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Abstract 

Game AI is the decision-making process of computer-controlled 

opponents in computer games. Adaptive game AI can improve 

the entertainment value of computer games. It allows computer-

controlled opponents to automatically fix weaknesses in the game 

AI and respond to changes in human-player tactics. Dynamic 

scripting is a recently developed approach for adaptive game AI 

that learns which tactics (i.e., action sequences) an opponent 

should select to play effectively against the human player. In 

previous work, these tactics were manually generated. We 

introduce AKADS; it uses an evolutionary algorithm to 

automatically generate such tactics. Our experiments show that it 

improves dynamic scripting’s performance on a real-time strategy 

(RTS) game. Therefore, we conclude that high-quality domain 

knowledge (i.e., tactics) can be automatically generated for strong 

adaptive AI opponents in RTS games. This reduces the time and 

effort required by game developers to create intelligent game AI, 

thus freeing them to focus on other important topics (e.g., 

storytelling, graphics). 

1. Introduction   

Today’s gaming environments are becoming increasingly 
realistic, especially in terms of the graphical presentation 
of the virtual world. To further increase realism, characters 
‘living’ inside these virtual worlds must be able to reason 
effectively (Laird & van Lent 2000). Both game industry 
practitioners (Rabin 2004) and academics (Laird & van 
Lent 2000) predicted an increasing importance of artificial 
intelligence (AI) in computer games. This game AI is the 
decision-making process of computer controlled 
opponents. High-quality game AI will increase the game 
playing challenge (Nayerek 2004) and is a potential selling 
point for a game. However, the development time for game 
AI is typically short; most game companies assign graphics 
and storytelling the highest priorities (for marketing 
reasons) and do not implement the game AI until the end 
of the development process (Nayerek 2004), which 
complicates designing and testing strong game AI. Thus, 
even in state-of-the-art games, game AI is generally of 
inferior quality (Schaeffer 2001).  
    Adaptive game AI, which concerns methods for 
adapting the behavior of computer-controlled opponents, 
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can potentially increase the quality of game AI. Dynamic 
scripting is a recently developed technique for 
implementing adaptive AI (Spronck et al. 2004).  We use 
dynamic scripting to learn a state-based decision policy for 
the complex real-time strategy (RTS) game WARGUS. 
 Dynamic scripting uses extensive domain knowledge, 
namely one knowledge base (a set of action sequences, or 
tactics) per state. Manually designing these knowledge 
bases can take a long time, which game developers 
generally don’t have, and risks analysis and encoding 
errors. We introduce a novel methodology, implemented in 
AKADS (Automatic Knowledge Acquisition for Dynamic 
Scripting), that uses an evolutionary algorithm to 
automatically generate tactics used by dynamic scripting. 
Our empirical results show that AKADS can successfully 
adapt to several static opponent strategies. 
 We describe related work in the next section. We then 
introduce RTS games and the game environment selected 
for the experiments. Next, we discuss our RTS 
implementation for dynamic scripting, and AKADS’ 
method for automatically generating strong adaptive AI 
opponents in a RTS game. Finally, we describe our 
experimental results, and conclude with future work. 

2. Related Work 

AI researchers have shown that successful adaptive game 
AI is feasible (Demasi and Cruz 2002, Spronck et al. 
2004). Successful adaptive game AI is invariably based on 
access to and use of the game’s domain knowledge. 

Ponsen and Spronck (2004) used offline evolutionary 
learning to generate high-performing opponents, and 
manually extracted tactics from them to improve the 
performance of adaptive game AI. In this paper, we 
describe an algorithm that automatically generates this 
high-quality domain knowledge. 
     Few attempts have been made to automatically create 
game AI. For example, Madeira et al. (2004) used 
reinforcement learning to generate strong AI opponents. 
However, their approach produces a static opponent. In 
contrast, dynamic scripting adapts to a player’s behavior. 
     To the best of our knowledge, most empirical studies 
with RTS games address only a subset of the game AI. For 
example, Madeira et al.’s (2004) learning mechanism 
focuses on high-level, strategic decisions and lets the 
default AI execute these orders. Guestrin et al. (2003) 
instead focus on low-level decision-making, controlling 



only a small number of soldiers. Unlike these experiments, 
we do not constrain the number of units involved, and 
focus on both strategic decisions (high-level decisions that 
determine the general behavior of a population as a whole) 
and tactical decisions (intermediate-level decisions that 
determine the behavior of units in local situations). 

3. Real-Time Strategy Games 

RTS is a strategy game genre that usually focuses on 
military combat. RTS games such as WARCRAFT and 
COMMAND & CONQUER require players to control armies 
(consisting of different unit types) and defeat all opposing 
forces in real-time. In most RTS games, winning requires 
efficiently collecting and managing resources, and 
appropriately distributing them over the various game 
elements. Typical RTS game actions include constructing 
buildings, researching new technologies, and combat.  
 Both human and computer players can use these game 
actions to form their strategy and tactics. Typically, RTS 
games require competing against multiple game AI 
opponents encoded as scripts, which are lists of game 
actions that are executed sequentially (Tozour 2002). A 
complete script represents a strategy, while a sub-list of 
game actions (i.e., one or more atomic game actions) in a 
script represents a tactic (e.g., constructing a blacksmith 
and acquiring all related technologies for that building). 
 For our experiments, we selected the RTS game 
WARGUS, whose underlying engine is STRATAGUS − an 
open-source engine for building RTS games. WARGUS 

(Figure 1) is a clone of the popular game WARCRAFT II.  

4. Dynamic Scripting in WARGUS 

Spronck et al. (2004) introduced a novel technique, called 
dynamic scripting, that can generate AI opponent scripts 
which can adapt to a player’s behavior. Dynamic scripting 
in WARGUS generates scripts on the fly by selecting state-
specific tactics from a knowledge base, where these tactics 
were created using domain-specific knowledge. Each tactic 
in a state-specific knowledge base is assigned a weight, 

and the probability of selecting a tactic for a script is an 
increasing function of its weight value. After each 
opponent encounter, the weights of tactics employed 
during gameplay are increased when their contribution 
yields positive outcomes, and are decreased otherwise. The 
size of the weight change is determined by a weight-update 
function. To keep the sum of all weight values in a 
knowledge base constant, weight changes are executed 
through a redistribution of all weights in the knowledge 
base. Through punishments and rewards, dynamic scripting 
gradually adapts to the player’s behavior. Spronck et al. 
(2004) detail dynamic scripting, which is an effective, 
robust, and efficient method for generating adaptive game 
AI that has been used for computer role playing (Spronck 
et al. 2004) and RTS games (Ponsen & Spronck 2004). 

4.1 Game States and their Knowledge Bases 

Typically, RTS game players start with few game actions 
available to them. As players progress up the technology 
ladder, they acquire a larger arsenal of weapons, units, and 
buildings. The tactics that can be used in RTS games 
mainly depend on the availability of different unit types 
and technologies. When applying dynamic scripting to 
RTS games, we must constrain the adaptive AI’s tactics 
selection process. Therefore, we divided the game into a 
small number of game states. Each state is paired with a 
unique knowledge base of tactics, and dynamic scripting 
can select these tactics when the game is in that state. 
Dynamic scripting starts by selecting tactics for the first 
state. When the execution of a selected tactic spawns a 
state change, a tactic is then selected for the new state.  
 We distinguish WARGUS game states according to the 
types of available buildings, which in turn determine the 
unit types that can be built and the technologies that can be 
researched. Consequently, state changes are spawned by 
executing tactics that create new buildings. For example, a 
player in the first state has a town hall and a barracks. The 
next building choices are a lumber mill, a blacksmith, and 
a keep. Building these cause transition from state 1 to 
states 2, 3, and 5, respectively. For a detailed description of 
the states see (Ponsen & Spronck 2004). 

4.2 Weight Adaptation 

Weight updates in WARGUS are based on both an 
evaluation of the performance of the adaptive AI during 
the entire game (overall fitness), and between state changes 
(state fitness). Using both evaluations for weight updating 
increases learning efficiency (Manslow 2004).  
 The overall fitness function F for dynamic player d 
controlled by dynamic scripting yields a value in [0,1]. It is 
defined as:  
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Figure 1: Screenshot of a battle in WARGUS. 



In Equation 1, Sd represents the score for d, So represents 
the score for d’s opponent, and b∈[0,1] is the break-even 
point, at which the weights remain unchanged. For the 
dynamic player, the state fitness Fi for state i is defined as: 
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In Equation 2, Sd,i represents d’s score after state i, and So,i 
represents the score of d’s opponent after state i. 
    This scoring function is domain-dependent, and should 
reflect the relative strength of the two opposing players. 
For WARGUS, we defined the score Sx for player x as: 
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In Equation 3, Mx represents the military points for player x 
(i.e., the number of points awarded for killing units and 
destroying buildings), and Bx represents the building points 
for player x (i.e., the number of points awarded for training 
armies and constructing buildings). 
    After each game, the weights of all the selected tactics 
are updated. The weight-update function translates the 
fitness functions into weight adaptations. The weight-
update function W for dynamic player d is defined as:  
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In Equation 4, W is the tactic’s new weight value, Worg is 
its value before this update, P is the maximum penalty, R is 
the maximum reward, Wmax is the maximum weight value, 
Wmin is the minimum weight value, F is d’s overall fitness, 
Fi is the fitness for d in state i, and b is the break-even 
point. This equation prioritizes state performance over 
overall performance because, even if a game is lost, we 
wish to prevent tactics from being punished too much in 
states where performance is successful.  

5. Automatically Generating AI Opponents 

AKADS’ three steps for automatically generating adaptive 
AI opponents are listed in Table 1. This process is 
schematically illustrated in Figure 2. 

Table 1: The three steps in AKADS  

Name Learning task 

EA Evolving domain knowledge (using an 

Evolutionary Algorithm)  

KT 

 

Within-domain Knowledge Transfer (of evolved 

strategies to tactics for the knowledge bases) 

DS State-based tactic selection (via Dynamic Scripting) 

 The first step in AKADS uses an evolutionary algorithm 
(EA) to search for strategies that defeat specific opponent 
strategies. These strategies are provided to EA as a training 
set, the only manual input AKADS requires. This training 
set contains (manually designed) static scripts and 
(automatically generated) evolutionary scripts. Static 
scripts are default scripted opponents that are typically 
provided with alpha versions of a game to record the 
strategies employed by human players during testing. In 
contrast, an evolutionary script is a previously evolved 
strategy that we will use as an opponent strategy to evolve 
new strategies. Static scripts are usually of high quality 
because they are recorded from human player strategies. In 
contrast, evolutionary scripts can be generated completely 
automatically. Our training set includes the four default-
scripted opponents provided with STRATAGUS, and 36 
evolutionary scripts. The output of EA is a set of counter-
strategies, which are static strategies that can defeat the 
scripts in the training set.  
 The second step (KT) transfers the domain knowledge 
stored in the evolved strategies to the knowledge bases 
used by the adaptive AI algorithm (i.e., dynamic scripting).  
 The last step in AKADS (DS) empirically tests the 
performance of the adaptive AI. We will detail the first two 
steps in the following sections. In Section 6, we then report 
our evaluation of this methodology for automatically 
generating adaptive AI opponents. 

5.1 EA: Evolving Domain Knowledge 

Chromosome Encoding 

EA works with a population of chromosomes, each of 
which represents a static strategy. To encode a strategy for 
WARGUS, each gene in the chromosome represents a game 
action. Four different gene types exist, corresponding to 
the available game actions in WARGUS, namely (1) build 
genes, (2) research genes, (3) economy genes, and (4) 
combat genes. Each gene consists of a gene ID that 
indicates the gene’s type (B, R, E, and C, respectively), 
followed by values for the parameters needed by the gene.   
 Figure 3 shows the chromosome’s design. The 
chromosome is divided into states (as described in section 
4.1). Figure 3 shows that states include a state marker 
followed by the state number and a series of genes, whose 
representation is also shown in Figure 3. A partial example 
of a chromosome is shown at the bottom of Figure 3 (i.e., 
State 1 includes a combat gene and a build gene). 
Chromosomes for the initial population are generated 
randomly. By taking into account state changes spawned 
by executing build genes, only legal game AI is created. 

 

Figure 2: Schematic representation of AKADS’s process 
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Ponsen and Spronck (2004) provide a more detailed 
description of the chromosome encoding. 

Fitness Function 

To measure the success of a chromosome, we used the 
following fitness function F for the dynamic player d 
(controlled by an evolved strategy), which yields a value in 
the range [0,1]: 
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n Equation 5, Md represents the military points for d, Mo 
the military points for d’s opponent, b the break-even 
point, GC the game cycle (i.e., time it took before the game 
is lost by one of the players) and EC the end cycle (i.e., 
longest time a game is allowed to continue). When a game 
reaches the end cycle and neither army has been 
completely defeated, scores are measured and the game is 
aborted. The factor GC/EC ensures losing chromosomes 
that play a long game receive higher fitness scores than 
losing chromosomes that play a short game.  

Genetic Operators 

To breed new chromosomes, we implemented four genetic 
operators: (1) State Crossover, which selects two parents 
and copies states from either parent to the child 
chromosome, (2) Gene Replace Mutation, which selects 
one parent, and replaces economy, research, or combat 
genes with a 25% probability, (3) Gene Biased Mutation, 
which selects one parent and mutates parameters for 
existing economy or combat genes with a 50% probability, 
and (4) Randomization, which generates a random new 
chromosome. Randomization has a 10% chance of being 
selected during an evolution. The other genetic operators 
have a 30% chance. By design, all four ensure that a child 
chromosome always represents a legal game AI.  
    The four genetic operators take into account “activated” 
genes, which represent game actions that were executed 

when fitness was assessed. Non-activated genes are 
irrelevant to the chromosome. If a genetic operator 
produces a child chromosome that is equal to a parent 
chromosome for all activated genes, the child is rejected 
and a new child is generated. Ponsen and Spronck (2004) 
describe more detail for these genetic operators.  

5.2 KT: Within-Domain Knowledge Transfer 

AKADS automatically recognizes and extracts tactics from 
the evolved chromosomes and inserts these into state-
specific knowledge bases. The possible tactics during a 
game mainly depend on the available units and technology, 
which in RTS games typically depends on the buildings 
that the player possesses. Thus, we distinguish tactics using 
the WARGUS game states described in Section 4.1.  
 All genes grouped in an activated state (which includes 
at least one activated gene) in the chromosomes are 
considered to be a single tactic. The example chromosome 
in Figure 3 displays two tactics. The first tactic for state 1 
includes genes 1.1 (a combat gene that trains a defensive 
army) and 1.2 (a build gene that constructs a blacksmith). 
This tactic will be inserted into the knowledge base for 
state 1. Because gene 1.2 spawns a state change, the next 
genes will be part of a tactic for state 3 (i.e., constructing a 
blacksmith causes a transition to state 3, as indicated by the 
state marker in the example chromosome). 

6. Experimental Evaluation 

6.1 Crafting the Evolved Knowledge Bases 

The evolutionary algorithm uses a population of size 50. 
Relatively successful chromosomes (as determined by the 
fitness function) are allowed to breed. To select parent 
chromosomes for breeding, we used size-3 tournament 
selection (Buckland 2004). This method prevents early 
convergence and is computationally fast. Newly generated 
chromosomes replace existing chromosomes in the 
population, using size-3 crowding (Goldberg 1989). Our 
goal is to generate a chromosome with a fitness exceeding 
a target value. When such a chromosome is found, the 
evolution process ends. This is the fitness-stop criterion. 

 Start State 1 State 2 End 

State marker Gene x.1 Gene x.2 Gene x.n 

State m ⋅⋅⋅ 

⋅⋅⋅ 

Chromosome 

State 

Gene ID Parameter 1 Parameter p ⋅⋅⋅ Gene Parameter 2 

Start S C1 2 5 defend 

State number x 

1 ⋅⋅⋅ B S E 8 R 15 B 4 3 S 3 4 

Gene 1.1 Gene 1.2 Gene 3.1 Gene 3.2 Gene 3.3 

Figure 3: Design of a chromosome to store game AI for WARGUS. 

Tactic for State 1 Tactic for State 3 



We set the target value to 0.7. Because there is no 
guarantee that a chromosome exceeding the target value 
will be found, evolution also ends after it has generated a 
maximum number of chromosomes. This is the run-stop 
criterion. We set the maximum number of chromosomes to 
250. The choices for the fitness-stop and run-stop criteria 
were determined during preliminary experiments. 
 We evolved 40 chromosomes against the strategies 
provided in the training set. The EA was able to find a 
strong counter-strategy against each strategy in the training 
set. All chromosomes had a fitness score higher than 0.7, 
which represents a clear victory. 
 Using the KT algorithm that described in Section 5.2, 
the 40 evolved chromosomes produced 164 tactics that 
were added to the evolved knowledge bases for their 
corresponding state. The EA generally evolved solutions 
that end after a few states and did not find any tactics for 
some of the later game states. All games in the offline 
process ended before the evolutionary AI constructed all 
buildings, which explains why these later states were not 
included. By design, the AI controlled by dynamic 
scripting will only visit states in which tactics are available 
and ignore other states. 

6.2 Performance of Dynamic Scripting  

We evaluated the performance of dynamic scripting using 
the evolved knowledge bases in WARGUS by letting the 
computer play the game against itself. One of the two 
opposing players was controlled by dynamic scripting (the 
dynamic player), while the other was controlled by a static 
script (the static player). Each game lasted until one of the 
players was defeated, or until a certain period of time had 
elapsed. If the game ended due to the time restriction, the 
player with the highest score was considered to have won. 
After each game, the dynamic player’s knowledge bases 
were adapted, and the next game was started using them. A 
sequence of 100 games constituted one test. We tested 
eight different strategies for the static player: 

1-2. Small/Large Balanced Land Attack (SBLA/LBLA). 
These focus on land combat, maintaining a balance 
between offensive actions, defensive actions, and research. 
SBLA is applied on a small map (64x64 cells) and LBLA 
is applied on a large map (128x128 cells).  

3. Soldier’s Rush (SR): This attempts to overwhelm the 
opponent with cheap offensive units in an early game state.  
Because SR works best in fast games, we tested it on a 
small map. 

4. Knight’s Rush (KR): This attempts to quickly advance 
technologically, launching large offences as soon as strong 
units are available. Because KR works best in slower-
paced games, we tested it on a large map.  

5-8. Student Scripts (SC): Scripts 1-4 were used as input 
for AKADS. We also tested dynamic scripting against four 
static scripts that were not part of the training set for 
AKADS. We asked students to independently create scripts 
that could defeat scripts 1-4. We then played the student 
scripts against one another. The top four competitors in the 

tournament were used for testing against dynamic scripting 
on a small map. 

 To quantify the relative performance of the dynamic 
player against the static player, we used the randomization 
turning point (RTP), which is measured as follows. After 
each game, a randomization test (Cohen 1995; pp. 168–
170) was performed using the overall fitness values over 
the last ten games, with the null hypothesis that both 
players are equally strong. The dynamic player was said to 
outperform the static player if the randomization test 
concluded that the null hypothesis can be rejected with 
90% probability in favor of the dynamic player. RTP is the 
number of the first game in which the dynamic player 
outperforms the static player. A low RTP value indicates 
good efficiency for dynamic scripting. 

Table 2: Evaluation results of dynamic scripting in WARGUS RTS games 

using the improved and evolved knowledge bases 

 Improved Knowledge Bases Evolved Knowledge Bases 

Strategy Tests RTP >100 Won Tests RTP >100 Won 

SBLA 11 19 0 72 11 10 0 85 

LBLA 11 24 0 66 11 11 0 76 

SR 10 - 10 27 21 51 0 29 

KR 10 - 10 10 10 - 10 13 

SC1  - - - - 10 83 5 27 

SC2 - - - - 10 19 0 61 

SC3 - - - - 10 12 0 84 

SC4 - - - - 10 20 0 73 

Ponsen and Spronck (2004) manually improved existing 
knowledge bases from counter-strategies that were evolved 
offline, and tested dynamic scripting against SBLA, 
LBLA, SR, and KR. The results for dynamic scripting 
using these knowledge bases in WARGUS are shown in the 
left half of Table 2. From left to right, this table displays 
(1) the strategy used by the static player, (2) the number of 
tests, (3) the average RTP, (4) the number of tests that did 
not find an RTP within 100 games, and (5) the average 
number of games won out of 100. 
 For our new experiments with dynamic scripting using 
the automatically evolved knowledge bases, we set P to 
400, R to 400, Wmax to 4000, Wmin to 25, and b to 0.5. The 
columns on the right half of Table 2 show the results for 
dynamic scripting using these knowledge bases. As shown, 
performance improved against all previously tested scripts; 
RTP values against all scripts except KR have substantially 
decreased and on average more games are won. Dynamic 
scripting with the evolved knowledge bases outperforms 
both balanced scripts before any learning occurs (e.g., 
before weights are adapted). In previous tests against the 
SR, dynamic scripting was unable to find an RTP point. In 
contrast, dynamic scripting using the evolved knowledge 
bases recorded an average RTP of 51 against SR. The 
results against the student scripts are also encouraging. 
Only the champion script puts up a good fight; the others 
are already defeated from the start. 
 We believe that dynamic scripting’s increased 
performance, compared to our earlier experiments (Ponsen 
& Spronck 2004), occurred for two reasons. First, the 



evolved knowledge bases were not restricted to the 
(potentially poor) domain knowledge provided by the 
designer (in earlier experiments, the knowledge bases were 
manually designed and manually “improved”). Second, the 
automatically generated knowledge bases include tactics 
that consist of multiple atomic game actions, whereas the 
improved knowledge bases include tactics that consist of a 
single atomic game action. Knowledge bases consisting of 
compound tactics (i.e., an effective combination of fine-
tuned game actions) reduce the search complexity in 
WARGUS allowing dynamic scripting to achieve fast 
adaptation against many static opponents. 

7. Conclusions and Future Work 

We set out to show that automatically generating strong 
adaptive AI opponents for RTS games is feasible. We first 
discussed the dynamic scripting technique and its 
application to WARGUS, a clone of the popular WARCRAFT 
II game. We explained that domain knowledge is a 
crucial factor for dynamic scripting’s performance.  
 We proposed a methodology (implemented in AKADS) 
that can automatically generate high-quality domain 
knowledge for use by dynamic scripting. We tested 
AKADS against eight different static scripts. From our 
empirical results we concluded that the evolved knowledge 
bases improved the performance of dynamic scripting 
against the four static opponents that were used in previous 
experiments (Ponsen & Spronck 2004). We also tested 
dynamic scripting against four new strong scripts. The 
results were very encouraging (i.e., dynamic scripting 
almost always found an RTP), which shows that dynamic 
scripting can adapt to many different static strategies.  
 We therefore draw the following conclusion from our 
experiments: It is possible to automatically generate high-
quality domain knowledge that can be used to generate 
strong adaptive AI opponents in RTS games. AKADS 
produces strong adaptive AI opponents with relatively little 
effort on the part of game developers, hence freeing time 
for them to focus on graphics and storytelling.  
 For future work we plan to investigate whether strategy 
recognition can further enhance performance. It seems the 
EA successfully located fast solutions (e.g., chromosomes 
that quickly defeated the static scripts). Consequently, 
mostly strong tactics for early states were added to the 
knowledge bases. The evolved knowledge bases may be 
overfitted with early rush tactics. Strategy recognition may 
solve this problem by preventing many similar tactics (e.g., 
for combating the rush strategies) from being repeatedly 
added to the knowledge bases. We will also investigate on-
line applications of dynamic scripting, which require states 
to occur repeatedly within a game. Finally, we’ll 
investigate the use of more expressive state representations 
for dynamic scripting. Currently, states only identify which 
buildings have been created. Aha et al. (2005) extend this 
state description with eight additional features to guide a 
case-based tactics selection algorithm for playing 
WARGUS, and similar approaches may improve dynamic 
scripting’s performance. 
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