
Automatically Acquiring Domain Knowledge
For Adaptive Game AI Using Evolutionary Learning

Marc J.V. Ponsen
1
, Héctor Muñoz-Avila

1
,

Pieter Spronck

2
,

David W. Aha

3

1Dept. of Computer Science & Engineering; Lehigh University; Bethlehem, PA; USA; {mjp304,hem4}@lehigh.edu
2IKAT; Maastricht University; Maastricht; POB 616; NL-6200 MD; The Netherlands; p.spronck@cs.unimaas.nl

3Navy Center for Applied Research in AI; Naval Research Laboratory (Code 5515); Washington, DC; USA; aha@aic.nrl.navy.mil

Abstract

Game AI is the decision-making process of computer-controlled

opponents in computer games. Adaptive game AI can improve

the entertainment value of computer games. It allows computer-

controlled opponents to automatically fix weaknesses in the game

AI and respond to changes in human-player tactics. Dynamic

scripting is a recently developed approach for adaptive game AI

that learns which tactics (i.e., action sequences) an opponent

should select to play effectively against the human player. In

previous work, these tactics were manually generated. We

introduce AKADS; it uses an evolutionary algorithm to

automatically generate such tactics. Our experiments show that it

improves dynamic scripting’s performance on a real-time strategy

(RTS) game. Therefore, we conclude that high-quality domain

knowledge (i.e., tactics) can be automatically generated for strong

adaptive AI opponents in RTS games. This reduces the time and

effort required by game developers to create intelligent game AI,

thus freeing them to focus on other important topics (e.g.,

storytelling, graphics).

1. Introduction

Today’s gaming environments are becoming increasingly
realistic, especially in terms of the graphical presentation
of the virtual world. To further increase realism, characters
‘living’ inside these virtual worlds must be able to reason
effectively (Laird & van Lent 2000). Both game industry
practitioners (Rabin 2004) and academics (Laird & van
Lent 2000) predicted an increasing importance of artificial
intelligence (AI) in computer games. This game AI is the
decision-making process of computer controlled
opponents. High-quality game AI will increase the game
playing challenge (Nayerek 2004) and is a potential selling
point for a game. However, the development time for game
AI is typically short; most game companies assign graphics
and storytelling the highest priorities (for marketing
reasons) and do not implement the game AI until the end
of the development process (Nayerek 2004), which
complicates designing and testing strong game AI. Thus,
even in state-of-the-art games, game AI is generally of
inferior quality (Schaeffer 2001).
 Adaptive game AI, which concerns methods for
adapting the behavior of computer-controlled opponents,

Copyright © 2005, American Association for Artificial Intelligence

 (www.aaai.org). All rights reserved.

can potentially increase the quality of game AI. Dynamic
scripting is a recently developed technique for
implementing adaptive AI (Spronck et al. 2004). We use
dynamic scripting to learn a state-based decision policy for
the complex real-time strategy (RTS) game WARGUS.
 Dynamic scripting uses extensive domain knowledge,
namely one knowledge base (a set of action sequences, or
tactics) per state. Manually designing these knowledge
bases can take a long time, which game developers
generally don’t have, and risks analysis and encoding
errors. We introduce a novel methodology, implemented in
AKADS (Automatic Knowledge Acquisition for Dynamic
Scripting), that uses an evolutionary algorithm to
automatically generate tactics used by dynamic scripting.
Our empirical results show that AKADS can successfully
adapt to several static opponent strategies.
 We describe related work in the next section. We then
introduce RTS games and the game environment selected
for the experiments. Next, we discuss our RTS
implementation for dynamic scripting, and AKADS’
method for automatically generating strong adaptive AI
opponents in a RTS game. Finally, we describe our
experimental results, and conclude with future work.

2. Related Work

AI researchers have shown that successful adaptive game
AI is feasible (Demasi and Cruz 2002, Spronck et al.
2004). Successful adaptive game AI is invariably based on
access to and use of the game’s domain knowledge.

Ponsen and Spronck (2004) used offline evolutionary
learning to generate high-performing opponents, and
manually extracted tactics from them to improve the
performance of adaptive game AI. In this paper, we
describe an algorithm that automatically generates this
high-quality domain knowledge.
 Few attempts have been made to automatically create
game AI. For example, Madeira et al. (2004) used
reinforcement learning to generate strong AI opponents.
However, their approach produces a static opponent. In
contrast, dynamic scripting adapts to a player’s behavior.
 To the best of our knowledge, most empirical studies
with RTS games address only a subset of the game AI. For
example, Madeira et al.’s (2004) learning mechanism
focuses on high-level, strategic decisions and lets the
default AI execute these orders. Guestrin et al. (2003)
instead focus on low-level decision-making, controlling

only a small number of soldiers. Unlike these experiments,
we do not constrain the number of units involved, and
focus on both strategic decisions (high-level decisions that
determine the general behavior of a population as a whole)
and tactical decisions (intermediate-level decisions that
determine the behavior of units in local situations).

3. Real-Time Strategy Games

RTS is a strategy game genre that usually focuses on
military combat. RTS games such as WARCRAFT and
COMMAND & CONQUER require players to control armies
(consisting of different unit types) and defeat all opposing
forces in real-time. In most RTS games, winning requires
efficiently collecting and managing resources, and
appropriately distributing them over the various game
elements. Typical RTS game actions include constructing
buildings, researching new technologies, and combat.
 Both human and computer players can use these game
actions to form their strategy and tactics. Typically, RTS
games require competing against multiple game AI
opponents encoded as scripts, which are lists of game
actions that are executed sequentially (Tozour 2002). A
complete script represents a strategy, while a sub-list of
game actions (i.e., one or more atomic game actions) in a
script represents a tactic (e.g., constructing a blacksmith
and acquiring all related technologies for that building).
 For our experiments, we selected the RTS game
WARGUS, whose underlying engine is STRATAGUS − an
open-source engine for building RTS games. WARGUS

(Figure 1) is a clone of the popular game WARCRAFT II.

4. Dynamic Scripting in WARGUS

Spronck et al. (2004) introduced a novel technique, called
dynamic scripting, that can generate AI opponent scripts
which can adapt to a player’s behavior. Dynamic scripting
in WARGUS generates scripts on the fly by selecting state-
specific tactics from a knowledge base, where these tactics
were created using domain-specific knowledge. Each tactic
in a state-specific knowledge base is assigned a weight,

and the probability of selecting a tactic for a script is an
increasing function of its weight value. After each
opponent encounter, the weights of tactics employed
during gameplay are increased when their contribution
yields positive outcomes, and are decreased otherwise. The
size of the weight change is determined by a weight-update
function. To keep the sum of all weight values in a
knowledge base constant, weight changes are executed
through a redistribution of all weights in the knowledge
base. Through punishments and rewards, dynamic scripting
gradually adapts to the player’s behavior. Spronck et al.
(2004) detail dynamic scripting, which is an effective,
robust, and efficient method for generating adaptive game
AI that has been used for computer role playing (Spronck
et al. 2004) and RTS games (Ponsen & Spronck 2004).

4.1 Game States and their Knowledge Bases

Typically, RTS game players start with few game actions
available to them. As players progress up the technology
ladder, they acquire a larger arsenal of weapons, units, and
buildings. The tactics that can be used in RTS games
mainly depend on the availability of different unit types
and technologies. When applying dynamic scripting to
RTS games, we must constrain the adaptive AI’s tactics
selection process. Therefore, we divided the game into a
small number of game states. Each state is paired with a
unique knowledge base of tactics, and dynamic scripting
can select these tactics when the game is in that state.
Dynamic scripting starts by selecting tactics for the first
state. When the execution of a selected tactic spawns a
state change, a tactic is then selected for the new state.
 We distinguish WARGUS game states according to the
types of available buildings, which in turn determine the
unit types that can be built and the technologies that can be
researched. Consequently, state changes are spawned by
executing tactics that create new buildings. For example, a
player in the first state has a town hall and a barracks. The
next building choices are a lumber mill, a blacksmith, and
a keep. Building these cause transition from state 1 to
states 2, 3, and 5, respectively. For a detailed description of
the states see (Ponsen & Spronck 2004).

4.2 Weight Adaptation

Weight updates in WARGUS are based on both an
evaluation of the performance of the adaptive AI during
the entire game (overall fitness), and between state changes
(state fitness). Using both evaluations for weight updating
increases learning efficiency (Manslow 2004).
 The overall fitness function F for dynamic player d
controlled by dynamic scripting yields a value in [0,1]. It is
defined as:

{ }

{ }
()1

),max(

),min(

+

+
=

wond
SS

S
b

lostdb
SS

S

F

od

d

od

d

Figure 1: Screenshot of a battle in WARGUS.

In Equation 1, Sd represents the score for d, So represents
the score for d’s opponent, and b∈[0,1] is the break-even
point, at which the weights remain unchanged. For the
dynamic player, the state fitness Fi for state i is defined as:

{ }

{ }
)2(

1

1

1,1,

1,

,,

,

,,

,

>
+

−
+

=
+

=

−−

−
i

SS

S

SS

S

i
SS

S

F

ioid

id

ioid

id

ioid

id

i

In Equation 2, Sd,i represents d’s score after state i, and So,i
represents the score of d’s opponent after state i.
 This scoring function is domain-dependent, and should
reflect the relative strength of the two opposing players.
For WARGUS, we defined the score Sx for player x as:

)3(3.07.0 xxx BMS +=

In Equation 3, Mx represents the military points for player x
(i.e., the number of points awarded for killing units and
destroying buildings), and Bx represents the building points
for player x (i.e., the number of points awarded for training
armies and constructing buildings).
 After each game, the weights of all the selected tactics
are updated. The weight-update function translates the
fitness functions into weight adaptations. The weight-
update function W for dynamic player d is defined as:

{ }

{ }
)4(

,
1

7.0
1

3.0min

7.03.0,max

max

min

≥

−

−
+

−

−
+

<

 −
−

−
−

=

bFWR
b

bF
R

b

bF
W

bFP
b

Fb
P

b

Fb
WW

W
i

org

i

org

In Equation 4, W is the tactic’s new weight value, Worg is
its value before this update, P is the maximum penalty, R is
the maximum reward, Wmax is the maximum weight value,
Wmin is the minimum weight value, F is d’s overall fitness,
Fi is the fitness for d in state i, and b is the break-even
point. This equation prioritizes state performance over
overall performance because, even if a game is lost, we
wish to prevent tactics from being punished too much in
states where performance is successful.

5. Automatically Generating AI Opponents

AKADS’ three steps for automatically generating adaptive
AI opponents are listed in Table 1. This process is
schematically illustrated in Figure 2.

Table 1: The three steps in AKADS

Name Learning task

EA Evolving domain knowledge (using an

Evolutionary Algorithm)

KT

Within-domain Knowledge Transfer (of evolved

strategies to tactics for the knowledge bases)

DS State-based tactic selection (via Dynamic Scripting)

 The first step in AKADS uses an evolutionary algorithm
(EA) to search for strategies that defeat specific opponent
strategies. These strategies are provided to EA as a training
set, the only manual input AKADS requires. This training
set contains (manually designed) static scripts and
(automatically generated) evolutionary scripts. Static
scripts are default scripted opponents that are typically
provided with alpha versions of a game to record the
strategies employed by human players during testing. In
contrast, an evolutionary script is a previously evolved
strategy that we will use as an opponent strategy to evolve
new strategies. Static scripts are usually of high quality
because they are recorded from human player strategies. In
contrast, evolutionary scripts can be generated completely
automatically. Our training set includes the four default-
scripted opponents provided with STRATAGUS, and 36
evolutionary scripts. The output of EA is a set of counter-
strategies, which are static strategies that can defeat the
scripts in the training set.
 The second step (KT) transfers the domain knowledge
stored in the evolved strategies to the knowledge bases
used by the adaptive AI algorithm (i.e., dynamic scripting).
 The last step in AKADS (DS) empirically tests the
performance of the adaptive AI. We will detail the first two
steps in the following sections. In Section 6, we then report
our evaluation of this methodology for automatically
generating adaptive AI opponents.

5.1 EA: Evolving Domain Knowledge

Chromosome Encoding

EA works with a population of chromosomes, each of
which represents a static strategy. To encode a strategy for
WARGUS, each gene in the chromosome represents a game
action. Four different gene types exist, corresponding to
the available game actions in WARGUS, namely (1) build
genes, (2) research genes, (3) economy genes, and (4)
combat genes. Each gene consists of a gene ID that
indicates the gene’s type (B, R, E, and C, respectively),
followed by values for the parameters needed by the gene.
 Figure 3 shows the chromosome’s design. The
chromosome is divided into states (as described in section
4.1). Figure 3 shows that states include a state marker
followed by the state number and a series of genes, whose
representation is also shown in Figure 3. A partial example
of a chromosome is shown at the bottom of Figure 3 (i.e.,
State 1 includes a combat gene and a build gene).
Chromosomes for the initial population are generated
randomly. By taking into account state changes spawned
by executing build genes, only legal game AI is created.

Figure 2: Schematic representation of AKADS’s process

Evolved

knowledge

bases

EA

training script 1

training script 2

…
training script n

counter strategy 1

counter strategy 2

…
counter strategy n

Adaptive Game

AI Opponent

KT DS

Ponsen and Spronck (2004) provide a more detailed
description of the chromosome encoding.

Fitness Function

To measure the success of a chromosome, we used the
following fitness function F for the dynamic player d
(controlled by an evolved strategy), which yields a value in
the range [0,1]:

{ }

{ }

)5(

,max

,min

+

+
⋅

=

wond
MM

M
b

lostdb
MM

M

EC

GC

F

od

d

od

d

n Equation 5, Md represents the military points for d, Mo
the military points for d’s opponent, b the break-even
point, GC the game cycle (i.e., time it took before the game
is lost by one of the players) and EC the end cycle (i.e.,
longest time a game is allowed to continue). When a game
reaches the end cycle and neither army has been
completely defeated, scores are measured and the game is
aborted. The factor GC/EC ensures losing chromosomes
that play a long game receive higher fitness scores than
losing chromosomes that play a short game.

Genetic Operators

To breed new chromosomes, we implemented four genetic
operators: (1) State Crossover, which selects two parents
and copies states from either parent to the child
chromosome, (2) Gene Replace Mutation, which selects
one parent, and replaces economy, research, or combat
genes with a 25% probability, (3) Gene Biased Mutation,
which selects one parent and mutates parameters for
existing economy or combat genes with a 50% probability,
and (4) Randomization, which generates a random new
chromosome. Randomization has a 10% chance of being
selected during an evolution. The other genetic operators
have a 30% chance. By design, all four ensure that a child
chromosome always represents a legal game AI.
 The four genetic operators take into account “activated”
genes, which represent game actions that were executed

when fitness was assessed. Non-activated genes are
irrelevant to the chromosome. If a genetic operator
produces a child chromosome that is equal to a parent
chromosome for all activated genes, the child is rejected
and a new child is generated. Ponsen and Spronck (2004)
describe more detail for these genetic operators.

5.2 KT: Within-Domain Knowledge Transfer

AKADS automatically recognizes and extracts tactics from
the evolved chromosomes and inserts these into state-
specific knowledge bases. The possible tactics during a
game mainly depend on the available units and technology,
which in RTS games typically depends on the buildings
that the player possesses. Thus, we distinguish tactics using
the WARGUS game states described in Section 4.1.
 All genes grouped in an activated state (which includes
at least one activated gene) in the chromosomes are
considered to be a single tactic. The example chromosome
in Figure 3 displays two tactics. The first tactic for state 1
includes genes 1.1 (a combat gene that trains a defensive
army) and 1.2 (a build gene that constructs a blacksmith).
This tactic will be inserted into the knowledge base for
state 1. Because gene 1.2 spawns a state change, the next
genes will be part of a tactic for state 3 (i.e., constructing a
blacksmith causes a transition to state 3, as indicated by the
state marker in the example chromosome).

6. Experimental Evaluation

6.1 Crafting the Evolved Knowledge Bases

The evolutionary algorithm uses a population of size 50.
Relatively successful chromosomes (as determined by the
fitness function) are allowed to breed. To select parent
chromosomes for breeding, we used size-3 tournament
selection (Buckland 2004). This method prevents early
convergence and is computationally fast. Newly generated
chromosomes replace existing chromosomes in the
population, using size-3 crowding (Goldberg 1989). Our
goal is to generate a chromosome with a fitness exceeding
a target value. When such a chromosome is found, the
evolution process ends. This is the fitness-stop criterion.

 Start State 1 State 2 End

State marker Gene x.1 Gene x.2 Gene x.n

State m ⋅⋅⋅

⋅⋅⋅

Chromosome

State

Gene ID Parameter 1 Parameter p ⋅⋅⋅ Gene Parameter 2

Start S C1 2 5 defend

State number x

1 ⋅⋅⋅ B S E 8 R 15 B 4 3 S 3 4

Gene 1.1 Gene 1.2 Gene 3.1 Gene 3.2 Gene 3.3

Figure 3: Design of a chromosome to store game AI for WARGUS.

Tactic for State 1 Tactic for State 3

We set the target value to 0.7. Because there is no
guarantee that a chromosome exceeding the target value
will be found, evolution also ends after it has generated a
maximum number of chromosomes. This is the run-stop
criterion. We set the maximum number of chromosomes to
250. The choices for the fitness-stop and run-stop criteria
were determined during preliminary experiments.
 We evolved 40 chromosomes against the strategies
provided in the training set. The EA was able to find a
strong counter-strategy against each strategy in the training
set. All chromosomes had a fitness score higher than 0.7,
which represents a clear victory.
 Using the KT algorithm that described in Section 5.2,
the 40 evolved chromosomes produced 164 tactics that
were added to the evolved knowledge bases for their
corresponding state. The EA generally evolved solutions
that end after a few states and did not find any tactics for
some of the later game states. All games in the offline
process ended before the evolutionary AI constructed all
buildings, which explains why these later states were not
included. By design, the AI controlled by dynamic
scripting will only visit states in which tactics are available
and ignore other states.

6.2 Performance of Dynamic Scripting

We evaluated the performance of dynamic scripting using
the evolved knowledge bases in WARGUS by letting the
computer play the game against itself. One of the two
opposing players was controlled by dynamic scripting (the
dynamic player), while the other was controlled by a static
script (the static player). Each game lasted until one of the
players was defeated, or until a certain period of time had
elapsed. If the game ended due to the time restriction, the
player with the highest score was considered to have won.
After each game, the dynamic player’s knowledge bases
were adapted, and the next game was started using them. A
sequence of 100 games constituted one test. We tested
eight different strategies for the static player:

1-2. Small/Large Balanced Land Attack (SBLA/LBLA).
These focus on land combat, maintaining a balance
between offensive actions, defensive actions, and research.
SBLA is applied on a small map (64x64 cells) and LBLA
is applied on a large map (128x128 cells).

3. Soldier’s Rush (SR): This attempts to overwhelm the
opponent with cheap offensive units in an early game state.
Because SR works best in fast games, we tested it on a
small map.

4. Knight’s Rush (KR): This attempts to quickly advance
technologically, launching large offences as soon as strong
units are available. Because KR works best in slower-
paced games, we tested it on a large map.

5-8. Student Scripts (SC): Scripts 1-4 were used as input
for AKADS. We also tested dynamic scripting against four
static scripts that were not part of the training set for
AKADS. We asked students to independently create scripts
that could defeat scripts 1-4. We then played the student
scripts against one another. The top four competitors in the

tournament were used for testing against dynamic scripting
on a small map.

 To quantify the relative performance of the dynamic
player against the static player, we used the randomization
turning point (RTP), which is measured as follows. After
each game, a randomization test (Cohen 1995; pp. 168–
170) was performed using the overall fitness values over
the last ten games, with the null hypothesis that both
players are equally strong. The dynamic player was said to
outperform the static player if the randomization test
concluded that the null hypothesis can be rejected with
90% probability in favor of the dynamic player. RTP is the
number of the first game in which the dynamic player
outperforms the static player. A low RTP value indicates
good efficiency for dynamic scripting.

Table 2: Evaluation results of dynamic scripting in WARGUS RTS games

using the improved and evolved knowledge bases

 Improved Knowledge Bases Evolved Knowledge Bases

Strategy Tests RTP >100 Won Tests RTP >100 Won

SBLA 11 19 0 72 11 10 0 85

LBLA 11 24 0 66 11 11 0 76

SR 10 - 10 27 21 51 0 29

KR 10 - 10 10 10 - 10 13

SC1 - - - - 10 83 5 27

SC2 - - - - 10 19 0 61

SC3 - - - - 10 12 0 84

SC4 - - - - 10 20 0 73

Ponsen and Spronck (2004) manually improved existing
knowledge bases from counter-strategies that were evolved
offline, and tested dynamic scripting against SBLA,
LBLA, SR, and KR. The results for dynamic scripting
using these knowledge bases in WARGUS are shown in the
left half of Table 2. From left to right, this table displays
(1) the strategy used by the static player, (2) the number of
tests, (3) the average RTP, (4) the number of tests that did
not find an RTP within 100 games, and (5) the average
number of games won out of 100.
 For our new experiments with dynamic scripting using
the automatically evolved knowledge bases, we set P to
400, R to 400, Wmax to 4000, Wmin to 25, and b to 0.5. The
columns on the right half of Table 2 show the results for
dynamic scripting using these knowledge bases. As shown,
performance improved against all previously tested scripts;
RTP values against all scripts except KR have substantially
decreased and on average more games are won. Dynamic
scripting with the evolved knowledge bases outperforms
both balanced scripts before any learning occurs (e.g.,
before weights are adapted). In previous tests against the
SR, dynamic scripting was unable to find an RTP point. In
contrast, dynamic scripting using the evolved knowledge
bases recorded an average RTP of 51 against SR. The
results against the student scripts are also encouraging.
Only the champion script puts up a good fight; the others
are already defeated from the start.
 We believe that dynamic scripting’s increased
performance, compared to our earlier experiments (Ponsen
& Spronck 2004), occurred for two reasons. First, the

evolved knowledge bases were not restricted to the
(potentially poor) domain knowledge provided by the
designer (in earlier experiments, the knowledge bases were
manually designed and manually “improved”). Second, the
automatically generated knowledge bases include tactics
that consist of multiple atomic game actions, whereas the
improved knowledge bases include tactics that consist of a
single atomic game action. Knowledge bases consisting of
compound tactics (i.e., an effective combination of fine-
tuned game actions) reduce the search complexity in
WARGUS allowing dynamic scripting to achieve fast
adaptation against many static opponents.

7. Conclusions and Future Work

We set out to show that automatically generating strong
adaptive AI opponents for RTS games is feasible. We first
discussed the dynamic scripting technique and its
application to WARGUS, a clone of the popular WARCRAFT
II game. We explained that domain knowledge is a
crucial factor for dynamic scripting’s performance.
 We proposed a methodology (implemented in AKADS)
that can automatically generate high-quality domain
knowledge for use by dynamic scripting. We tested
AKADS against eight different static scripts. From our
empirical results we concluded that the evolved knowledge
bases improved the performance of dynamic scripting
against the four static opponents that were used in previous
experiments (Ponsen & Spronck 2004). We also tested
dynamic scripting against four new strong scripts. The
results were very encouraging (i.e., dynamic scripting
almost always found an RTP), which shows that dynamic
scripting can adapt to many different static strategies.
 We therefore draw the following conclusion from our
experiments: It is possible to automatically generate high-
quality domain knowledge that can be used to generate
strong adaptive AI opponents in RTS games. AKADS
produces strong adaptive AI opponents with relatively little
effort on the part of game developers, hence freeing time
for them to focus on graphics and storytelling.
 For future work we plan to investigate whether strategy
recognition can further enhance performance. It seems the
EA successfully located fast solutions (e.g., chromosomes
that quickly defeated the static scripts). Consequently,
mostly strong tactics for early states were added to the
knowledge bases. The evolved knowledge bases may be
overfitted with early rush tactics. Strategy recognition may
solve this problem by preventing many similar tactics (e.g.,
for combating the rush strategies) from being repeatedly
added to the knowledge bases. We will also investigate on-
line applications of dynamic scripting, which require states
to occur repeatedly within a game. Finally, we’ll
investigate the use of more expressive state representations
for dynamic scripting. Currently, states only identify which
buildings have been created. Aha et al. (2005) extend this
state description with eight additional features to guide a
case-based tactics selection algorithm for playing
WARGUS, and similar approaches may improve dynamic
scripting’s performance.

Acknowledgements

This research was sponsored by a grant from DARPA and
the Naval Research Laboratory.

References

Aha, D.W., Molineaux, M., & Ponsen, M. (2005).
Learning to win: Case-based plan selection in a real-time
strategy game. To appear in Proceedings of the Sixth
International Conference on Case-Based Reasoning.
Chicago, IL: Springer.

Buckland, M. 2004. “Building better Genetic
Algorithms.” AI Game Programming Wisdom 2, Charles
River Media, Hingham, MA, pp. 649–660.
 Cohen, R.C. (1995). Empirical Methods for Artificial
Intelligence, MIT Press, Cambridge, MA.
 Demasi, P. and A.J. de O. Cruz. 2002. “Online
Coevolution for Action Games.” GAME-ON 2002 3rd
International Conference on Intelligent Games and
Simulation, SCS Europe Bvba, pp. 113–120.
 Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimization & Machine Learning, Addison-Wesley,
Reading, UK.
 Guestrin, C., Koller, D., Gearhart C., and Kanodia N.
(2003) “Generalizing Plans to New Environments in
Relational MDPs”. International Joint Conference on
Artificial Intelligence (IJCAI 2003), Acapulco, Mexico.
 Laird, J.E. and M. van Lent. 2000. “Human-Level AI's
Killer Application: Computer Game AI.” Proceedings of
AAAI 2000 Fall Symposium on Simulating Human Agents,
AAAI Press 2000, pp. 80–87.
 Madeira, C., Corruble, V. Ramalho, G. Ratich B. 2004.
“Bootstrapping the Learning Process for the Semi-
Automated Design of Challenging Game AI”, Proceedings
of the AAAI-04 workshop on AI in games, San Jose 2004
 Manslow, J. 2004. “Using reinforcement learning to
Solve AI Control Problems”. AI Game Programming
Wisdom 2, Charles River Media, Hingham, MA, pp. 591–
601.
 Nareyek, A. 2004. “AI in Computer Games”. ACM
Queue. 1(10). pp. 58-65
 Ponsen, M. and Spronck, P. (2004). “Improving
Adaptive Game AI with Evolutionary Learning.”
Computer Games: Artificial Intelligence, Design and
Education (CGAIDE 2004). pp. 389-396. University of
Wolverhampton.
 Rabin, S. 2004. AI Game Programming Wisdom 2.
Charles River Media, Hingham, MA.
 Schaeffer, J. 2001. “A Gamut of Games.” AI Magazine,
Vol. 22, No. 3, pp. 29–46.
 Spronck, P., Sprinkhuizen-Kuyper, I. and Postma. E.
2004. “Online Adaptation of Game Opponent AI with
Dynamic Scripting.” International Journal of Intelligent
Games and Simulation, Vol. 3, No. 1, University of
Wolverhampton and EUROSIS, pp. 45–53.
 Tozour, P. 2002. “The Perils of AI Scripting.” AI Game
Programming Wisdom, Charles River Media, Hingham,
MA, pp. 541–547.

