that adaptive opponent models are
sorely needed to deal with the complexities of state-of-the-
art commercial games.

Over the years commercial games have become increas-
ingly complex, offering realistic worlds, a high degree of
freedom, and a great variety of possibilities. The tech-
nique of choice used by game developers for dealing with
a game’s complexities is rule-based game AI, usually in the
form of scripts [29, 40]. The advantage of the use of scripts
is that scripts are (1) understandable, (2) predictable, (3)
tuneable to specific circumstances, (4) easy to implement,
(5) easily extendable, and (6) useable by non-programmers
[40, 39]. However, as a consequence of game complexity,
scripts tend to be quite long and complex [4]. Manually-
developed complex scripts are likely to contain design flaws
and programming mistakes [29].

Adaptive game AI changes the tactics used by the com-
puter to match or exceed the playing skills of the particu-
lar human player it is pitted against, i.e., adaptive game AI
changes its implicit model of the human player to be more
successful. Adaptive game AI can ensure that the impact of
the mistakes mentioned above is limited to only a few sit-
uations encountered by the player, after which their occur-
rence will have become unlikely. Consequently, it is safe to
say that the more complex a game is, the greater the need
for adaptive game AI [13, 24, 16]. In the near future game
complexity will only increase. As long as the best approach
to game AI is to design it manually, the need for adaptive
game AI, and thus for opponent modelling, will increase
accordingly.

4 How to Model Opponents

The internal representation of an opponent model depends
on the type of knowledge that it should contain and the task
that the opponent model should perform. Artificial Intelli-
gence offers a range of techniques to build such models

4.1 Evaluation functions

In the context of heuristic search, an opponent model can
concentrate on the player’s preferences. These preferences
are usually encoded in a static heuristic evaluation function
that provides a score for every board position. An oppo-
nent model can consist of a specific evaluation function.
The evaluation function can either be hand-built on the basis
of explicit knowledge or machine-learned on basis of game
records.

4.2 Neural networks

The preferences of an opponent can also be represented
by a neural network or any other machine-learned function
approximator. Such a network can be learned from game
records or actual play. However, neural networks can also
be used to represent other aspects of the opponent’s behav-
iour. They could represent the difficulty of positions for a

specific opponent [28], or the move ordering preferred. The
Poker program POKI also uses neural networks to represent
the opponent model.

4.3 Rule-based models

A rule-based model consists of a series of production rules,
that couple actions to conditions. It is a reactive system, that
tests environment features to generate a response. A rule-
based model is easily implemented. It is also fairly easy to
be maintained and analysed.

4.4 Finite-State Machine

A finite-state machine model consists of a collection of
states, which represent situations in which the model can
exist, with defined state transitions that allow the model to
go into a new state. The state transitions are usually defined
as conditions. The model’s behaviour is defined separately
for each state.

4.5 Probabilistic models

The finite-state machine model can be augmented by prob-
abilistic transitions. It results in a probabilistic opponent
model. This kind of model is especially useful in games
with imperfect information, such as Poker, and most com-
mercial games.

A second probabilistic opponent model consists of a
mixture of other models (opponent types). In these mod-
els, the strategy of the opponent is determined by first gen-
erating a random number (which may be biased by certain
events) and then on the basis of the outcome selecting one
type out of a set of predefined opponent types.

4.6 Case-based models

A case-based model consists of a case base with samples of
situations and actions. By querying the case base, the cases
corresponding with the current situation are retrieved, and
an appropriate action is selected by examining the actions
belonging to the selected cases. An advantage of a case-
based model, is that the model can be easily updated and
expanded by allowing it to collect automatically new cases
while being used.

5 Learning Opponent Models

A compelling question is: can a program learn an opponent
model? Below we describe some research efforts made in
this domain. They consist of learning evaluation functions
(5.1), learning probabilistic models (5.2), and learning op-
ponent behaviour (5.3).

5.1 Learning evaluation functions

There are two basic approaches to the learning of opponent
models for heuristic search: (1) to learn an evaluation func-
tion, a move ordering, the search depth and other search
preferences used by a given opponent, and (2) to learn the



opponent’s strategy, which means to learn directly the move
that the opponent selects at every position.

The first approach has been studied in computer chess,
especially the learning of evaluation functions. Although
the goal often is to obtain a good evaluation function for
αβsearch, similar techniques can be used for obtaining the
evaluation function of an opponent type. For instance,
Anantharaman [1] describes a method to learn or tune an
evaluation function with the aid of a large set of positions
and the moves selected at those positions by master-level
human players. The core of the approach is to adapt weights
in an evaluation function by using a linear discriminant
method in such a way that a certain score of the evalua-
tion function is maximized. The evaluation function is as-
sumed to have the following form: V (h) =

∑

i Wi Ci(h).
The components Ci(h) are kept constant, only the weights
Wi are tuned. The method was used to tune an evaluation
function for the program DEEP THOUGHT, a predecessor of
DEEP BLUE. Although the method obtained a better func-
tion than the hand-tuned evaluation function of the program,
the author admits that it is difficult to avoid local maxima.
Fürnkranz [15] gives an overview of machine learning in
computer chess, including several other methods to obtain
evaluation functions from move databases.

5.2 Learning probabilistic models

The learning of opponent-type probabilities during a game
is limited since the number of observations is low. It can,
however, be useful to adapt probabilities that were achieved
earlier, for instance by offline learning. Two types of online
learning can be distinguished: a fast one in which only the
best move of every opponent type is used, and a slow one
in which the search value of all moves is computed for all
opponent types.

Fast online learning happens straightforwardly as fol-
lows: start with the prior obtained probabilities. At every
move of the opponent do the following: for all opponent
types detect whether their best move is equal to the actu-
ally selected move. If so, reward that opponent type with a
small increase of the probability. If not, punish the oppo-
nent type. The size of the reward or punishment should not
be too large because this type of learning will lead to the
false supremacy of one of the opponent types. This type of
incremental learning is also applied in the prediction of user
actions [8].

Slow online learning would be an application of the
naive Bayesian learner (see [9]). A similar approach is
used in learning probabilistic user profiles [30]. Slow on-
line learning works as follows. For all opponent types ωi,
the sub-game values vωi

(h + mj) of all possible moves mj

at position h are computed. These values are transformed
into conditional probabilities Pr(mj |ωi), that indicate the
“willingness” of the opponent type to select that move. This
transformation can be done in a number of ways. An exam-
ple is the method by Reibman and Ballard [31]: first deter-
mine the rank r(mj) of the moves according to vωi

(h+mj)

and then assign probabilities:

Pr(mj |ωi) =
(1− Ps)

r(mj)−1 · Ps
∑

k(1− Ps)r(mk)−1 · Ps
(1)

Ps (∈ (0, 1]) can be interpreted as the likeliness of the oppo-
nent type not to deviate from the best move: the higher Ps,
the higher the probability on the best move. It is however
also possible to use the actual values of vωi

(h + mj). Now
Bayes’ rule is used to compute the opponent-type probabil-
ities given the observed move of the opponent.

Pr(ωi|mΩ(h)) =
Pr(mΩ(h)|ωi) Pr(ωi)t

∑

k Pr(mΩ(h)|ωk) Pr(ωk)t
(2)

These a-posteriori probabilities are used to update the
opponent-type probabilities.

Pr(ωi)t+1 = (1− γ) Pr(ωi)t + γ Pr(ωi|mΩ(h)) (3)

In this formula, parameter γ (∈ [0, 1]) is the learning fac-
tor: the higher γ, the more influence the observations have
on the opponent-type probabilities. The approach is called
naive Bayesian learning, because the last formula assumes
that the observations at the subsequent positions in the game
are independent.

5.3 Learning opponent behaviour

Direct learning of opponent strategies is studied extensively
on iterated games [14]. For learning opponent strategies
in Roshambo we refer to Egnor [12]. General learning
in repeated games is studied, for example, by Carmel and
Markovitch [7].

6 Opponent Models in Game-Tree Search

Junghanns [22] gave an overview of eight problematic is-
sues when using αβ in game-tree search. He also listed al-
ternative algorithms that aimed at overcoming one or more
of these problems. The four most prominent problems with
αβ are: (1) the heuristic-error problem (heuristic values are
used instead of real game values), (2) the scalar-value prob-
lem (only a single scalar value is used to express the value of
an arbitrarily complex game position), (3) the value-backup
problem (lines leading to several good positions are prefer-
able to a line that leads to a single good position), and (4)
the opponent problem (knowledge of the opponent is not
taken into account).

The first attempt to use rudimentary knowledge of the
opponent in heuristic search is the approach by Slagle and
Dixon [35] in 1970. At the base of their M & N -search
method lies the observation that it is wise to favour positions
in which there are several moves with good values over po-
sitions in which there is only one move with a good value.
In 1983, Reibman and Ballard [31] assume that the oppo-
nent sometimes is fallible: there is a chance in each posi-
tion that the opponent selects a non-rational move. In their
model, the probability that the opponent selects a specific
move depends on the value of that move and on the degree
of fallibility of the opponent.



Below we will discuss three further approaches of deal-
ing with Junghanns’s fourth problem; viz. Opponent-Model
(OM) search, Probabilistic OM (PrOM) search, and sym-
metric opponent modelling.

6.1 OM search

The main assumption of OM search is that the opponent
(called MIN) uses a Minimax algorithm (or equivalent) with
an evaluation function that is known to the first player
(called MAX). Also the depth of the opponent’s search tree
and the opponent’s move order are assumed to be known.
This knowledge is used to construct a derivative of Mini-
max in which MAX maximizes at max nodes, but selects
at min nodes the moves that MIN will select, according to
MAX’ knowledge of MIN’s evaluation function.

For a search tree with even branching factor w and fixed
depth d, OM search needs n = wdd/2e evaluations for MAX
to determine the search-tree value: at every min node, only
one max child has to be investigated but at every max node,
all w children must be investigated. Because the search-
tree value of OM search is defined as the maximum over all
these n values for MAX, none of these values can be missed.
This means that the efficiency of OM search depends on
how efficient the values for MIN can be obtained.

A straightforward and efficient way to implement OM
search is by applying αβ probing: at a min node perform αβ
search with the opponent’s evaluation function (the probe),
and perform OM search with the move that αβ search re-
turns; at a max node, maximize over all child nodes. The
probes can in fact be implemented using any enhanced min-
imax search algorithm available, such as MTD(f). Because
a separate probe is performed for every min node, many
nodes are visited during multiple probes. (For example,
every min node Pj on the principal variation of a node P
will be probed at least twice.) Therefore, the use of trans-
position tables leads to a major reduction of the search tree.
The search method can be improved further by a mechanism
called β-pruning (see Figure 1).

The assumptions that form the basis of OM search give
rise to two types of risk. The first type of risk is caused
by a player’s imperfect knowledge of the opponent. When
MIN uses an evaluation function different from the one as-

OmSearchBPb(h, β)
1 if (h ∈ E) return (V0(h), null)
2 if (p(h) = MAX)
3 L← m(h) ; m← firstMove(L)
4 m∗ ← m ; v∗

0 ← −∞
5 while (m 6= null)
6 (v0,mm)← OmSearchBPb(h + m,β)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 m← nextMove(L)
9 if (p(h) = MIN)
10 (v∗

op,m
∗)← αβ-Search(h,−∞, β, Vop(·))

11 (v∗
0 ,mm)← OmSearchBPb(h + m∗, v∗

op + 1)
12 return (v∗

0 ,m∗)

Figure 1: β-pruning OM search with αβ probing.

sumed by MAX (or uses a different search depth or even a
different move ordering), MIN might select another move
than the move that MAX expects. This type of risk has been
described in detail and thoroughly analyzed in [18, 21]. The
second type of risk arises when the quality of the evaluation
functions used is too low. The main risk appears to occur
when the MAX player’s evaluation function overestimates
a position that is selected by MIN. This position may then
act as an attractor for many variations, resulting in a bad
performance. To protect the OM search against such a per-
formance the notion of admissible pairs of evaluation func-
tions is needed: (1) MAX’s function is a better profitability
estimator than MIN’s, and (2) MAX’s function never overes-
timates a position that MIN’s does not overestimate likewise
[11].

6.2 PrOM search

In contrast to OM search that assumes a fixed evaluation
function of the opponent, PrOM search [10] uses a model
of the opponent that includes uncertainty. The model con-
sists of a set of evaluation functions, called opponent types,
together with a probability distribution over these functions.
More precisely, PrOM search is based on the following four
assumptions:

(1) MAX has knowledge of n different opponent types
ω0 . . . ωn−1. Each opponent type ωi is a minimax
player that is characterized by an evaluation function
Vωi

. MAX is using evaluation function V0. For conve-
nience, one opponent type (ω0) is assumed to use the
same evaluation function as MAX uses (Vω0

≡ V0).

(2) All opponent types are assumed to use the same
search-tree depth and the same move ordering as
MAX.

(3) MAX has subjective probabilities Pr(ωi) on the range
of opponents, such that

∑

i Pr(ωi) = 1.

(4) MIN is using a mixed strategy which consists of the
n opponent-type minimax strategies. At every move
node, MIN is supposed to pick randomly one strategy
according to the opponent-type probabilities Pr(ωi).

The fourth assumption is a crucial one because it de-
termines the semantics of the opponent model: the mixed
strategy acts as an approximation of opponent’s real strat-
egy. The subjective probability of every opponent type acts
as the amount of MAX’s belief that this opponent type re-
sembles the opponent’s real behaviour.

The applicability of αβ probing in PrOM search is clear
(see Figure 2). The values of vωi

(P ) and the best move Pj

for opponent type ωi at min node P , can safely be obtained
by performing αβ search at node P , using evaluation func-
tion Vωi

(·). Notice that an αβ probe has to be performed
for every opponent type separately. These αβ probes can
be improved by a number of search enhancements. If trans-
position tables are used, then a separate table is needed per
opponent type. The transposition table for an opponent type
must not be cleared at the beginning of each probe, but only



PromSearchBPb(h, β̄)
1 if (h ∈ E) return (V0(h), null)
2 if p(h) = MAX
3 L← m(h) ; m← firstMove(L) ; m∗

0 ← m
4 v∗

0 ← −∞
5 while (m 6= null)
6 (v0,mm)← PromSearchBPb(h + m, β̄)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗

0 ← m
8 m← nextMove(L)
9 if p(h) = MIN
10 L← ∅

11 for i ∈ {0, . . . , n− 1}
12 (v̄∗

i , m̄∗
i )← αβ-Search(h,−∞, β̄i, Vi(·))

13 L← L ∪ {m̄∗
i }

14 v∗
0 ← 0; m∗

0 ← null ; m← firstMove(L)
15 while (m 6= null)
16 for i ∈ {0, . . . , n− 1}
17 if (m = m̄∗

i ) β̄i ← v̄∗
i + 1 else β̄i ←∞

18 (v0,mm)← PromSearchBPb(h + m, β̄)
19 for i ∈ {0, . . . , n− 1}
20 if (m = m̄∗

i ) v∗
0 ← v∗

0 + Pr(ωi) v0

21 m← nextMove(L)
22 return (v∗

0 ,m∗
0)

Figure 2: β-pruning PrOM search with αβ probing.

at the start of the PrOM search so that knowledge of the
search tree is shared between the subsequent probes for the
same opponent type.

Because of the usage of multiple opponent models, the
computational efforts for PrOM search are larger than those
needed for OM search. However, the risk while using PrOM
search is lower than while using OM search, when MAX
uses the own evaluation functions as one of the opponent
types. Experimental results indicate that when computa-
tional efforts are disregarded, PrOM search performs better
than OM search with the same amount of knowledge of the
opponent and with the same search depth.

6.3 Symmetric Opponent Modelling

Instead of the asymmetric opponent models in OM search
and PrOM search, it might be more natural to assume that
both players use an opponent model of each other of which
they are mutually aware. In the context of heuristic search it
means that both players agree that they have different (i.e.,
non-opposite) evaluation values for positions. The key con-
cept is common interest. Evaluation values are based on
many factors of a position. Some of these factors are pure
competitive, such as the number of black pieces on a chess
board, other factors are of interest of both players. Carmel
and Markovitch [6] give an example for the game of check-
ers. Another example is the degree to which a chess posi-
tion is ’open’ or ’closed’. An open position (in which many
pieces can move freely) is favoured by many players over
closed positions. Therefore, the openness of a position is a
common interest of both players.

Assume that the competitive factors of a position count

S and the common-interest factors count C, then the value
for the first player would be C+S. In the standard zero-sum
approach, the opponent would be assumed to use the value
−(C +S) for the same position, which would mean that the
opponent would award the common interest of the position
with −C. However, it seems more natural that the second
player uses the value C − S for the position. In the model
of Carmel and Markovitch [6], only one of the players is
assumed to be aware of this fact. However, why should we
not assume knowledge symmetry and let both players agree
on the size of C and S? When the two players receive dif-
ferent pay-offs (e.g., C + S and C − S) and these pay-offs
are common knowledge, we achieve a nonzero-sum game of
perfect information. In such a game there is both opponent
modelling and knowledge symmetry, leading to symmetric
opponent modelling. It should be noted that in any nonzero-
sum game, it is possible to describe the pay-offs in terms of
competitive and common-interest factors. If the first player
receives A and the second player B, the common interest C
is equal to (A + B)/2 and the competitive part S is equal to
(A−B)/2.

The use of a nonzero-sum game as a means of symmetric
opponent model introduces two challenges: (1) how to se-
lect the best equilibrium and (2) how to search efficiently. In
contrast to zero-sum games in which all equilibria have the
same value, in nonzero-sum games equilibria can co-exist
with different values. Although all equilibria of a nonzero-
sum game of perfect information can be found easily by
backward induction (similar to Minimax, see Figure 3), the
selection of the best one among them is hard. Moreover, the
basic backward induction procedure is not feasible for large
game trees, so an αβ-like pruning mechanism and other en-
hancements are asked for.

BackInd(h)
1 if (h ∈ E) return (V1(h), V2(h), null)
2 v∗ ← −∞, L← ∅

3 for m ∈ m(h)
4 (·, v1, v2)← BackInd(h + m)
5 if (vp(h) > v∗) L← {(m, v1, v2)}
6 v∗ ← vp(h)

7 if (vp(h) = v∗) L← L ∪ {(m, v1, v2)}
8 select (m, v1, v2) ∈ L
9 return (m, v1, v2)

Figure 3: Backward Induction.

Both tasks can be helped by restricting ourselves to
games with bounded common interest. These are nonzero-
sum games where the value of C is bounded to an interval
[−B/2, B/2] around zero and where B is (much) smaller
than the largest absolute value of S in any pay-off. The
profit of using this bound is that it allows for pruning during
game-tree search since the difference between the value for
player 1 and 2 in each equilibrium is restricted to B. More-
over, the range of values of those equilibria is restricted, as
we will show below. We will call this types of games: BCI



games (Bounded Common Interest games). It can be proven
that the bound B on the common interest puts a bound on
the values that the equilibria can take. For trees of depth d,
the range is v∗ ± B(d − 1) for Player 1 and −v∗ ± Bd for
Player 2. These ranges indicate the ‘damage’ that has to be
feared when selecting a suboptimal equilibrium. The ranges
can also be used to rule out moves that cannot lead to any
equilibrium.

The bound on common interest, B, also allows for prun-
ing in an αβ-like manner. This pruning is based on the fact
that in case of bounded common interest, the difference be-
tween the values for Player 1 and Player 2 is also bounded
at any position in the tree. So, the value for one player can
be used to predict the value for the other player, and bounds
on the value for one player can be used to bound the value
for the other player. In this way, shallow and deep pruning
is possible, but the amount of pruning depends on the value
of B and on the depth of the tree. With every additional
level of depth, the bounds on the values are widened by B,
leading to less and less pruning.

Two-player nonzero-sum games of perfect information
can be used for symmetric opponent modelling. A fun-
damental difference with the standard zero-sum games is
that several equilibria can exist in one game and that select-
ing a good equilibrium is very hard. We proved that when
bounded common interest is assumed, the range of values
that equilibria can take on is also bounded. Furthermore,
BCI games allow pruning during the determination of the
equilibria in a game tree. BCI games offer an alternative to
Minimax-based algorithms and to Opponent-Model Search
in heuristic search, but experimental evidence has to be col-
lected on the practical usability and effectiveness of the ap-
proach. The BCI game also offers an opportunity to apply a
range of search techniques from Artificial Intelligence to a
class of games that is of interest to a broader audience than
the traditional one.

7 Opponent Models with Dynamic Scripting

In this section we present dynamic scripting as a technique
that is designed for the implementation of online adaptive
game AI in commercial games. Dynamic scripting uses a
probabilistic search to update an implicit opponent model
of a human player, to be able to generate game AI that is
appropriate for the player. Those interested in a more de-
tailed exposition of dynamic scripting are referred to [37].

Dynamic scripting is an unsupervised online learning
technique for games. It maintains several rulebases, one for
each class of computer-controlled agents in the game. The
rules in the rulebases are manually designed using domain-
specific knowledge. Every time a new agent of a particular
class is generated, the rules that comprise the script con-
trolling the agent are extracted from the corresponding rule-
base. The probability that a rule is selected for a script is
proportional to the weight value that is associated with the
rule. The rulebase adapts by changing the weight values
to reflect the success or failure rate of the associated rules
in scripts. A priority mechanism can be used to let certain
rules take precedence over other rules. Dynamic scripting

has been demonstrated to be fast, effective, robust, and effi-
cient. The dynamic scripting process is illustrated in Figure
4 in the context of a game.

Figure 4: Dynamic scripting.

The learning mechanism in the dynamic-scripting tech-
nique is inspired by reinforcement learning techniques [38,
32]. ‘Regular’ reinforcement learning techniques, such as
TD-learning, in general need large amounts of trials, and
so are usually not sufficiently efficient to be used in games
[27, 26]. Reinforcement learning is suitable to be applied
to games if the trials occur in a short timespan (as in the
work by [17], where fight movements in a fighting game
are learned). However, for the learning of complete tactics,
such as scripts, a trial consists of observing the performance
of a tactic over a fairly long period of time. Therefore, for
the online learning of tactics in a game, reinforcement learn-
ing will take too long to be particularly suitable. In contrast,
dynamic scripting has been designed to learn from a few
trails only.

In the dynamic-scripting approach, learning proceeds as
follows. Upon completion of an encounter (i.e., a fight),
the weights of the rules employed during the encounter are
adapted depending on their contribution to the outcome.
Rules that lead to success are rewarded with a weight in-
crease, whereas rules that lead to failure are punished with
a weight decrease. The remaining rules are updated so that
the total of all weights in the rulebase remains unchanged.

Weight values are bounded by a range [Wmin,Wmax].
The size of the weight change depends on how well, or how
badly, a computer-controlled agent behaved during an en-
counter with the human player. It is determined by a fitness
function that rates an agent’s performance as a number in
the range [0, 1]. The fitness function is composed of four in-
dicators of playing strength, namely (1) whether the team to
which the agent belongs won or lost, (2) whether the agent
died or survived, (3) the agent’s remaining health, and (4)
the amount of damage done to the agent’s enemies. The
new weight value is calculated as W + MW , where W is
the original weight value, and the weight adjustment MW is
expressed by the following formula:

MW =











−bPmax
b− F

b
c {F < b}

bRmax
F − b

1− b
c {F ≥ b}

(4)



In equation 4, Rmax ∈ N and Pmax ∈ N are the maximum
reward and maximum penalty respectively, F is the agent
fitness, and b ∈ 〈0, 1〉 is the break-even value. At the break-
even point the weights remain unchanged.

In its pure form, dynamic scripting does not try to match
the human player’s skill, but tries to play as strongly as pos-
sible against the human player. That, however, is in conflict
with the goal of commercial games, namely providing en-
tertainment.

A variation on dynamic scripting allows it to adapt to
meet the level of skill of the human player. This variation
uses a fitness scaling technique that ensures that the game
AI enforces an ‘even game’, i.e., a game where the chance
to win is equal for both players. The domain knowledge
stored in the rulebases used by dynamic scripting has been
designed to generate effective behaviour at all times. There-
fore, even when enhanced with a fitness-scaling technique,
against a mediocre player dynamic scripting does not ex-
hibit stupid behaviour interchanged with smart behaviour to
enforce an even game, but it exhibits mediocre behaviour at
all times.

We called the difficulty-scaling technique that was the
most successful ‘top culling’. Top culling works as follows.

In dynamic scripting, during the weight updates, the
maximum weight value Wmax determines the maximum
level of optimisation that a learned strategy can achieve. A
high value for Wmax allows the weights to grow to large
values, so that after a while the most effective rules will al-
most always be selected. This will result in scripts that are
close to a presumed optimum. With top culling activated,
weights are allowed to grow beyond the value of Wmax.
However, rules with weights higher than Wmax will be ex-
cluded from the script generation process. If the value of
Wmax is low, effective rules will be quickly excluded from
scripts, and the behaviour exhibited by the agent will be in-
ferior (though not ineffective).

To determine the value of Wmax that is needed to gen-
erate behaviour at exactly the level of skill of the hu-
man player, top culling automatically changes the value of
Wmax, with the intent to enforce an even game. It aims at
having a low value for Wmax when the computer wins of-
ten, and a high value for Wmax when the computer loses
often. The implementation is as follows. After the com-
puter has won a fight, Wmax is decreased by Wdec per cent
(with a lower limit equal to the initial weight value Winit).
After the computer has lost a fight, Wmax is increased by
Winc per cent.

To evaluate the effect of top culling to dynamic scripting,
we employed a simulation of an encounter of two teams in
a complex computer roleplaying game, closely resembling
the popular BALDUR’S GATE games. We used this envi-
ronment in earlier research to demonstrate the efficiency of
dynamic scripting [37]. Our evaluation experiments aimed
at assessing the performance of a team controlled by the
dynamic scripting technique using top culling, against a
team controlled by static scripts. In the simulation, we pit-
ted the dynamic team against a static team that uses one
of five, manually designed, basic strategies (named ‘offen-

sive’, ‘disabling’, ‘cursing’, ‘defensive’, and ‘novice’), or
one of three composite strategies (named ‘random team’,
‘random agent’ and ‘consecutive’).

Of the eight static team’s strategies the most interest-
ing in the present context is the ‘novice’ strategy. This
strategy resembles the playing style of a novice BALDUR’S
GATE player. While the ‘novice’ strategy normally will not
be defeated by arbitrarily picking rules from the rulebase,
many different strategies exist that can be employed to de-
feat it, which the dynamic team will quickly discover. With-
out difficulty-scaling, the dynamic team’s number of wins
will greatly exceed its losses. Details of the experiment are
found in [36].

For each of the static strategies, we ran 100 tests without
top culling, and 100 tests with top culling. We recorded the
number of wins of the dynamic team for the last 100 en-
counters. Histograms for the tests with the ‘novice’ strategy
are displayed in Figure 5. From the histogram it is imme-
diately clear that top culling ensures that dynamic scripting
plays an even game (the number of wins of the dynamic
player is close to 50 out of 100), with a very low variance.
The same pattern was observed against all the other inves-
tigated tactics. We can therefore conclude that dynamic
scripting, enhanced with top culling, is successful in auto-
matically discovering a well-working implicit model of the
human player. As a perk, this model will be automatically
updated when the human player learns new behaviour.

Figure 5: Histograms of 100 tests of the achieved number
of wins in 100 fights, against the ‘novice’ strategy. The top
graph is without difficulty scaling, the bottom graph with
the application of top culling.



8 Conclusions

For human beings, opponent modelling is an essential and
intriguing part of a player’s match preparation. In this con-
tribution we have discussed how opponent models can be
implemented in computer programs. We investigated the
full collection of games, ranging from classical two-person
games via multi-person games to commercial games. Al-
though opponent modelling is on the research table almost
from the beginning of computer game research, serious im-
plementation started in 1993 and the realization of most
ideas is still in its infancy. There are three successful in-
stances of actual implementation, viz. in Roshambo, the It-
erated Prisoner’s Dilemma, and Poker. Yet we may con-
clude that there is a wealth of techniques that are waiting
for implementation in actual games.

In the contribution we have discussed OM search, PrOM
search, and symmetric opponent modelling for classical
games, and dynamic scripting for commercial games. In
the last application (i.e., dynamic scripting and in particu-
lar in top culling) we see a shift in the goal to be reached.
In classical games opponent modelling is used to raise the
playing strength, in commercial games opponent modelling
has as its main goal raising the entertainment factor. Cur-
rently, it is not clear to what extent both goals (i.e., raising
the playing strength and raising the entertainment factor) are
interchangeable. This is a topic of future research. How-
ever, at this moment it leads us to the conclusion that the
undecided research question has as consequence that com-
mercial games’ publishers are reluctant to incorporate these
techniques since they do not know whether a program that
is outclassing human beings in strength and creativity will
also raise the level of entertainment. From the research per-
formed so far in this new area we may conclude that game
AI (our current research tool for raising entertainment) has
an entertainment factor that is too multifactored to grasp in
reasonable time. Hence, new ideas should be developed that
bring us a new classification of entertainment factors (types
and roles) and will shed new light on the trade-off between
issues on raising the playing strength and raising the enter-
tainment.
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