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ABSTRACT

We apply reinforcement learning to the problem
of finding good policies for a fighting agent in a
commercial computer game. The learning agent is
trained using the SARSA algorithm for on-policy
learning of an action-value function represented by
linear and neural network function approximators.
We discuss the selection and construction of fea-
tures, actions, and rewards as well as other design
choices necessary to integrate the learning pro-
cess into the game. The learning agent is trained
against the built-in AI of the game with different
rewards encouraging aggressive or defensive be-
haviour. We show that the learning agent finds in-
teresting (and partly near optimal) policies in ac-
cordance with the reward functions provided. We
also discuss the particular challenges arising in the
application of reinforcement learning to the do-
main of computer games.

INTRODUCTION

Computer games constitute a very interesting do-
main for the application of machine learning tech-
niques. Games can often be considered simula-

tions of (aspects of) reality (Salen and Zimmer-
man, 2004). As a consequence, modelling the be-
haviour of agents in computer games may capture
aspects of behaviour in the real world. Also, the
competitive and interactive nature of games allows
the exploration of policies in a rich dynamic en-
vironment. In contrast to modelling behaviour in
the real world, there are (at least theoretically) two
great advantages enjoyed by a simulation/game ap-
proach: i.) full control of the game universe in-
cluding full observability of the state ii.) repro-
ducibility of experimental settings and results.

Computer games provide one of the rather few
domains in which artificial intelligence (game AI)
is currently applied in practice. That said, it is a
common complaint ofgamersthat the game AI be-
haves either in boring ways or is too strong or too
weak to provide interesting and entertaining game
play. Hence, adaptive game AI has the potential
of making games more interesting and ultimately
more fun to play. This is particularly true since the
sophistication of other areas of computer games
such as sound, graphics, and physics have leapt
ahead of AI in recent years and it is anticipated
that advances in game AI will be a considerable
driving force for the games market in the future.
In fact, games such asCreatures, Black and White
andVirtua Fighter 4were designed around the no-
tion of adaptation and learning.

Machine learning can be applied in different
computer game related scenarios (Rabin, 2002).
Supervised learningcan be used to performbe-



havioural cloningof the player, e.g., to represent
him as an avatar at times when he is not available in
person for a multi-player game (this includes miti-
gating latency in network-based games). However,
the most appealing application of learning may be
a non-player character (NPC) that adapts byre-
inforcement learning(Sutton and Barto, 1998) in
response to the opponent’s behaviour and the en-
vironment during game play (see Stone and Sut-
ton, 2001 for a RoboCup application), or even an
agent who learns by playing against a clone of him-
self (see Tesauro, 1995 for a Backgammon appli-
cation). Alternatively, such an adapting NPC may
be useful at development time to create built-in AI
adapted to varying conditions, or even to systemat-
ically test built-in AI for exploitable weaknesses.

In this paper we apply the SARSA reinforce-
ment learning algorithm (Rummery and Niranjan,
1994; Sutton and Barto, 1998) together with a
linear action-value function approximator toTao
Feng, a state-of-the-art commercial fighting game
released for the Xbox game platform in 2003.
Fighting games constitute a classical genre of com-
puter games in which two opponents carry out a
martial arts fight. Tao Feng provides about 12 dif-
ferent fighting characters with varying styles, com-
bat taking place in 10 different arenas. There are
over 100 different actions (moves and combo at-
tacks) available to the player. The game comprises
350 000 lines of code of which 64 000 constitute
the built-in AI, which is implemented as a non-
deterministic finite-state machine.

A particular focus of the paper will be a discus-
sion of the challenges that had to be met in order
to adapt standard reinforcement learning to a real-
time computer game and integrate the learning pro-
cess into such a complex code base. The paper is
structured as follows: We give a brief introduc-
tion to reinforcement learning with an emphasis
on learning the action-value function. Then, we
describe and discuss the specific choices made for
applying reinforcement learning to Tao Feng. Fi-
nally, we present and discuss experimental results.

REINFORCEMENT LEARN-
ING AND THE ACTION-VALUE
FUNCTION

Markov Decision Processes

We model the agent’s decision and learning pro-
cess in the framework of reinforcement learning
(Sutton and Barto, 1998) which aims at finding
an (near) optimal policy for an agent acting in a
Markov decision process (MDP). An MDP is char-
acterised by a tuple(S,A, T ,R) with

1. A state spaceS with statess ∈ S. In the
most straight-forward caseS is a finite set.
In Tao Feng the state can be represented by
nominal features such as physical situation of
a player (on the ground, in the air, knocked) or
spatial features (wall behind, wall to the right
etc.) However, depending on the representa-
tion chosen, real-valued state features such as
distance between players or state of the health
bar are conceivable as well.

2. An action spaceA with actionsa ∈ A. We
will only consider the case ofA being a finite
set. More precisely, we are dealing with ac-
tion spacesA (s) that depend on the current
states. Typical actions in Tao Feng include
punches, kicks, throws, blocks and combo
moves.

3. An unknown stochastictransition dynamics
T a

s,s′ : S × A × S → [0,1] which gives the
probability of a transition from states to state
s′ if actiona ∈ A (s) is taken,

T a
s,s′ := Pst+1|st=s,at=a

(
s′
)
. (1)

In Tao Feng, the dynamics is given by the
(partially stochastic) state machine that drives
the game. In particular, the dynamics derives
from the combination of the game engine and
the built-in AI of the game.



4. An average reward functionRa
s,s′ : S ×A ×

S → R which assigns a reward to the agent
if it carries out actiona ∈ A (s) in states and
ends up in states′,

Ra
s,s′ := Er t+1|st=s,at=a,st+1=s′ [r ] . (2)

The reward is a key element for learning,
because it provides the feedback signal on
which the learning agent can improve. In Tao
Feng the reward is typically tied to the health-
bar, the traditional goal of the game being
to decrease the opponent’s health-bar while
maintaining one’s own.

As seen above, a Markov decision process models
some relevant aspects of the fighting agent’s situ-
ation. However, one must keep in mind that two
important aspects are neglected in this model:

1. The state space used in practice provides only
an approximation to the true and complete
state, parts of which remain unobservable
(see, e.g., Kaelbing et al., 1998 for a dis-
cussion of partially observable MDPs). The
missing state information includes details of
the environment as well as hidden states in the
opponent’s built-in AI. However, the prob-
lem is partly overcome by the assumption
of a stochastic transition dynamics which al-
lows us to model the resulting uncertainty as
a noise process.

2. The MDP model is ignorant of the adversarial
aspects of fighting in that the behaviour of the
opponent is simply captured by the transition
dynamicsT given in (1). Depending on the
nature of the game AI it might be more appro-
priate to consider game-theoretic models that
take into account that there is more than one
decision-making agent involved (see, e.g., Fi-
lar and Vrieze, 1996 on competitive MDPs)

Learning in Markov Decision Processes

The goal of the agent is to devise a sequence
of actions (at)

∞
t=0 so as to maximise his aver-

age expected reward. In order to make the agent
autonomous in a given environment it must be
equipped with a (stochastic)policyπ : S × A →
[0,1] which prescribes the probability of taking
action a ∈ A (s) in state s ∈ S, satisfying∑

a∈A(s) π (s,a) = 1 for all statess ∈ S. A typical
goal of reinforcement learning is to find a policyπ
that maximises thediscounted return

Rt := r t+1+ γ r t+2+ · · · =
∞∑

k=0

γ kr t+k+1 , (3)

where 0≤ γ < 1 is called the discount rate. The
infinite sumRt takes finite values forγ < 1 (con-
vergence of geometric series),γ = 0 correspond-
ing to a “myopic” agent and larger values ofγ in-
creasing the planning horizon.

We will focus on methods involving the state-
action value functionQπ : S×A→ R for a given
policy π defined as

Qπ (s,a) := Eπ |st=s,at=a [Rt ] (4)

= Eπ |st=s,at=a

[ ∞∑

k=0

γ kr t+k+1

]
.

Its value indicates how beneficial (in terms of fu-
ture expected discounted reward) it is for the agent
to take actiona ∈ A (s) when in states. We prefer
the state-action value functionQπ : S×A→ R to
the state-value functionVπ : S → R, becauseQπ

immediately provides a policy without requiring a
model of the dynamicsT .

The “optimal” way of usingQπ for generating a
policy is by choosing the actiona∗ with the highest
associatedQπ value in a given states. However,
this choice is optimal only with respect to exploit-
ing current knowledge. In order to be successful
in the long run we need to balanceexplorationand
exploitation. We use thesoft-max or Gibbs policy

π (s,a) := exp(βQ (s,a))∑
a′∈A(s) exp(βQ (s,a′))

, (5)

where the “temperature” parameterβ ≥ 0 deter-
mines how peaked the probability distribution is
arounda∗.



SARSA and Q-Learning

The SARSA algorithm (Rummery and Niranjan,
1994) is an on-policy temporal difference learning
algorithm for Markov decision processes (Sutton
and Barto, 1998). It is based on the following up-
date equation

Q (s,a)← (1− α) Q (s,a)+α [r + γQ
(
s′,a′

)]
,

where 0≤ α ≤ 1 is a learning rate parameter and
0≤ γ < 1 is the discount factor for future rewards.
The update equation states that for a given state-
action pair (s,a) ∈ S×A the new state-action
value is obtained by adding a small (depending on
α) correction to the old value. The correction is
the difference between the immediate rewardr in-
creased by the discounted future state-action value
γQ

(
s′,a′

)
and the old state-action valueQ (s,a).

SARSA (s,a, r, s′,a′) is an on-policy learning al-
gorithm in the sense that it estimates the value of
the same policy that it is using for control. Q-
Learning (Watkins and Dayan, 1992) constitutes
an off-policy alternative to SARSA and replaces
the termγQ

(
s′,a′

)
by γ maxa′∈A(s′) Q

(
s′,a′

)
in

the above equation. This allows for separating the
policy being evaluated from the policy used for
control.

The update equation as given assumes a tabular
representation of theQ function. In practice, even
for small problems such a representation is unsuit-
able for learning because an unrealistic amount of
data would be necessary to estimate all the inde-
pendent table entries reliably. As a consequence
we decided to represent the state-action value func-
tion Q (s,a) with different function approximators
(see Sutton and Barto, 1998).

REINFORCEMENT LEARNING
IN TAO FENG

The goal of our project was to develop a learn-
ing fighter that starts at a level of ignorance com-
parable to a human beginner, plays Tao Feng either

Algorithm 1 SARSA with linear function approx-
imator and game embedding
Require: Learning rate 0< α, SoftMax parame-

terβ > 0 and Discount rateγ < 1
Require: functions getValidActions(),

getStateVector(), getReward()
Require: functions submitAction(a),

getExecutedAction(a′)
Require: function

selectSoftMaxAction(s′,A, {wa} , β) (see
Equation (5))
Initialise∀ã : wã← 0 and seta← undefined,
for every frame in turndo

s′← getStateVector()
A← getValidActions()
a′← selectSoftMaxAction(s′,A, {wa} , β)
submitAction(a′)
if getExecutedAction(a′) 6= a′ then

Continue
end if
if a 6= undefinedthen

wa← wa + α
(
r + γw>a′s

′ − w>a s
)

s
r ← getReward(s, s′)
s← s′, a← a′

end if
end for

against the built-in AI or against a human player,
and develops fighting skills corresponding to the
reward function provided.

Choice of Learning Algorithm

The choice of the learning algorithm was mostly
determined by the design of Tao Feng. Although
we were in possession of the full code base of the
game, in practice, our ability to control the player
as well as to observe the environment was severely
limited by the structure of the code and the concur-
rency of processes. Hence, at any point in time we
know neither the exact state nor the exact transi-
tion dynamics (1) and reward function (2) for Tao
Feng. The application of methods based on the



state value function would require us to learn a sep-
arate model of the Tao Feng dynamics, thus intro-
ducing a layer of complication.

Although we originally intended to apply Q-
Learning (Watkins and Dayan, 1992) it turned
out to be very difficult to reliably determine the
set A (s) of available actions for the evaluation
of γ maxa′∈A(s′) Q

(
s′,a′

)
. The reason for this

complication lies in the graphical animation sys-
tem of Tao Feng, which rejects certain actions
depending on the animation state. As a conse-
quence, it is only possible to submit a given ac-
tion a (using submitAction(a)) and to check (using
getExecutedAction(a)) which action has actually
been performed. We chose the SARSA algorithm
(Rummery and Niranjan, 1994) because it does not
require knowledge ofA (s).

Choice of Features, Actions, and Rewards

Features There are essentially three groups of
useful features, environment-related, opponent-
related and agent-related features. Environment-
related features such as “blocked behind” are
designed to facilitate navigation of the arena.
Opponent-related features such as “opponent’s
physical state” and “distance to opponent” are de-
signed to make the agent react to the opponent. Fi-
nally, features related to the learning fighters them-
selves such as “my previous action” and “my phys-
ical state” may serve to give the agent’s actions
continuity and consistency.

Actions While the game provides over 100
different actions, we focused on a number of
atomic actions such as simple punches, kicks
and throws. In addition, we constructed meta-
actions that are composed of repeated atomic ac-
tions such asblock , stepleft , stepright
and lungeback . This was necessary because
some of these actions have a very short duration
and their execution in isolation has almost no ef-
fect. As an example, we constructed a meta action

block25 that holds up the block for 25 frames
corresponding to half a second.

Rewards In order to assess rewards it is neces-
sary to define the end of a round. Since in Tao
Feng the two opponents do not act in sync (multi-
threading) there is no clear definition of a round.
We assign reward to the agent only when the sub-
sequent action has been successfully selected thus
indicating completion of the previous one. As a
consequence, rounds have different durations1t
(measured in seconds) over which the reward-per-
actionr is spread out. We take this into account by
considering the rate of rewardr/1t in the learning.

Implementation Issues

The integration of the learning algorithms into the
code base was hindered by the complex multi-
threaded and animation centred architecture of the
system. Systematic monitoring of the learning pro-
cess was only possible because we devised an on-
line monitoring tool that continuously sent data
such as rewards, actions and parameters from the
Xbox via the network to a PC, where the data was
analysed and visualised in Matlab. Although the
implementation as such is not planned to be pro-
ductised, it served as a test-bed for a library of
reusable modules including function approxima-
tors (look-up tables, linear function approximation,
and neural network) and learning algorithms (Q-
Learning and SARSA), which are suitable for use
in future Xbox games.

EXPERIMENTS

We performed experiments in order to see if we
could learn a good policy for fighting against the
built-in AI. We employed the SARSA learning al-
gorithm with function approximation as detailed in
Algorithm 1. Throughout we used the parameter
settingsα = 0.01 andγ = 0.8. We used two
types of reward functions depending on the change
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Figure 1: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 2
in the aggressive setting usinglinear function ap-
proximators. The gray band indicates performance
of a uniformly random policy (mean± 2 standard
deviations)

in health of both combatants,1Hself and1Hopp. In
order to encourage an aggressive fighting style we
definedraggressive:= 0.7×1Hopp−0.3×1Hself. In
contrast, we also defined a peace-encouraging re-
ward functionraikido := −0.5×(1Hopp+1Hself

)
.

In order to represent the game states the learn-
ing agent used the following 15 features, which
were grouped into a feature vectors∈ R3×{0,1}12

suitable for input to the function approximators
used:

• Distance to opponent coded in terms of three
real-valued features based on unit-variance
Gaussians placed at 1, 3 and 5 meters,

• 4 binary features coding which of the four
sides of the agents are blocked,

• 6 binary features coding the previous action
of the opponent,

• 2 binary features coding the physical situ-
ation of the opponent player (in air and
knocked ).

The learning agent was equipped with three classes
of actions:
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Figure 2: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 1
in the aggressive setting usinglinear function ap-
proximators. The gray band indicates performance
of a uniformly random policy (mean± 2 standard
deviations)

• Aggressive: throw , kicktrail ,
kicklead , punchlead , punchtrail .

• Defensive: block10 , block25 ,
block50 , stepleft , stepright ,
lungeback .

• Neutral: getup , run10 , run25 , run50 ,
crouch10 , crouch25 , crouch50 .

In a first set of experiments we consider the re-
ward functionraggressiveand use linear function ap-
proximators for theQ-function. The results for
β = 2 andβ = 1 are shown in Figure 1 and
2. In both cases, the reward rate increases with
considerable fluctuations by 0.8 and 1.1, respec-
tively. Starting from the random policy, which
loses approximately one reward unit per second,
the learning agent achieves a reduction of the loss
to −0.2 sec−1 for β = 2 and even a net gain
of reward of 0.1 sec−1 for β = 1. In the case
β = 2 the average reward stagnates at a sub-
optimal level presumably being stuck in a local
optimum. From the action frequencies it can be
seen that despite the aggressive reward function,
the agent prefers defensive actions and lacks the
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Figure 3: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 2
in the aggressive setting using aneural network
function approximator with 3 hidden units

degree of exploration necessary for discovering the
aggressive moves required for winning. In the
more explorative setting ofβ = 1, the agent learns
more slowly due to increased exploration but even-
tually discovers the usefulness of aggressive ac-
tions around episode 30 000 which results in a win-
ning policy.

In a second set of experiments we replaced the
linear function approximator with a feed-forward
neural network with 3 hidden units. The results
are shown in Figure 3. The learning agent finds a
policy similar in performance to the linear function
approximator at the same SoftMax parameterβ =
2. Interestingly, the learning curve is smoother and
the action selection appears to be less explorative.
However, we did not fully explore the parameter
space in order to avoid such local optimal.

In a third set of experiments, the reward func-
tion raggressivewas replaced withraikido and we re-
turned to linear function approximation. As can be
seen from Figure 4, the learning eventually results
in an optimal policy (zero reward, i.e., no punish-
ment). Note that we only depicted theclassof ac-
tions selected by the learning agent. For example,
in this particular case, a successful behaviour was
achieved by an ingenious combination of side step-
ping and blocking.
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Figure 4: Average rewards and frequency of se-
lected action classes for a Gibbs policy withβ = 2
in the Aikido setting using alinear function ap-
proximator.

In summary, our experimental results show that
good policies can be learnt for varying reward
functions. Some of the resulting fighting agents
displayed interesting behaviour, others exposed
weaknesses of game engine and the built-in AI:
They found simple repetitive patterns of actions
that exploit gaps in the rule-based built-in AI, such
as the optimal policy found in Aikido mode (see
Figure 4). More exploration of the parameter space
and the feature set as well as the incorporation of
an eligibility trace in the SARSA update (Sutton
and Barto, 1998) may further improve the policies
found.

CONCLUSIONS

This work demonstrates that reinforcement learn-
ing can be applied successfully to the task of learn-
ing behaviour of agents in fighting games with the
caveat that the implementation requires consider-
able insight into the mechanics of the game engine.

As mentioned earlier, our current approach ne-
glects hidden state information and adversarial as-
pects of the game. One idea to tackle this prob-
lem is to separately model the game engine and
the opponent. Based on these two models, stan-
dard planning approaches (e.g., min-max search,



beam search) can be employed that take into ac-
count that there is more than one decision maker
in the game. Also an important aspect of human
fighting game play involves timing which is hardly
captured by the MDP model and requires explicit
representation of time.
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