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KEYWORDS tions of (aspects of) reality (Salen and Zimmer-
man, 2004). As a consequence, modelling the be-
Reinforcement Learning, Fighting Gamesaviour of agents in computer games may capture
SARSA, Q-Learning, Markov Decision Process aspects of behaviour in the real world. Also, the
competitive and interactive nature of games allows
the exploration of policies in a rich dynamic en-
ABSTRACT vironment. In contrast to modelling behaviour in
ﬁpe real world, there are (at least theoretically) two

of finding good policies for a fighting agent in reat advantages enjoyed by a simulation/game ap-

: . roach: i.) full control of the game universe in-
commercial computer game. The learning agentpl ) 9

trained using the SARSA algorithm for on-policffﬁjdmg full observability of the state ii.) repro-

learning of an action-value function represented Qb‘gb'“ty ct)f experimental _Zettlngs int?\ resm:lr:s. ;
linear and neural network function approximators, omputer games provide one ot the rather few

We discuss the selection and construction of fe%Qmains in which artificial intelligence (game Al)

tures, actions, and rewards as well as other desi r%:urrently applied in practice. That said, it is a

choices necessary to integrate the learning p gmmon complaint agamersthat the game Al be-

cess into the game. The learning agent is train qves either 'in bpring ways or s too S”.Of‘g or too
against the built-in Al of the game with differenf’veak to provide mte_restlng and entertaining game
rewards encouraging aggressive or defensive Q%Qy' I|<_| ence, adaptive g_a{ne Atl has tge IT.Ote?tllal
haviour. We show that the learning agent finds if; maxing games more nteresting and utimately

teresting (and partly near optimal) policies in qdnore fun to play. This is particularly true since the

cordance with the reward functions provided. \Afeophistication of other areas of computer games

also discuss the particular challenges arising intﬁ'éCh as 30“’.‘0" graphics, and ph_yglcs hg\(e leapt
ahead of Al in recent years and it is anticipated

application of reinforcement learning to the do- . . .

main of computer games. thgt_ advances in game Al will be a.con5|derable
driving force for the games market in the future.

In fact, games such &reatures Black and White

INTRODUCTION andVirtua Fighter 4were designed around the no-
tion of adaptation and learning.

Computer games constitute a very interesting do-Machine learning can be applied in different

main for the application of machine learning tecltomputer game related scenarios (Rabin, 2002).

nigues. Games can often be considered simutapervised learningan be used to perforroe-

We apply reinforcement learning to the proble



havioural cloningof the player, e.g., to represenREINFORCEMENT LEARN-
him as an avatar at times when he is not availablejigyG AND THE ACTION-VALUE
person for a multi-player game (this includes mitj=

gating latency in network-based games). Howev r,UNCTION
the most appealing application of learning may
a non-player character (NPC) that adaptsréy
inforcement learnindSutton and Barto, 1998) inwe model the agent's decision and learning pro-
response to the opponent's behaviour and the @@zs in the framework of reinforcement learning
vironment during game play (see Stone and S¢&ytton and Barto, 1998) which aims at finding
ton, 2001 for a RoboCup application), or even gth (near) optimal policy for an agent acting in a
agentwho learns by playing against a clone of hiffyrarkov decision process (MDP). An MDP is char-

tf\ﬁarkov Decision Processes

self (see Tesauro, 1995 for a Backgammon appiiterised by a tupleS, A, 7, R) with

cation). Alternatively, such an adapting NPC may
be useful at development time to create built-in Al
adapted to varying conditions, or even to systemat-
ically test built-in Al for exploitable weaknesses.

In this paper we apply the SARSA reinforce-
ment learning algorithm (Rummery and Niranjan,
1994; Sutton and Barto, 1998) together with a
linear action-value function approximator T@o
Feng a state-of-the-art commercial fighting game
released for the Xbox game platform in 2003.
Fighting games constitute a classical genre of com-
puter games in which two opponents carry out a
martial arts fight. Tao Feng provides about 12 dif-
ferent fighting characters with varying styles, com-
bat taking place in 10 different arenas. There are
over 100 different actions (moves and combo at-
tacks) available to the player. The game comprises
350000 lines of code of which 64000 constitute
the built-in Al, which is implemented as a non-
deterministic finite-state machine.

3.

A particular focus of the paper will be a discus-
sion of the challenges that had to be met in order
to adapt standard reinforcement learning to a real-
time computer game and integrate the learning pro-
cess into such a complex code base. The paper is
structured as follows: We give a brief introduc-
tion to reinforcement learning with an emphasis
on learning the action-value function. Then, we
describe and discuss the specific choices made for
applying reinforcement learning to Tao Ferfg-
nally, we present and discuss experimental results.

1. A state spaceS with statess € S. In the

most straight-forward cas§ is a finite set.

In Tao Feng the state can be represented by
nominal features such as physical situation of
a player 6n the groundin the air, knockedl or
spatial features (wall behind, wall to the right
etc.) However, depending on the representa-
tion chosen, real-valued state features such as
distance between players or state of the health
bar are conceivable as well.

2. An action spaceA with actionsa € A. We

will only consider the case ofl being a finite
set. More precisely, we are dealing with ac-
tion spacesA (s) that depend on the current
states. Typical actions in Tao Feng include
punches, kicks, throws, blocks and combo
moves.

An unknown stochastitransition dynamics
T S x Ax § — [0, 1] which gives the
probability of a transition from stateto state
s if actiona € A (s) is taken,

Ta

s ‘= Ps.as=sa=a (%) - 1)

In Tao Feng, the dynamics is given by the
(partially stochastic) state machine that drives
the game. In particular, the dynamics derives
from the combination of the game engine and

the built-in Al of the game.



4. Anaverage reward functio®2, : S x A x age expected reward. In order to make the agent
S — R which assigns a reward to the agemiutonomous in a given environment it must be
if it carries out actiora € A (s) in states and equipped with a (stochastipplicyn : S x A —
ends up in state/, [0, 1] which prescribes the probability of taking

@) actiona € A(s) in states € &, satisfying

.  DacAs T (s,@) = 1forallstates € S. Atypical

The reward is a key element for learningyoal of reinforcement learning is to find a poliey

because it provides the feedback signal @Rat maximises thdiscounted return
which the learning agent can improve. In Tao

o
Feng the reward is typically tied to the health- Ry :=ry 1+ yryo+--- = Z Y¥romer, )
bar, the traditional goal of the game being k=0

to decrease the opponent’s health-bar whilghere 0< y < 1 is called the discount rate. The
maintaining one’s own. infinite sumR, takes finite values foy < 1 (con-

As seen above, a Markov decision process modgfg9ence of geometric senery),: 0 C(?rresp(;nd-
some relevant aspects of the fighting agent’s sit(9 to_a myopic a_gent ar_wd arger values piin-
ation. However, one must keep in mind that twi€2sing the planning horizon.

important aspects are neglected in this model: W& Will focus on methods involving the state-
action value functiorQ” : S x 4 — R for a given

1. The state space used in practice provides opWlicy = defined as
an approximation to the true and complete
state, parts of which remain unobservable _ . o
(see, e.g., Kaelbing et al., 1998 for a dis- Q" (sa) = Ers=sa=alR] (4)

. . [e )
cussion of partially observable MDPs). The _E Z ky
missing state information includes details of riamsaT | Ve

the environment as well as hidden states in tpe - o
) o ts value indicates how beneficial (in terms of fu-
opponent’s built-in Al. However, the prob-

lem is partly overcome by the assumptiotnure expected discounted reward) it is for the agent

of a stochastic transition dynamics which afp take actiora € A (s) when in states. We prefer

o R
lows us to model the resulting uncertainty zfge state-action valug functiq@” : Sx.A — R1to

. the state-value functiod” : S — R, becaus&)™
a noise process.

immediately provides a policy without requiring a
2. The MDP model is ignorant of the adversariahodel of the dynamicg .
aspects of fighting in that the behaviour of the The “optimal” way of usingQ”™ for generating a
opponent is simply captured by the transitiopolicy is by choosing the acticat* with the highest
dynamics7 given in (1). Depending on theassociated)™ value in a given stats. However,
nature of the game Al it might be more apprahis choice is optimal only with respect to exploit-
priate to consider game-theoretic models thiaig current knowledge. In order to be successful
take into account that there is more than omethe long run we need to balanegplorationand
decision-making agent involved (see, e.g., Féxploitation We use thesoft-max or Gibbs policy
lar and Vrieze, 1996 on competitive MDPs) exp(BQ (s, @)
7 (S, a) = . (5
Za’eA(s) exp(ﬂQ (Sv a/))
where the “temperature” parameigr> 0 deter-
The goal of the agent is to devise a sequengenes how peaked the probability distribution is
of actions (a;);2, SO as to maximise his averarounda®.

a —
es ‘= Erjs=sa=as.=s[r] -

Learning in Markov Decision Processes



SARSA and Q-Learning Algorithm 1 SARSA with linear function approx-
. .. imator and game embedding
The SARSA algorithm (Rummery and Niranjan

. : . " Require: Learning rate O< o, SoftMax parame-
1994) is an on-policy temporal difference learning ter 8 > 0 and Discount ratg < 1

algorithm for Markov decision processes (Suttqg _ . . .
. . : t tValidAct ,
and Barto, 1998). It is based on the following up- egqeljtg:ateLilr]ei:tI;; SgetRewar @ge alidActiony

date equation Require: functions submitActiota),

s < a-0QE sl +rQ(s )] SeEeeedion

where 0< « < 1is a learning rate parameter and SelectSoftMaxActio(s’, A, {wa}, B) (see
0 < y < listhe discount factor for future rewards. Equation (5))

The update equation states that for a given statelnitialiseVa : wsz <— O and seta < undefined,
action pair(s,a) € SxA the new state-action for every frame in turro

value is obtained by adding a small (depending on S < getStateVecta)

«) correction to the old value. The correction is A < getValidActions)

the difference between the immediate rewaid- a’ < selectSoftMaxActiors, A, {wa} , B)
creased by the discounted future state-action value SubmitActiona’)

yQ (s, &) and the old state-action val@(s, a). if getExecutedActio@) # a’ then
SARSA (s, a,r1, s, @) is an on-policy learning al- Continue

gorithm in the sense that it estimates the value of end if _
the same policy that it is using for control. Q-  if a7 undefinedhen

Learning (Watkins and Dayan, 1992) constitutes ~ Wa <= Wa +a (r +yW S —w;s)s
an off-policy alternative to SARSA and replaces r < getRewargs, s)
the termy Q (s', &) by y maxyeas) Q (8, @) in s<s,a<d

the above equation. This allows for separating the end if
policy being evaluated from the policy used for end for
control.
The update equation as given assumes a tabular . - :
representation of th® function. In practice, even29ainst the built-in Al or against a human player,

for small problems such a representation is unsu"’l‘tqCI develops fighting skills corresponding to the

able for learning because an unrealistic amountrglward function provided.

data would be necessary to estimate all the inde-

pendent table entries reliably. As a consequenCéoice of Learning Algorithm
we decided to represent the state-action value func-

tion Q (s, ) with different function approximators The choice of the learning algorithm was mostly
(see Sutton and Barto, 1998). determined by the design of Tao Feng. Although

we were in possession of the full code base of the
game, in practice, our ability to control the player
REINFORCEMENT LEARNING 35 well as to observe the environment was severely
IN TAO FENG limited by the structure of the code and the concur-
rency of processes. Hence, at any point in time we
The goal of our project was to develop a learfknow neither the exact state nor the exact transi-
ing fighter that starts at a level of ignorance contion dynamics (1) and reward function (2) for Tao
parable to a human beginner, plays Tao Feng eitli@ng. The application of methods based on the




state value function would require us to learn a sepock25 that holds up the block for 25 frames
arate model of the Tao Feng dynamics, thus introerresponding to half a second.
ducing a layer of complication.

Although we originally intended to apply Q-rewards In order to assess rewards it is neces-
Learning (Watkins and Dayan, 1992) it turnedyry to define the end of a round. Since in Tao
out to be very difficult to reliably determine thq;eng the two opponents do not act in sync (multi-
set A(s) of available actions for the evaluatiofnreading) there is no clear definition of a round.
of y MaXveas) Q _(5/’ a). The reason for this\ye assign reward to the agent only when the sub-
complication lies in the graphical animation Syssequent action has been successfully selected thus
tem of Tao Feng, which rejects certain actiofggicating completion of the previous one. As a
depending on the animation state. As a coNggnsequence, rounds have different duratiois
quence, it is only possible to submit a given agmeasured in seconds) over which the reward-per-
tiona (using submitActiot&)) and to check (Using aetionr is spread out. We take this into account by

getExecutedActiof)) which action has actually considering the rate of rewardAt in the learning.
been performed. We chose the SARSA algorithm

(Rummery and Niranjan, 1994) because it does not .
require knowledge oA\ (s). Implementation Issues

The integration of the learning algorithms into the
code base was hindered by the complex multi-
threaded and animation centred architecture of the
Features There are essentially three groups slystem. Systematic monitoring of the learning pro-
useful features, environment-related, opponeness was only possible because we devised an on-
related and agent-related features. Environmelite monitoring tool that continuously sent data
related features such as “blocked behind” aseich as rewards, actions and parameters from the
designed to facilitate navigation of the arenXbox via the network to a PC, where the data was
Opponent-related features such as “opponerasalysed and visualised in Matlab. Although the
physical state” and “distance to opponent” are dieaplementation as such is not planned to be pro-
signed to make the agent react to the opponent. @lictised, it served as a test-bed for a library of
nally, features related to the learning fighters themeusable modules including function approxima-
selves such as “my previous action” and “my phy#ers (look-up tables, linear function approximation,
ical state” may serve to give the agent’s actiomsd neural network) and learning algorithms (Q-
continuity and consistency. Learning and SARSA), which are suitable for use
in future Xbox games.

Choice of Features, Actions, and Rewards

Actions While the game provides over 100

different actions, we focused on a number EXPERIMENTS

atomic actions such as simple punches, kicks

and throws. In addition, we constructed met&¥e performed experiments in order to see if we
actions that are composed of repeated atomic aould learn a good policy for fighting against the
tions such adlock , stepleft , stepright built-in Al. We employed the SARSA learning al-
and lungeback . This was necessary becausgorithm with function approximation as detailed in
some of these actions have a very short duratidfgorithm 1. Throughout we used the parameter
and their execution in isolation has almost no efettingse = 0.01 andy = 0.8. We used two
fect. As an example, we constructed a meta actitypes of reward functions depending on the change
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Figure 1. Average rewards and frequency of sBigure 2. Average rewards and frequency of se-
lected action classes for a Gibbs policy with= 2 lected action classes for a Gibbs policy with= 1

in the aggressive setting usitigear function ap- in the aggressive setting usifigear function ap-
proximators. The gray band indicates performanpeoximators. The gray band indicates performance
of a uniformly random policy (meatt 2 standard of a uniformly random policy (meatt 2 standard
deviations) deviations)

in health of both combatanta,Hseir and A Hopp. In e Aggressive: throw ,  kicktrail

order to encourage an aggressive fighting style we kicklead , punchlead , punchtrail
definedaggressive:: 0.7 X A Hopp— 03 X A HSG”' In

’

contrast, we also defined a peace-encouraging ree Defensive: block10 ,  block2s
ward function gikigo := —0.5 x (A Hopp+ A Hse|f). block50 Stepleft , Stepnght ,
In order to represent the game statine learn- lungeback

ing agent used the following 15 features, which
were grouped into a feature vecte R3x {0, 1}*2
suitable for input to the function approximators
used:

e Neutral: getup , run10 , run25 , run50 ,
crouch10 , crouch25 , crouch50 .

In a first set of experiments we consider the re-

¢ Distance to opponent coded in terms of thré’@rq functionr aggressiveand use linear function ap-
real-valued features based on unit-varianfgoximators for theQ-function. The results for

Gaussians placed at 1, 3and 5 meters, 8 = 2 andp = 1 are shown in Figure 1 and
2. In both cases, the reward rate increases with
e 4 binary features coding which of the foueonsiderable fluctuations by &®and 11, respec-
sides of the agents are blocked, tively. Starting from the random policy, which
e 6 binary features coding the previous actiolﬁSes approxmately one reward unlj[ per second,
the learning agent achieves a reduction of the loss
of the opponent,

to —0.2 sec! for § = 2 and even a net gain

e 2 binary features coding the physical sitiaf reward of 01 sec for § = 1. In the case

ation of the opponent playein( air and 8 = 2 the average reward stagnates at a sub-
knocked ). optimal level presumably being stuck in a local

optimum. From the action frequencies it can be
The learning agent was equipped with three classe®n that despite the aggressive reward function,
of actions: the agent prefers defensive actions and lacks the
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Figure 3. Average rewards and frequency of sBigure 4. Average rewards and frequency of se-
lected action classes for a Gibbs policy with= 2 lected action classes for a Gibbs policy with= 2

in the aggressive setting usingnaural network in the Aikido setting using dinear function ap-
function approximator with 3 hidden units proximator.

degree of exploration necessary for discovering theln Summary, our experimental results show that
aggressive moves required for winning. In th@ood policies can be learnt for varying reward
more explorative setting ¢f = 1, the agent learnsfunctions. Some of the resulting fighting agents
more slowly due to increased exploration but evefliSPlayed interesting behaviour, others exposed
tually discovers the usefulness of aggressive J¢eaknesses of game engine and the built-in Al:

tions around episode 30 000 which results in a wihley found simple repetitive patterns of actions
ning policy. that exploit gaps in the rule-based built-in Al, such

In a second set of experiments we replaced iR the optimal policy fOP”d in Aikido mode (see
linear function approximator with a feed—forwart!l:'gure 4)- More exploration of the p_arameter space
neural network with 3 hidden units. The resul nd the feature set as well as the incorporation of
are shown in Figure 3. The learning agent finds?® eligibility trace in the SAR_SA update (Su_ttc_)n
policy similar in performance to the linear functior"fmoI Barto, 1998) may further improve the policies

approximator at the same SoftMax paramegtes found.

2. Interestingly, the learning curve is smoother and

the action selection appears to be less exploratil@ONCLUSIONS

However, we did not fully explore the parameter

space in order to avoid such local optimal. This work demonstrates that reinforcement learn-
In a third set of experiments, the reward fundéng can be applied successfully to the task of learn-

tion raggressiveWas replaced with,iigo @and we re- ing behaviour of agents in fighting games with the

turned to linear function approximation. As can beaveat that the implementation requires consider-

seen from Figure 4, the learning eventually resulible insight into the mechanics of the game engine.

in an optimal policy (zero reward, i.e., no punish- As mentioned earlier, our current approach ne-

ment). Note that we only depicted thkassof ac- glects hidden state information and adversarial as-

tions selected by the learning agent. For exampjescts of the game. One idea to tackle this prob-

in this particular case, a successful behaviour wiasn is to separately model the game engine and

achieved by an ingenious combination of side stefre opponent. Based on these two models, stan-

ping and blocking. dard planning approaches (e.g., min-max search,



beam search) can be employed that take into &¢atkins, C. J. C. H. and P. Dayan (1992)
count that there is more than one decision makeMachine Learning 8279-292.

in the game. Also an important aspect of human

fighting game play involves timing which is hardly

captured by the MDP model and requires explicit

representation of time.
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