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Prefae The world is governed more by appearane than by realities,so that it is fully as neessaryto seem to know something as it is to know it.� Daniel Webster (1782�1852).The lassi Greek ulture reognised six art forms: painting, sulpture, arhiteture,literature, drama, and musi. In the twentieth entury, television, inema, and omibooks beame known as the seventh to ninth art forms. The brothers Le Diberer(1993) nominated ommerial omputer games1 as the tenth art form.Many people will so� at the notion of games being elevated to the status of art.They see games as little more than running through dark orridors and shootingaliens on a omputer, whih hardly an be onsidered art. These people have a point.Most games are too shallow to be alled art. But, as we may not expet every bookto be Gödel, Esher, Bah, every movie to be Citizen Kane, or every piee ofmusi to be the Brandenburger Conertos, we may not expet every game tobe high art. Certainly a few games exist that evoke profound, emotionally touhing,fasinating experienes. It is true that suh games are extremely rare. However,games are a young art form; when they mature more games will be found worthy ofthe epithet `art'.Games are ertainly distint from the other nine art forms. For one thing, theyare the only art form that, by de�nition, needs to be experiened interatively.For a game to be onsidered art, the interation in partiular must be suessful,so that game players may beome deeply immersed in a game world, gaining asuspension of disbelief (i.e., a mental willingness to aept the game world as reality).Unfortunately, a suspension of disbelief is fragile, and shatters easily. To maintain it,every aspet of the game world must be true to the nature it is supposed to embody.Nowadays, a game's top-noth graphis and sound manage to keep up a sus-pension of disbelief quite well. However, the behaviours of haraters in a gameare usually of an inferior quality. It is all too lear that the haraters are lifeless,mindless drones ontrolled by a omputer with little knowledge.A major distinguishing feature of real-life beings, whih is learly laking inharaters in today's games, is the ability to adapt to new situations. Endowing1Heneforth, whenever I use the term `game' without an adjetive, I am referring to a `ommer-ial omputer game'.



x Prefaeomputer-ontrolled haraters with this ability may evoke the illusion that the har-aters atually understand what they are doing, and thus maintain the suspensionof disbelief for a longer time.The behaviour of haraters in a game is determined by the so-alled `gameAI' (AI being the abbreviation of `Arti�ial Intelligene'). This thesis disusseshow game AI an be made adaptive. The researh is mainly driven by the goal ofahieving results that are pratially appliable. The researh may be onsideredsuessful if, in a few years time, the investigated tehniques are implemented inatual ommerially-available games.I am deeply grateful to the Institute of Knowledge and Agent Tehnology (IKAT)of the Universiteit Maastriht, whih allowed me to do my thesis researh as partof my job. In authoring this thesis, it was my good fortune to bene�t from theinvaluable guidane of Jaap van den Herik and Eri Postma. I am thankful to IdaSprinkhuizen-Kuyper, Sander Bakkes, and Mar Ponsen, for our produtive ollabo-ration on onsiderable hunks of my researh. I also thank my olleagues at IKAT,for our pleasant and fruitful disussions. My 2003 visit to Edmonton, Canada,proved to be a turning point in my researh, for whih I wish to express my thanksto the University of Alberta's GAMES group, led by Jonathan Shae�er, and toBioWare Corp. Finally, I wish to extend my heartfelt gratitude to my parents, fortheir ontinued support, and to Muriël and Myrthe, for joy and love.Pieter Spronk, January 2005.



Chapter 1IntrodutionA great deal of intelligene an be invested in ignoranewhen the need for illusion is deep.� Saul Bellow (b. 1915).Over the last twenty years the audiovisual qualities of ommerial games have im-proved signi�antly. However, over the same period game developers have largelynegleted arti�ial intelligene (AI) in games, so-alled `game AI'. Sine the turn ofthe entury game-development ompanies have disovered that nowadays it is thequality of game AI that distinguishes good games from mediore ones. The generalgoal of the present thesis is to investigate to what extent the quality of game AIan be improved by using mahine-learning tehniques. In partiular, the goal isto reate game opponents that an learn from mistakes and that an adapt to newtatis.This hapter impliitly provides my researh motivation. Setion 1.1 examinesthe di�erenes between analytial and ommerial games. Setion 1.2 disusses thestate of the art in ommerial game AI. Setion 1.3 establishes that game AI anbene�t from being adaptive. Setion 1.4 disusses the sienti� relevane of adaptive-game-AI researh. The problem statement that guides the researh is formulated inSetion 1.5, along with three researh questions. The hapter ends with an outlineof the thesis in Setion 1.6.1.1 Analytial vs. Commerial GamesComputer games an be roughly divided into two groups, namely `analytial games'and `ommerial games'. Analytial games are the lassi board and ard games,suh as Bakgammon, Bridge, Chekers, Chess, Go, Poker, and Stratego.Commerial games are the popular modern omputer games, of whih well-knownexamples are Baldur's Gate, Doom, EverQuest, Paman, Quake, TombRaider, and Warraft.



2 IntrodutionTraditionally, omputer-game researh has foussed on analytial games. Thegoal of omputer-game researh is to endow omputers with arti�ial intelligenethat makes them the strongest possible game-players. For some games the researhhas ahieved impressive results; for instane, omputers outplay World Championsin Chess (Hsu, 2002), Chekers (Shae�er, 1997), and Othello (Buro, 1997).Around the start of the twenty-�rst entury omputer-game researh was ex-tended to enompass ommerial games (Woodok, 1999). A lose inspetion showsthat analytial and ommerial omputer games1 di�er in many harateristis. Nineof those di�erenes are listed here.Game-theoretial lassi�ation: Game theory distinguishes between perfet andimperfet information games, as well as between deterministi and stohastigames (Koller and Pfe�er, 1997; Halk and Dahl, 1999). In perfet informa-tion games omplete information on the state of the game is available, while inimperfet information games part of the game state is hidden. Deterministigames have no element of hane, while in stohasti games hane plays aprominent role. Figure 1.1 presents a oarse personal assessment of how sometypial example games (both analytial and ommerial) an be quali�ed a-ording to these harateristis. As an be observed, in general, analytialgames deal with muh or even perfet information and are highly deterministi,while ommerial games deal with little information and are highly stohasti(Buro, 2004; Chan et al., 2004).2Origin of omplexity: The omplexity of an analytial game arises from the in-teration of a few simple, transparent rules. The omplexity of a ommerialgame arises from the interation of large numbers of in-game objets and lo-ations, ontrolled by omplex, opaque rules (Fairlough, Fagan, MaNamee,and Cunningham, 2001; Nareyek, 2002; Buro, 2004).Computer requirement: Analytial games an, in priniple, be played by humanswithout the use of a omputer. Commerial games take plae in a virtual worldreated by the omputer, whih means that the omputer is an essential partof the game.Paing: Analytial games usually progress at a slow pae, while ommerial gamesare fast-paed (Nareyek, 2002).1The term `ommerial games' is misleading, beause analytial games an be ommeriallyexploited as well. An alternate term found in literature is `interative omputer games', but sineall omputer games are interative, this term is even more misleading. A potentially better termis `video games', but this term is usually reserved for `onsole games' that are played on dediatedgaming hardware onneted to a television set. Most authors simply refer to ommerial games as`omputer games' or `games', and let the ontext de�ne whih type of games they are referring to. Inthis thesis I will use the simple term `games' to refer to ommerial omputer games, exept whereI am disussing di�erenes between analytial and ommerial games, as in the present setion.2In imperfet-information analytial games little information is hidden, at least in omparisonwith ommerial games. For instane, in ard games only the players' hands are hidden, while inommerial games omplete game worlds are hidden.



1.1 � Analytial vs. Commerial Games 3

Figure 1.1: Game-theoretial lassi�ation of some analytial and ommerial gamesaording to the author. The horizontal axis represents the amount of informationon the game state available to the player, while the vertial axis represents theamount of randomness in the game.Drama: The only drama in onnetion with an analytial game is the drama ofwinning or losing. For most ommerial games drama, in the form of a story(however shallow), is an essential part of the game (Laurel, 1993).Role reversal: In analytial games the omputer replaes one or more of the humanplayers. In essene, the omputer transends into the human world to assumethe role of a game-playing human. In ommerial games human players take onthe role of some of the virtual haraters in the game (whether those haratersare atual beings in the game, or god-like army leaders that have no in-gameavatar) � the human player beomes part of the omputer world.Player skills: Analytial games require players to use �rst and foremost their in-telletual skills.3 Commerial games require players to invest a wide variety ofskills. Depending on the game, besides intelletual skills players will need touse their imagination, re�exes, timing skills, sensory abilities, emotions, andeven ethial insights.3In analytial games between humans, usually psyhology also plays an important role. However,in an analytial game played between a human and a omputer, psyhology is not used as a strategimeans, at least not yet.



4 Introdution

Figure 1.2: The di�erene in art between a typial analytial game (Deep Fritz,left) and a typial ommerial game (Half-Life 2, right).Art: For analytial games the art, onsisting of graphis and sound, is of littleimportane. For ommerial games art is of key importane. Most of thedevelopment resoures of a ommerial game are invested in the game's art(Fairlough et al., 2001; Khoo and Zubek, 2002). This di�erene is vividlyillustrated in Figure 1.2.Goal: For analytial games the goal of the omputer is to defeat the human player.For ommerial games the goal of the omputer is to entertain the humanplayer (Tozour, 2002b; Chan et al., 2004; Lidén, 2004).Deades of researh (often very suessful) have been invested into AI that playsanalytial games (Shae�er and Van den Herik, 2002; Van den Herik, Uiterwijk, andVan Rijswijk, 2002; Van den Herik, Iida, and Heinz, 2003). The vast majority ofthis researh fousses on deterministi, perfet information games (Halk and Dahl,1999). The aforementioned di�erenes between analytial games and ommerialgames are a reason that most analytial-game researh has little appliability toommerial games. There are many problems in the �eld of ommerial-game AIthat are untouhed by analytial game researh, suh as path�nding, spatial andtemporal reasoning, and deision making under high unertainty (Buro, 2003b).This thesis investigates ommerial-game AI. The researh has little overlap withanalytial game researh. Heneforth, the term `game' will be used to refer to a`ommerial omputer game'.1.2 Game AIThe popularity surge of ommerial games has stimulated the growth of the game-development industry until its revenues surpassed those of the Hollywood movieindustry (Hause, 1999; Fairlough et al., 2001; Snider, 2002). Traditionally, game-



1.2 � Game AI 5development ompanies ompeted by reating games with superior graphis. Nowa-days they attempt to ompete by o�ering a better game-play experiene (Tozour,2002b; Graepel, Herbrih, and Gold, 2004). The behaviour of game haraters isan essential element of game-play. Game AI is de�ned as the deision-making al-gorithms of game haraters, that determine the haraters' behaviour (Wright andMarshall, 2000; Allen et al., 2001; Fairlough et al., 2001; Nareyek, 2002). GameAI has beome an important selling point of games (Laird and Van Lent, 2001; For-bus and Laird, 2002). However, even state-of-the-art game AI is, in general, of lowquality (Laird and Van Lent, 2001; Shae�er, 2001; Buro, 2004; Gold, 2004). GameAI an bene�t from aademi researh into ommerial games (Forbus and Laird,2002), although this researh is still in its infany (Laird and Van Lent, 2001).It should be noted that the term `game AI' is used di�erently by game develop-ers and aademi researhers (Funge, 2004; Gold, 2004; Nareyek, 2004). Aademiresearhers restrit the use of the term `game AI' to refer to intelligent behavioursof game haraters (Wright and Marshall, 2000; Allen et al., 2001; Funge, 2004).In ontrast, for game developers the term `game AI' is used in a broader sense toenompass tehniques suh as path�nding, animation systems, level geometry, olli-sion physis, vehile dynamis (Tomlinson, 2003) and even the generation of randomnumbers (Rabin, 2004a).In this thesis the term `game AI' will be used in the narrow, aademi sense.Furthermore, the term `agent' will be used to refer to any deision-making gamepresene, whether it is a `visible' agent (e.g., a reature that attaks the player), orit is an `invisible' agent (e.g., the ommander of an army that opposes the player).The fous of this thesis lies on agents that ompete with a human player. Theseagents are alled `opponents'.In general, game AI may operate on three levels of intelligene, namely (i) oper-ational, (ii) tatial, and (iii) strategi. On the operational level, game AI ontrolsthe movements and individual ations of an agent. On the tatial level, game AIdetermines sequenes of ations for an agent to aomplish a spei� goal in an envi-ronment. On the strategi level, game AI engages in long-term planning of deisionsfor an agent. This thesis disusses game AI at all three levels of intelligene.The remainder of this setion disusses the goals that game AI aims to ahieve(1.2.1), and the state of the art in game AI (1.2.2).1.2.1 GoalsThe purpose of a game is to provide entertainment (Tozour, 2002b; Nareyek, 2004).By extension this is also the purpose of game AI. Thus, the question that is in theforefront of any game-AI programmer's mind is: �How an game AI ontribute to agame's entertainment value?�Most games pose a hallenge to human players in the form of opponents, whosebehaviour is ontrolled by game AI. Three important issues with respet to the en-tertainment value that opponents provide are the following. First, a hallenge is notentertaining when it is too easy or too hard (Graepel et al., 2004). Seond, mosthuman players who are defeated by a omputer will be disappointed if they feel they



6 Introdutionlost undeservedly. Third, human players generally appreiate an agent maintainingthe illusion that it is really intelligent (Sott, 2002). Considering these three issues,the following is a (not neessarily exhaustive) list of seven goals, arranged aord-ing to inreasing di�ulty, that game AI aspires to for providing an entertaininghallenge. The better game AI ahieves the goals, the higher its quality.No obvious heating: An agent heats when it uses information or exeutes a-tions that are in priniple unavailable to the human player. For most gamessome form of heating by game AI is unavoidable (Sott, 2002) and imple-mented deliberately. This is not neessarily a problem, as long as the heatingis not too obvious. In general, state-of-the-art games do not employ obviousheating to reate hallenging opponents.Unpreditable behaviour: An agent whose ations are preditable is usually easyto defeat (if not plain boring) and does not present an illusion of intelligene(Crawford, 1984). With random variations on manually designed behaviourunpreditable behaviour an be ahieved easily. Unfortunately, with randomvariations game AI will not always be equally hallenging. 4 Expert humanplayers may prefer non-random behaviour, as long as it provides a stronghallenge.No obvious inferior behaviour: The moment an agent performs a learly bone-headed ation, the illusion of its intelligene is shattered (Crawford, 1984). Ob-vious inferior agent behaviour is often the result of programming mistakes thatwent undeteted during a game's `quality assurane' phase (Tozour, 2002a).Even state-of-the-art games do not sueed in avoiding suh behaviour entirely.Using the environment: Games are ommonly situated in a virtual world, witha wealth of environmental features that an be tatially exploited. To allowagents to exploit them equally well as human players, some game developerslet the game AI take environmental features into aount. Usually, this isrealised by adding markings to the environment (Lidén, 2002; Tomlinson, 2003;Orkin, 2004b), or by allowing the environmental features to ommuniate theirpossibilities to the game AI (Orkin, 2002, 2004a). One step further, game AI isable to explore and analyse a game world by itself to form new tatial plans.As yet, advaned game AI with suh apabilities is only explored in aademiresearh, e.g., by Laird (2001).Self-orretion: Far worse than an agent that makes an exploitable mistake, is anagent that onsistently repeats the same mistake. To allow game AI to avoidthe repetition of mistakes, it should be able to (i) reognise a mistake, and (ii)hange the agent's behaviour to avoid the mistake in the future. The behaviourlearning must take plae `online', i.e., while the game is being played, beausegame AI must learn from the mistakes it makes in atual game-play situations.4In the soure ode of the game AI of version 1.31 of the game Neverwinter Nights thefollowing hange omment an be found, dated September 19, 2002: �Removed randomness fromTalent system. You an't have smart AI and random behavior.�



1.2 � Game AI 7Furthermore, the learning must be unsupervised, beause the human playerannot be expeted to inform the game AI that a mistake was made. Asyet, there is no preedent of the suessful appliation of unsupervised onlinelearning in mainstream top-rated games (Manslow, 2002; Kirby, 2004).Creativity: Avoiding the repetition of mistakes usually an be ahieved by hang-ing parameters (e.g., reduing the ourrene rate of one ation in favour of another). When game AI is onfronted with a previously unonsidered situation(e.g., the human player using a surprising new tati), simple parameter hang-ing will be of little help. The game AI must reatively learn ompletely newbehaviour. For games, the most advaned form of adapting to new situationsin pratie is game AI that is allowed to hoose between a limited number ofprede�ned tatis (Johnson, 2004).Human-like behaviour: Similar to the ultimate goal of any AI researher, theultimate goal of a game-AI designer is to reate AI that rivals human intelli-gene. For games this is not an unreahable goal, beause game worlds havea limited sope. However, it is obvious that human-like game behaviour is anadvanement that an only be ahieved after all other mentioned goals havebeen reahed (Laird, 2001; Livingstone and MGlinhey, 2004).1.2.2 State of the ArtEven in state-of-the-art games the game AI laks sophistiation. Of the seven game-AI goals listed in Subsetion 1.2.1 only the �rst three are addressed by modern gameAI � and often not suessfully. The four main reasons for this low quality of gameAI are the following (adopted from Fairlough et al., 2001).
• The need for advaned graphis still overshadows the need for good game AI.
• Game-development ompanies and their publishers are distrustful of advanedAI tehniques.
• Game AI is usually added when the deadline for the release of a game ap-proahes, and there is little time left to experiment.
• Game developers ommonly lak aademi knowledge of AI.To develop better game AI, game-development ompanies need help from theaademi ommunity (Laird and Van Lent, 2001; Rabin, 2004b). This thesis om-prises an aademi ontribution to game-AI researh. Its fous is on the the �fthand the sixth goal listed in Subsetion 1.2.1: `self-orretion' and `reativity' � inbrief, its fous is on the investigation of `adaptive game AI'.



8 Introdution1.3 Adaptive Game AIAdaptive game AI is de�ned as game AI with the ability of self-orretion (i.e., theability to resolve faulty agent behaviour), and with the ability of reativity (i.e., theability to adapt suessfully to hanging irumstanes). Sine there is no preedentfor the use of adaptive game AI in state-of-the-art games, it should be onsideredarefully whether it is a good idea to enhane games with adaptive game AI. In thisrespet I will disuss the following three questions: (i) To what extent is adaptivegame AI bene�ial for games? (ii) Is adaptive game AI really neessary? and (iii)Can adaptive game AI ontribute to the purpose of games: providing entertainment?These questions are answered in Subsetions 1.3.1, 1.3.2, and 1.3.3, respetively.1.3.1 Bene�tsThe answer to the question �To what extent is adaptive game AI bene�ial forgames?� is that adaptive game AI (i) allows the hallenge level of a game to bemaintained automatially, and (ii) improves the e�etiveness of the `quality assur-ane' phase of game development.To illustrate why maintenane of the hallenge level of a game is bene�ial, Iprovide as an example the game AI of the seond game in the Baldur's Gate series:Shadows of Amn. Shadows of Amn is a so-alled `omputer roleplaying game'(CRPG). In the game the player ontrols a team of agents who exist in a world wherethey meet many enemies. Among the toughest enemy types are dragons (illustratedin Figure 1.3). Aording to CRPG tradition, dragons are both physially andmentally powerful reatures. While Shadows of Amn does not require the playerto �ght dragons, the designers realised that most players will attempt to do soanyway. Therefore they reated omplex game AI that should be able to humiliateany player bold enough to attak a dragon. Soon after the game's release, weaknessesin the game AI were disovered that players ould exploit to defeat any dragonin the game, even with a weak team.5 Furthermore, without exploiting game AIweaknesses, players ould still design superior tatis that, while unforeseen by thegame developers, allowed weak teams to take on dragons suessfully. It is trivial fora dragon to reognise that its urrent behaviour is inadequate to deal with tatisused by attakers that, aording to its domain knowledge, are no math for it. Werethe dragons ontrolled by adaptive game AI instead of stati game AI, an answer tothe superior and exploiting tatis ould have been disovered automatially, keepingup the hallenge level of the game.During the `quality assurane' phase of game development, adaptive game AI anbe used to spot weaknesses in manually-designed game AI, and to suggest alternativetatis. This appliation of adaptive game AI is an inexpensive investment that has5One of these exploits was that dragons only responded to visible attakers. As long as theattakers remained outside the visual range of a dragon while attaking, it would not �ght bak.A seond exploit was that the player team ould lay traps all around a dragon, that killed it assoon as they went o�. A dragon would not interfere with laying traps, even though it obviously isa hostile ation. These exploits were �xed in an add-on to the game that appeared one year afterthe initial release.
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Figure 1.3: A surprisingly meagre hallenge: a dragon in Shadows of Amn.the potential to deliver valuable results, risk-free (Spronk, Sprinkhuizen-Kuyper,and Postma, 2002; Chan et al., 2004). Even if game developers and publishers arehesitant to inorporate adaptive game AI in their games (whih they are), they anstill apply adaptive game AI during the `quality assurane' phase.1.3.2 NeessityThe answer to the question �Is adaptive game AI really neessary?� is that adaptivegame AI is sorely needed to deal with the omplexities of state-of-the-art games.Over the years games have beome inreasingly omplex, o�ering realisti worlds,freedom and a great variety of possibilities. The tehnique of hoie used by gamedevelopers for dealing with a game's omplexities is rule-based game AI, usuallyin the form of sripts (Nareyek, 2002; Tozour, 2002). The advantage of the use ofsripts is that sripts are (i) understandable, (ii) preditable, (iii) tuneable to spei�irumstanes, (iv) easy to implement, (v) easily extendable, and (vi) useable by non-programmers (Tozour, 2002; Tomlinson, 2003). However, as a onsequene of gameomplexity, sripts tend to be quite long and omplex (Brokington and Darrah,



10 Introdution2002). Manually-developed omplex sripts are likely to ontain design �aws andprogramming mistakes (Nareyek, 2002). Suessful adaptive game AI an ensurethat the impat of these mistakes is limited to only a few situations enountered bythe player, after whih their ourrene will have beome unlikely. Consequently, itis safe to say that the more omplex a game is, the greater the need for adaptivegame AI (Fairlough et al., 2001; Laird and Van Lent, 2001; Fyfe, 2004). In the nearfuture game omplexity will only inrease. As long as the best approah to game AIis to design it manually, the need for adaptive game AI will inrease aordingly.1.3.3 EntertainmentThe answer to the question �Can adaptive game AI ontribute to the purpose ofgames: providing entertainment?� is that the apability of adaptive game AI tomaintain the hallenge level of a game positively in�uenes the entertainment pro-vided by a game (Crawford, 1984).Game AI in most modern games is not hallenging. The appeal of Massive Multi-player Online Games (MMOGs), where human players hallenge eah other, stemspartly from the fat that omputer-ontrolled opponents often exhibit what hasbeen alled `arti�ial stupidity' (Shae�er, 2001) rather than arti�ial intelligene.Adaptive game AI has the potential to make the game AI more hallenging, sineit an learn automatially to defeat strong tatis used by the human player. Manyresearhers and game developers hold that game AI, in priniple, is entertainingwhen it is di�ult to defeat (Buro, 2003b).Furthermore, adaptive game AI, if implemented orretly, annot only be used tomake the game AI stronger, but also to sale automatially the hallenge level of thegame AI to the skills of the human player. On the subjet of game AI hallenges andentertainment, in his famous novel �2001: A Spae Odyssey�, Clarke (1968) writesabout the arti�ially intelligent omputer HAL 9000:�For relaxation [the astronauts℄ ould always engage HAL in a large num-ber of semi-mathematial games, inluding hekers, hess, and polyomi-noes. If HAL went all out, he ould win anyone of them; but that wouldbe bad for morale. So he had been programmed to win only �fty perentof the time, and his human partners pretended not to know this.�While it might be questioned whether adults are entertained when they wina game while knowing their opponent made deliberate mistakes, Clarke assumesorretly that humans, in general, will neither play a game when they know theyjust will be slaughtered, nor enjoy a game when they know their opponent is no mathfor them. The most enjoyable games are those that are played between opponentswith a omparative level of skill (Graepel et al., 2004). Therefore, if adaptive gameAI ontinuously sales a game's di�ulty level to the point that the human playeris hallenged, but not ompletely overpowered, the game will be most entertaining,and will remain entertaining even if the player's skill inreases through experiene.



1.4 � Sienti� Relevane 111.4 Sienti� RelevaneWhile games are generally onsidered to be a worthwhile researh subjet for soialand ultural sientists, they may leave the impression to be too frivolous an appli-ation for omputer sientists. This impression is misguided. Games are onsideredto be a driving fore behind the researh and development of 3D omputer graphisand animation (Pabst, 2000; Philips-Mahoney, 2002; Sawyer, 2002). I argue thatthey are worthy of the same position for the researh into arti�ial intelligene.For arti�ial intelligene researh, omplex modern games are truly hallengingappliations. They have the following four harateristis.
• Games are widely available. AI innovations implemented in games are sub-jeted to the srutiny of hundreds of thousands of human players (Laird andVan Lent, 2001; Sawyer, 2002).
• Games re�et the real world. Games an often be onsidered simulations ofaspets of reality. Therefore, game AI may apture features of real-worldbehaviour (Sawyer, 2002; Graepel et al., 2004).
• Games are a test-bed for human-like intelligene. While `real' human-like intel-ligene is not required for games, game AI must be able to simulate human-likebehaviour to a large extent. Therefore, games are ideally suited to pursue thefundamental goal of AI, i.e., to understand and develop systems with human-like apabilities (Laird and Van Lent, 2001; Sawyer, 2002).
• Games plae highly-onstriting requirements on implemented AI solutions.Requirements for game AI fore it to ahieve good results with limited ompu-tational resoures (Nareyek, 2002; Charles and Livingstone, 2004), free frompossible degradation (Charles and Livingstone, 2004), in noisy environments(Laird and Van Lent, 2001), and within a few trials.6By these harateristis, results ahieved with game AI are widely appliable.They may be transferred to many other problem domains, whih generally are lessrestritive. Ahieved results may ontribute to, amongst others, the �elds of mahinelearning, multi-agent systems, and robotis (Laird and Van Lent, 2001).1.5 Problem Statement and Researh QuestionsSetion 1.2 indiated that so far there is little aademi researh into ommerialgame AI. Setion 1.3 indiated that adaptive game AI does not exist yet in state-of-the-art games. Furthermore, it is argued that adaptive game AI an be bene�ialto games (1.3.1), that the need for adaptive game AI exists and will only inreasein the near future (1.3.2), and that adaptive game AI an ontribute to the purposeof games: providing entertainment (1.3.3).6The requirements are further disussed in Subsetion 2.3.4.



12 IntrodutionSuessful adaptive game AI ahieves the �fth and sixth goals listed for gameAI (1.2.1), and thus ontributes to the quality of game AI. The quality of gameAI is diretly related to its entertainment value (Tozour, 2002b). In this thesis itis assumed that mahine-learning tehniques an be used to implement adaptivegame AI. Several researh projets have investigated mahine learning for gameAI in simple games (Demasi and Cruz, 2002; Laramée, 2002a; Demasi and Cruz,2003; MGlinhey, 2003). However, omplex game AI (i.e., the game AI in omplexgames) so far is an untouhed area.7 Consequently, the problem statement disussedin this thesis reads as follows.Problem statement: To what extent an mahine-learning tehniquesbe used to inrease the quality of omplex game AI?To �nd an answer to the problem statement, four researh questions are formu-lated below.For expert players adaptive game AI is suessful if it inreases the e�etive-ness of opponents, and thus their hallenge level. Researh into ways to implemente�etive adaptive game AI is related to researh into the use of mahine learningfor agent ontrol, suh as evolutionary robotis (Arkin, 1998). In general, this re-searh fousses on learning during the development phase of the ontrol mehanism,so-alled `o�ine' learning. The �rst researh question therefore reads as follows.Researh question 1: To what extent an o�ine mahine-learningtehniques be used to inrease the e�etiveness of game AI?While game AI an be improved by o�ine learning during game development, theatual onfrontation with human players takes plae during the deployment phase ofa game. Game AI that adapts during the deployment phase of a game uses so-alled`online' learning. The seond researh question therefore reads as follows.Researh question 2: To what extent an online mahine-learningtehniques be used to inrease the e�etiveness of game AI?Most agent-AI researh, both inside and outside the �eld of game researh, as-pires to make agents as e�etive as possible. In games, highly e�etive game AIis entertaining for expert human players. However, suessful adaptive game AIshould provide entertainment for all players, not just expert players. Novie playersare entertained by game AI that mathes their skill. Entertainment in games is bestensured if agents are hallenging but not overpowering, against human players of alllevels of skill. The third researh question therefore reads as follows.Researh question 3: To what extent an mahine-learning tehniquesbe used to sale the di�ulty level of game AI to meet the human player'slevel of skill?7At least, as far as unsupervised learning is onerned. Subsetion 2.3.2 lists a few omplexgames with game AI that employs supervised learning.



1.6 � Thesis Outline 13Name Type AI level Agents SetionsBox-pushing robot movement operational 1 3.3Food-gathering searh & avoid operational 1 3.4Duelling spaeships RTS game operational 1 4.1Quake ation game tatial 4 4.2Simulated CRPG CRPG tatial 4 5.2�5.4Neverwinter Nights CRPG tatial 4 5.5Wargus RTS game strategi > 50 6.2�6.4Table 1.1: Game and game-like environments investigated in the thesis.This thesis aims at providing a pratial approah to the design and implemen-tation of adaptive game AI. Consequently, it must onsider how adaptive game AI isbest applied by game-development ompanies. Hene, the fourth researh questionreads as follows.Researh question 4: How an adaptive game AI be integrated in thegame-development proess of state-of-the-art games?1.6 Thesis OutlineThe thesis investigates seven di�erent games and game-like environments. These arelisted in Table 1.1, with their relevant harateristis. From left to right, the �veolumns of the table display (i) the environment's name, (ii) the environment's type(game types are disussed in Subsetion 2.2.2), (iii) the level of intelligene on whihthe AI operates in the environment, (iv) the number of agents under the ontrol ofthe AI, and (v) the thesis setions in whih the environment is investigated.The outline of this thesis is as follows.Chapter 1 impliitly motivates the researh, and formulates the problem state-ment and four researh questions.Chapter 2 provides bakground information. It presents (i) a short overview ofthe mahine-learning tehniques used in this thesis, (ii) an overview of the state ofthe art in game-AI researh, and (iii) an exposition of the use of mahine learning ingame AI. It ontributes to answering all researh questions, in partiular the seondresearh question.Chapter 3 ontributes to answering the �rst researh question. It presents a novelevolutionary tehnique alled the `Doping-driven Evolutionary Control Algorithm'(DECA). When evolving the behaviour of agents in game-like environments, DECAis able to ahieve results that are more e�etive than results ahieved with traditionalevolutionary tehniques. DECA is empirially validated by two experiments.Chapter 4 ontributes to answering both the �rst and seond researh questions.It investigates empirially to what extent evolutionary learning an be applied toimprove game AI, both o�ine and online.



14 IntrodutionChapter 5 ontributes to answering the seond, third, and fourth researh ques-tions. It presents a novel tehnique for online adaptation of game AI, alled `dynamisripting'. The e�etiveness of dynami sripting is empirially on�rmed in a gamesimulation and in an atual ommerial game. It is also shown how dynami sriptingan be used to sale the game AI's di�ulty level.Chapter 6 ontributes to answering the �rst, seond, and fourth researh ques-tions. It disusses how o�ine adaptive game AI an be used to improve the reliabilityof online adaptive game AI, and how adaptive game AI an be integrated in the de-velopment proess of modern games.Chapter 7 �rst answers the four researh questions and then omes to a onlusiveanswer to the problem statement. It �nishes with several suggestions for futureresearh.



Chapter 2BakgroundIn every real man a hild is hidden that wants to play.� Friedrih Wilhelm Nietzshe (1844�1900).The fous of the present researh is on the use of mahine-learning tehniques toimprove the quality of game AI, spei�ally, to improve the deision-making apabil-ities of agents that ompete with a human player. This hapter provides bakgroundinformation in support of the researh, on three di�erent subjets, namely mahine-learning tehniques in Setion 2.1, games in Setion 2.2, and the appliation ofmahine learning to game AI in Setion 2.3. A summary of the hapter is providedin Setion 2.4.2.1 Mahine LearningThis setion provides a onise overview of the mahine-learning tehniques appliedin the present researh. It disusses evolutionary algorithms (2.1.1), arti�ial neuralnetworks (2.1.2), evolutionary arti�ial neural networks (2.1.3), evolutionary ontrol(2.1.4), and reinforement learning (2.1.5).2.1.1 Evolutionary Algorithms`Biologial evolution' (Dawkins, 1976, 1986) employs the theories of `natural sele-tion' (Darwin, 1859) and `natural genetis' (Mendel, 1866) to explain how omplexliving beings, tuned to their environment, have ome to exist. Evolutionary algo-rithms are searh-and-optimisation algorithms based on the priniples of biologialevolution. The most widely known evolutionary algorithm is the `geneti algo-rithm' (GA), developed by Holland (Holland, 1975; Goldberg, 1989; Bäk, 1996).Many other varieties of evolutionary algorithms have been invented, some of whihare even older than geneti algorithms. Examples are evolution strategies (Shwe-fel, 1965; Bäk, 1996), evolutionary programming (Fogel, 1962; Bäk, 1996), las-



16 Bakgroundsi�er systems (Holland, 1975; Goldberg, 1989), and geneti programming (Koza,1992; Kinnear, 1994). All evolutionary algorithms share the following �ve features.
• Population: Evolutionary algorithms optimise a olletion of potential solu-tions to a problem, alled a `population'.
• Chromosomes: Evolutionary algorithms enode the potential solutions. Theenoded solutions are alled `hromosomes'.
• Fitness funtion: Evolutionary algorithms assign eah hromosome in the pop-ulation a `�tness' value, that indiates how well the potential solution enodedin the hromosome solves the problem, ompared with the other potentialsolutions in the population.
• Geneti operators: To reate new hromosomes, evolutionary algorithms applytransformation methods, alled `geneti operators', to `parent' hromosomes,already existing in the population.
• Seletion: To selet parent hromosomes, evolutionary algorithms apply a se-letion mehanism to the population, whih gives the �ttest hromosomes thehighest hane to proreate.The idea is that an algorithm possessing these features will produe potentialsolutions that have a high hane of ontaining harateristis of well-working so-lutions. As long as the population has not onverged too muh, an evolutionaryalgorithm has the ability to esape from loal optima. Arguably the most impor-tant property of evolutionary algorithms is that the only requirement for applyingthem is the ability to de�ne an adequate �tness funtion. The main disadvantage ofevolutionary algorithms is that they are not guaranteed to �nd a good solution, noteven a mediore one (Goldberg, 1989).Geneti operators an be divided in three types, namely (i) reprodution opera-tors, that reate a hild hromosome by opying a parent hromosome, (ii) mutationoperators, that reate a hild hromosome by opying a parent hromosome andmaking hanges to it, and (iii) rossover operators (also alled `reombination op-erators'), whih ombine hromosome parts of two or more parent hromosomes toreate a hild hromosome.Eah of the aforementioned varieties of evolutionary algorithms presribes spei�implementations of hromosome enoding, geneti operators, seletion, and otherparameters. Nowadays researhers are unlikely to follow the presriptions, but usewhatever they think �ts best to the problem whih they attempt to solve. Theresearhers refer to their algorithm with the umbrella name `evolutionary algorithm'.Evolutionary algorithms are employed in Chapters 3, 4, and 6.2.1.2 Arti�ial Neural NetworksArti�ial neural networks, also alled simply `neural networks', are strutures thatan learn to emulate a (non-linear) funtion. A neural network onsists of a network
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Figure 2.1: Examples of four di�erent types of neural networks: (a) a pereptron,(b) a two-layer feed-forward network, () a general feed-forward network, and (d) areurrent (Elman) network.of interonneted nodes, or `neurons'. Eah neuron an reeive input signals fromother neurons via its inoming onnetions, and an send an output signal to otherneurons over its outgoing onnetions. Neurons in the so-alled `input layer' reeivesignals from outside the network. Neurons in the so-alled `output layer' provide areation to the reeived signals over their outgoing onnetions. Neurons that areneither in the input layer nor in the output layer are alled `hidden neurons'.For neuron n the output signal on is alulated as follows.
on = f((

∑

i

wiai) + b) (2.1)In this equation, wi is a weight value attahed to inoming onnetion i, ai is thesignal reeived via inoming onnetion i, b is a bias value, and f is a so-alled`ativation funtion'. Two ommon ativation funtions are (i) a threshold funtion,that maps the output of the neuron to either 0 or 1, and (ii) a sigmoid funtion, thatmaps the output to a value in the range [0, 1] (MCulloh and Pitts, 1943; Aleksanderand Morton, 1990; Russell and Norvig, 2003).Figure 2.1 displays examples of four ommon neural-network arhitetures,namely of (a) a pereptron, (b) a layered feed-forward network, () a general feed-forward network, and (d) a reurrent network.A pereptron, of whih an example is shown in Figure 2.1(a), is the simplest formof neural network (Rosenblatt, 1958; Minsky and Papert, 1988; Russell and Norvig,2003). It ontains only an input and an output layer.



18 BakgroundA layered feed-forward network, of whih an example is shown in Figure 2.1(b),ontains hidden neurons organised in a sequene of layers. Eah layer an reeiveinput signals from the immediately-preeding layer only. A layered feed-forwardnetwork with one hidden layer is ommonly alled a `two-layer feed-forward net-work' (the seond layer being the output layer; by onvention the input layer isnot ounted). A single-layer feed-forward network is a pereptron (Aleksander andMorton, 1990; Russell and Norvig, 2003).A general feed-forward network, of whih an example is shown in Figure 2.1(),ontains hidden neurons organised in a sequene. Eah neuron an reeive inputsignals from all neurons in the input layer, and from all neurons that are before itin the sequene. In other words, all possible feed-forward onnetions are allowed(Bishop, 1995).1A feed-forward network is represented by an ayli graph. A reurrent networkis represented by a yli graph. It does not limit its onnetions to a feed-forwardstruture. A well-known form of reurrent network is the so-alled `Elman network',of whih an example is shown in Figure 2.1(d) (Elman, 1990). An Elman networkorganises hidden neurons in layers. Reurrent onnetions are allowed between neu-rons within a layer. The reurrent onnetions are used to feed the output of neuronsbak into the network with a time-delay. Hene, they allow the network to supporta short-term memory.A neural network must be trained to emulate a desired funtion. This is om-monly done with the help of a set of typial training samples, alled the `trainingset'. A well-known algorithm that trains a neural network is `bakpropagation'.This algorithm tests inputs from the training set, and propagates the error betweenthe ahieved and desired outputs bak into the network, updating the onnetionweights (Aleksander and Morton, 1990; Russell and Norvig, 2003). When the aver-age error on the training set is minimised, the network is validated using a `test set'of typial samples, di�erent from the training set. If the network ahieves inferiorresults on the test set, this is usually aused by the network over�tting the trainingset. Common auses for over�tting are the use of a network with too many nodes,or the use of a training set with too few or untypial samples.Neural networks are used in Chapters 3 and 4.2.1.3 Evolutionary Arti�ial Neural NetworksEvolutionary arti�ial neural networks use the power of evolutionary algorithms todesign neural networks. A typial appliation of evolutionary algorithms to neural-network design is an alternative for neural-network-training algorithms to determinethe onnetion weights of the network. Other possibilities are the design of a net-work arhiteture and the tuning of network parameters. Combinations of these1The most appropriate name for a general feed-forward network is `feed-forward network'. In theliterature, however, suh networks are not onventional (Hertz, Krogh, and Palmer, 1991; Russelland Norvig, 2003), and the term `feed-forward network' is often used to denote layered feed-forwardnetworks. To avoid onfusion I will use the term `general feed-forward network' to denote networksthat allow any feed-forward onnetion.



2.1 � Mahine Learning 19possibilities, suh as designing the network arhiteture in parallel with determiningthe weight values, are also an option (Sha�er, Whitley, and Eshelman, 1992; Yao,1995). A ommon design for an evolutionary algorithm that builds neural networksis as follows (f. Albreht, Reeves, and Steel, 1993; Yao, 1995).
• The neural networks are enoded as a hromosome by storing all onnetionweight values. If the network arhiteture is evolved in parallel with the weightdetermination, for eah possible onnetion the hromosome also holds a bitthat indiates whether the onnetion is present or absent.
• The �tness is de�ned by the error on a training set, where the �tness inreasesas the error dereases.
• Besides `regular' geneti operators, often geneti operators are used that aretailored for neural-network evolution. Three examples of suh geneti oper-ators are (i) operators that swith neurons between networks, (ii) operatorsthat enable or disable network onnetions, and (iii) operators that mutateneurons (Montana and Davis, 1989).A problem that arises with neural network evolution is that struturally dif-ferent networks may represent the same funtion. This is the problem of `om-peting onventions' (Sha�er et al., 1992).2 Competing onventions inrease thesize of the solution spae drastially, and marginalise the e�et of rossover opera-tors. While many solutions for ompeting onventions have been proposed (Hanok,1992; Karunanithi, Das, and Whitley, 1992; Alba, Aldana, and Troya, 1993; Braunand Weisbrod, 1993; Thierens, Suykens, Vandewalle, and De Moor, 1993), some re-searhers onsiously ignore the problem (Hanok, 1992), or restrit themselves tousing only mutation operators (`geneti hill-limbing') or small populations (Shaf-fer et al., 1992).The four main advantages of using evolutionary algorithms to design neural net-works instead of onventional training algorithms suh as bakpropagation are thefollowing.
• Evolutionary algorithms an design the neural-network arhiteture in paral-lel with the weight determination, while onventional algorithms usually arerestrited to just determining the weights.
• Evolutionary algorithms are designed to esape from loal optima.
• Evolutionary algorithms only require a �tness funtion, while onventional al-gorithms often need more information (e.g., bakpropagation needs the deriv-ative of the error funtion).
• Evolutionary algorithms an design a neural network with any arhiteture,while onventional training algorithms are restrited to spei� arhitetures(e.g., bakpropagation is restrited to feed-forward networks).2Alternative terms found in the literature are the `permutation problem', the `problem of iso-morphism' and the `strutural/funtional mapping problem'.



20 BakgroundA disadvantage is that evolutionary algorithms are not suited for loal optimi-sation. This means that when a solution lose to the optimum is found, the evolu-tionary algorithm will, in general, not be able to seek out the atual optimum. Thedisadvantage an be resolved by applying a loal-optimisation proedure (for exam-ple, one of the regular training algorithms) when it is observed that the evolutionaryalgorithm is unable to improve upon the best solution found.Evolutionary arti�ial neural networks are used in Chapters 3 and 4.2.1.4 Evolutionary ControlA `plant' is a proess that has input, output, and possibly an internal state. `Plantontrol' aims at generating desired plant output by manipulating the input. `Evolu-tionary ontrol' uses evolutionary algorithms to design plant ontrollers. Althoughontrol engineers rarely use evolutionary tehniques, they have been researhedwidely (Man and Tang, 1997; Fleming and Purhouse, 2001; Wang, Spronk, andTraht, 2003). Evolutionary algorithms an be used to hoose or tune parametersfor ontrollers (e.g., the P (roportional), I(ntegral), and D(i�erential) values for PID-ontrollers), or to design new ontrollers from srath. Evolutionary arti�ial neuralnetworks an be used as ontrollers, and in that ase are referred to as `evolutionaryneural ontrollers'.Two ompliating fators with plant ontrol are that (i) the output need not reatimmediately to the input, and (ii) the internal state may ause the plant to behavedi�erently in situations that, from the outside, seem to be equal. These ompliatingfators make it di�ult, if not impossible, to determine whether an output of a plantis desirable. For plant ontrol a training set, that ouples desirable output values toinput values, is therefore hard to design. Evolutionary ontrol ommonly analysesthe behaviour of the ontroller over a test-run to determine the �tness.The general design of an evolutionary-ontrol experiment is illustrated in Figure2.2. The experiment searhes for a suessful ontroller for a plant. The potentialontroller solutions are stored as hromosomes in a population. An evolutionaryalgorithm selets parent hromosomes from the population. It applies geneti oper-ators to these parent hromosomes to generate new ontrollers. A newly generatedontroller is tested by plaing it in a `ontrol loop'. In the ontrol loop, the on-troller sends ontrol signals to a plant, and reeives feedbak from the plant. Thetest results (indiating how suessful the ontroller was in ontrolling the plant) areused by the evolutionary algorithm to assign a �tness value to the new ontroller.The evolutionary algorithm then replaes one of the hromosomes in the populationwith a hromosome that represents the new ontroller.Elegane, whih is an aronym for Engineering Laboratory for Experi-ments with Geneti Algorithms for Neural Controller Evolution, is an environ-ment I designed to do experiments with evolutionary neural ontrollers (Spronk,1996; Spronk and Kerkho�s, 1997). It is easily extendable and supports bothfeed-forward and reurrent neural ontrollers, a wide range of geneti operators andevolutionary algorithm parameters, and many di�erent plants.33Elegane is freely available through the Internet from the author's homepage.
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Figure 2.2: General design of an evolutionary ontrol experiment.Inspired by the enoding of Maniezzo (1993), the evolutionary algorithm em-ployed in Elegane allows evolving the network's weights in parallel with its arhi-teture. The network is diretly enoded into a hromosome onsisting of an arrayof `onnetion genes'. Eah onnetion gene represents a single possible onnetionof the network and onsists of a single bit and a real number. The bit representsthe presene or absene of a onnetion and the real value spei�es the weight ofthe onnetion. In this enoding sheme, even absent onnetions have a weightassoiated with them. The weight values of inativated onnetions funtion as akind of latent memory that an be reativated by a mutation of the onnetion bit.Evolutionary ontrol is employed in Chapters 3, 4, and 6. Elegane is used forexperiments desribed in Chapters 3 and 4.2.1.5 Reinforement LearningReinforement learning is used to train an agent to exhibit spei� behaviour byrewarding and penalising agent ations oupled to states. State/ation-pairs thatdrive the agent to desirable states are strengthened, while state/ation-pairs thatdrive the agent to undesirable states are penalised. Rewards and penalties are usuallyawarded with a delay, beause, when an agent has arrived at a state where a reward orpenalty is given, not only the last ation whih the agent performed should reeivethe award, but the whole sequene of ations responsible for reahing the state(Mithell, 1997; Sutton and Barto, 1998; Russell and Norvig, 2003).Temporal-Di�erene (TD) learning is a form of reinforement learning that learnsa Q-funtion, whih is an evaluation funtion for ations. One a good Q-funtionhas been derived, the suess of new ations an be predited and so the ation withthe highest expeted reward in a given situation an be seleted. A drawbak of usingTD-learning is that in pratie many thousands of training iterations are requiredfor the Q-funtion to onverge (Mithell, 1997). An example of the appliationof reinforement learning in games, is TD-Gammon, a program that learned to



22 Bakgroundplay Bakgammon with TD-learning, using millions of training samples (Tesauro,1992; Mithell, 1997; Tesauro, 2002).Reinforement learning is similar to evolutionary ontrol in the sense that bothuse an evaluation of the behaviour of an agent (or ontroller) to assign rewards andpenalties. The major di�erene is that reinforement learning is a gradient-searhmehanism, that improves one solution by ontinuously making small hanges to it,while evolutionary ontrol examines eah solution one and generates new solutionsusing undireted geneti operators.Reinforement learning is employed in Chapters 5 and 6.2.2 GamesThis setion provides a onise overview of omputer games. It presents a shorthistory of games (2.2.1), an overview of di�erent types of games (2.2.2), and thestate of the art in game-AI researh (2.2.3).2.2.1 HistoryThe very �rst game in the long lineage of ommerial omputer games was Tennisfor Two, whih is similar to Pong. It was reated in 1958 by W. A. Higinbotham,and ran on a Brookhaven National Laboratory osillosope.4 The �rst game that ranon a omputer was Spaewar, reated in 1962 by Steve Russell at MIT on a PDP-1omputer. In the game, illustrated in Figure 2.3, two players ontrol spaeships that�re rokets at eah other until one of them is destroyed (Levy, 1984). A versionof Spaewar, named Computer Spae, was released by Magnavox as the �rstommerial onsole game in 1971. Magnavox' example was soon followed by othermanufaturers who released game onsoles, the most famous probably being the1977 Atari VCS (Baratz, 2001).Inexpensive miro-omputers have been sold sine the early 1970s. They beamepopular in 1977 with the release of the TRS-80 and the Apple II omputers. Theseomputers were meant both for both business and home users. For the latter group,games were built and published by dediated game ompanies suh as EletroniArts, Infoom, Origin, Sierra, and SSI. While originally game developers neededto support a wide variety of omputers, in the mid-1980s the IBM-PC beame theindustry standard for home omputing and thus for home gaming. In parallel de-velopment, gaming onsoles (dediated game omputers that are hooked up to atelevision set) beame popular, starting with the Nintendo Entertainment Systemin 1986 (Baratz, 2001).4Many argue that the very �rst game was Ti-Ta-Toe, programmed in 1952 by A. S. Douglasfor the EDSAC omputer, whih used a athode-ray tube to display the playing grid. However,in my opinion Ti-Ta-Toe is an analytial game, and as suh does not deserve the title of �rstommerial omputer game. Note that omputers played analytial games even before 1952: in1951 D. G. Prinz built a Chess-playing program, that was the �rst program to solve a Chessproblem (Van den Herik, 1983).
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Figure 2.3: Spaewar, great-great-grand-parent of modern games.The ontinuous advanes in proessing power and apabilities of home omput-ers, aused games to beome inreasingly omplex. While in the 1980s a team of�ve people ould reate a top-rated game, in the 1990s game-development teamsonsisted of hundreds of people. The ost of produing a game grew aordingly.Sine the start of the twenty-�rst entury, the game industry has grown to surpassthe multi-billion-dollar Hollywood movie industry in revenues (Fairlough et al.,2001; Snider, 2002). The market for PC and onsole games now only allows for largegame-development ompanies, supported by wealthy publishers. For the smallerdevelopers, a new market has opened up with handheld gaming. It is, however, onlya matter of time before the domain of handheld game development also is taken overby large game developers (Spronk and Van den Herik, 2003).For a long time the proessing power of omputers was mainly invested into re-ating better graphis. In the late 1990s speialised 3D video ards beame a�ordableand widespread. This freed up proessing power for other game-play features, suhas arti�ial intelligene (Tozour, 2002b). Game-AI programming has beome animportant ativity in game development, instead of something that is added in thelast weeks before a game is released. Therefore the subjet of this thesis, game AI,is relevant for the game industry as it exists today.2.2.2 Game TypesGames an be divided into di�erent ategories. There is no general onsensus onwhat those ategories are.5 My view is that there are six ategories of games: a-tion games, adventure games, puzzles, role-playing games, simulations, and strategygames. I disuss the di�erent ategories below.Ation: Ation games are games that require players to use mainly their re�exes tobeat the game. The �ve main types of ation games are arade games (suh as5For example, Fairlough et al. (2001) distinguish `ation games', `adventure games', `role-playing games' and `strategy games'. Shae�er (2001) adds to these `god games' and `sports games'.Laird and Van Lent (2001) have a similar view, but make a lear distintion between `team sportsgames' and `individual sports games'.



24 BakgroundPaman), platform games (suh as Prine of Persia), sports games (suhas FIFA Soer), 3D shooters (suh as Quake), and 3D sneakers (suh asThief). Nowadays the �rst two types have almost died out, while the othersare arguably the most popular types of games available. The game AI in ationgames ontrols individual agents on an operational and tatial level.Adventure: Adventure games are story-driven games that require players to fol-low a spei� path towards the end of the game. The path is littered withpuzzles of all kinds that players must solve, using their intelletual skills. Thetwo main types of adventure games are text adventures or interative �tion(suh as Zork), and graphial adventures (suh as King's Quest). Nowadaysthe adventure-game genre seems to have almost died out, although amateurs,some surprisingly talented, still produe these games (Montfort, 2004). Char-aters in adventure games an only reat in a pre-de�ned way to spei� playerations. As suh, game AI is absent for adventure games. 6Puzzle: Puzzle games are games that require players to apply their intelletualskills to solving a puzzle. The two main types of puzzle games are time-freepuzzles (suh as Sokoban), and time-onstrained puzzles (suh as Tetris).Puzzle games are, in general, not very popular, exept for handheld omputers.Puzzles do not require game AI.Role-playing: Computer role-playing games (CRPGs) are story-driven games thatrequire players to assume the role of a game harater. Players are sent ona quest, usually with a fantasy or a siene-�tion theme. The quest mainlyinvolves exploration and tatial ombat. The two main types of CRPGsare single-player CRPGs (suh as Baldur's Gate), and massive multiplayeronline games (suh as EverQuest). After almost having died out in the1990s, CRPGs have beome quite popular again nowadays. The game AI inCRPGs ontrols individual agents on an operational and tatial level.Simulation: Simulation games are games that require players to observe and inter-at with a simulation. The two main types of simulation games are god games(suh as The Sims), and vehile simulations (suh as Flight Simulator).Simulations always have been fairly popular. The amount of game AI thatpervades a simulation game depends on the level of realism of the simulation.Strategy: Strategy games are games that require players to use their strategi andtatial skills to guide a group of agents to vitory. The two main types ofstrategy games are turn-based strategy games (suh asCivilization andRail-road Tyoon), and real-time strategy games (suh asWarraft). Strategygames have been popular sine the 1990s. The game AI in strategy gamesontrols large groups of agents on an operational, tatial and strategi level.6Some adventure games, espeially text adventures, ontain haraters that exhibit seeminglyintelligent behaviour, but in general their hoie of ations is based on simple probability. Theyare not in the game as opponents for the player, but as puzzles to be solved (Lebling, 1980).



2.2 � Games 25Type Games SetionsAtion Quake 4.2Role-playing Simulated CRPG 5.2�5.4Role-playing Neverwinter Nights 5.5Strategy Duelling spaeships 4.1Strategy Wargus 6.2�6.4Table 2.1: Game types investigated in the thesis.Many games that are in existene today fall into more than one of the ategories.To stand out, game developers attempt to ombine game genres to reate an originalgame that exhibits the best of di�erent ategories (Slater, 2002). For instane,vehile simulations are often enhaned with ation elements, and ation games areoften enhaned with elements from strategy games. Complex game AI is enounteredmainly in role-playing games and strategy games.Table 2.1 lists the game types disussed in this thesis. From left to right, thethree olumns represent (i) the game type, (ii) the games of this type disussed, and(iii) the orresponding thesis setions.2.2.3 Game-AI ResearhGame AI is of interest to two di�erent groups, namely (i) game developers, who aspireto have game AI keep up with game enhanements, and (ii) aademi researhers,who profess to have a high-level view of the �eld of game AI. Surprisingly, there islittle ommuniation between these two groups (Sawyer, 2002). Game developersomplain that aademis fail to get out of their ivory tower to help them with thepratial implementation of game AI (Laird, 2000; Tozour, 2002b). Aademis laimthey annot get their foot in the door of game development, beause of industryserets (Sawyer, 2002; Buro, 2003a), tight shedules (Sawyer, 2002), and lak offunding (Laird and Van Lent, 2001; Sawyer, 2002). Consequently, game developersand game researhers tend to remain in their own ommunities.Fortunately, this trend is hanging. Game developers reognise they need helpfrom aademi ommunities to implement game AI that an ope with the om-plexities of modern games (Laird and Van Lent, 2001; Sawyer, 2002; Rabin, 2004b).Game resoures are freed up for more advaned game AI (Laird, 2000). Aademisare allowed aess to modern game engines for their researh (Laird, 2000), throughopen soure, or through toolsets released with the games. Nowadays, many aad-emi AI researhers attend game development onferenes, and oasionally a gamedeveloper visits an aademi onferene on game-AI researh.Not only game developers an bene�t from the work of AI researhers, but AIresearhers have muh to gain from the work of game developers as well. Sine thegoal of game AI is to make human players believe that their opponents are atuallyontrolled by other humans (Laird and Van Lent, 2001; Sawyer, 2002; Livingstoneand MGlinhey, 2004), modern games are nothing less than a pratial implementa-



26 Bakgroundtion of a Turing Test (Turing, 1950). Even small steps that AI researhers an taketowards human-like game AI are welomed by game developers, and, when imple-mented in an atual game, will be tested out in pratie (Laird and Van Lent, 2001).Furthermore, games are a popular pastime, whih may help to attrat students tothe �eld of AI researh, and gain attention from popular media.This thesis aims at bridging the gap between aademi researh and the dailypratie of game development. It investigates the appliation of mahine-learningtehniques to game AI. A major requirement of the tehniques investigated is theirpratial appliability in modern games.2.3 Mahine Learning and Game AIThis setion lari�es the three di�erent ways in whih mahine learning an beapplied to game AI, namely o�ine learning (2.3.1), supervised learning (2.3.2), andonline learning (2.3.3). It also disusses the requirements that online learning ofgame AI must meet (2.3.4).2.3.1 O�ine Learning`O�ine learning' of game AI is learning that takes plae while the game is notbeing played by a human (Charles and MGlinhey, 2004; Funge, 2004). This anbe learning from samples or learning by self-play (i.e., the omputer ontrollingall sides in the game). A typial appliation of o�ine learning is tuning game-AI parameters during the `quality assurane' phase of game development. A moreadvaned appliation is reating new tatis for opponents by self-play.Although o�ine learning is a ommon tehnique used in analytial games(Tesauro, 1992; Shae�er, 1997; Shae�er, Billings, Peña, and Szafron, 1999;Donkers, 2003; Enzenberger, 2003; Kosis, 2003; Van der Werf, 2004; Winands,2004) and is sporadially used in aademi researh of ommerial games (Ballard,1997; Laramée, 2002a; MGlinhey, 2003; Spronk and Van den Herik, 2003), theliterature provides little or no examples of o�ine learning used by professional gamedevelopers, other than tweaking a few parameters (Biasillo, 2002; Woodok, 2002).Neither did my own ontats with game developers turn up any evidene of o�inelearning in professional games. This is somewhat surprising, sine o�ine learningtakes plae entirely `in-house', and therefore is the least risky appliation of mahinelearning to games. Chan et al. (2004) surmise that the use of o�ine learning of gameAI to help game designers and programmers for the purpose of quality assurane isthe �rst step to introdue mahine-learning tehniques in the game industry.In this thesis o�ine learning in games is disussed in Chapters 3, 4, and 6.2.3.2 Supervised Learning`Supervised learning' of game AI takes plaes while the game is being played by ahuman. It implements hanges to the game AI by proessing immediate feedbak on



2.3 � Mahine Learning and Game AI 27any deision that the game AI makes. The feedbak indiates whether a deision isdesired or undesired. With supervised learning of game AI the human player ontrolswhat is being learned, either by providing the game AI with samples of behaviour tobe imitated, or by rewarding desired behaviour and penalising undesired behaviour.When supervised learning is part of a game, it requires the ooperation of the hu-man player, i.e., the learning is part of the game-play design. Very few games inor-porate supervised learning. Two well-known examples of suh games areCreaturesand Blak & White. In both games, the agent behaviour is partly determinedby a learning struture (the agent's `brain'). In Creatures the learning strutureonsists of a neural network (Adamatzky, 2000), and in Blak & White it onsistsof a deision tree and pereptrons (Evans, 2001 & 2002; Fu and Houlette, 2004). Thehuman player trains the learning struture by rewarding agents when they exhibitdesired behaviour, and penalising them when they exhibit undesired behaviour.This thesis is on automati learning of game AI. Supervised learning is not au-tomati, for it requires human intervention. Therefore, supervised learning will notbe disussed further in this thesis.2.3.3 Online Learning`Online learning' of game AI is learning that takes plae while the game is beingplayed by a human (Charles and MGlinhey, 2004; Funge, 2004).7 Through onlinelearning, game AI automatially adapts in aordane with the human player's styleand tatis. There are two main reasons to implement adaptive game AI, namely (i)the game AI makes exploitable mistakes, whih makes the game too easy, and (ii)the game AI's skill is not in the same league as the human player's skill, whih makesthe game either too easy or too hard. Both reasons, if negleted, are detrimental toa game's entertainment value.Some aademi researh has investigated online learning in games (Demasi andCruz, 2002; Laramée, 2002b; Mommersteeg, 2002; Demasi and Cruz, 2003; Aha andMolineaux, 2004; Graepel et al., 2004; Le Hy, Arrigoni, Bessièrre, and Lebeltel, 2004;Jones and Goel, 2004; Leen and Fyfe, 2004; Spronk, Sprinkhuizen-Kuyper, andPostma, 2004; Ulam, Goel, and Jones, 2004). In pratie, however, game publishersare relutant to release games with online-learning apabilities (Funge, 2004). Theirmain fear is that the game learns inferior behaviour (Woodok, 2002; Charles andLivingstone, 2004). Therefore, the few games that ontain online learning, only doso in a severely limited sense, in order to run as little risk as possible (Charles andLivingstone, 2004).Two less-risky possibilities for online learning in games are (i) to hange automat-ially a few parameters (e.g., in Nasar Raing 2003 Season and The Fall ofMax Payne), and (ii) to swith automatially between several manually-designed7Supervised learning (2.3.2) also takes plae online. Therefore, to be absolutely lear, `onlinelearning' should be named `unsupervised online learning'. However, in the literature, when learn-ing is mentioned, it is usually assumed that unsupervised learning is meant. This thesis doesnot investigate supervised learning. I therefore use the shorter term `online learning' to refer to`unsupervised online learning'.



28 Bakgroundvarieties of the game AI, suh as di�erent formations of enemy groups (e.g., in De-sent 3: Merenary and WWII: Frontline Command). While these simpleattempts to implement adaptive game AI an be surprisingly e�etive (Funge, 2004),they are not always appreiated by game players.8In this thesis online learning in games is disussed in Chapters 4, 5, and 6.92.3.4 Online Learning RequirementsAfter a searh through the literature, personal ommuniation with game developers,and applying our own insights to the subjet matter, we arrived at a list of fouromputational and four funtional requirements, whih online adaptive game AImust meet to be appliable in pratie.The omputational requirements are neessities: failure of an online adaptive-game-AI tehnique to meet the omputational requirements makes it useless in pra-tie. The funtional requirements are not so muh neessities, as strong preferenesby game developers: failure of an online adaptive-game-AI tehnique to meet thefuntional requirements means that game developers will be unwilling to inlude itin their games, even when it yields good results and meets all four omputationalrequirements. The four omputational requirements are the following.Speed: Online learning in games must be omputationally fast, sine learning takesplae during game-play (Laird and Van Lent, 2001; Nareyek, 2002; Charles andLivingstone, 2004; Funge, 2004).E�etiveness: Online learning in games must reate e�etive game AI during thewhole learning proess, to avoid it beoming inferior to manually-designedgame AI, thus diminishing the entertainment value for the human player(Charles and Livingstone, 2004; Funge, 2004).10Robustness: Online learning in games has to be robust with respet to the ran-domness inherent in most games (Chan et al., 2004; Funge, 2004).E�ieny: Online learning in games must be e�ient with respet to the num-ber of trials needed to ahieve suessful game AI, sine in a single game, aplayer experienes only a limited number of enounters with similar groups ofopponents.8For instane, after the release of The Fall of Max Payne, many players omplained that ifthey played the game too well, the opponents soon ahieved apabilities that made them almostimpossible to defeat. Players started to take deliberate damage, in order to fool the game intoassuming the di�ulty level should not be inreased.9Note that the term `online' as used in this thesis should not be onfused with the popularmeaning of `online' to refer to ativities that are performed over the internet. For instane, thework of Baxter, Tridgell, and Waever (1998) in whih reinforement learning is applied to improvea Chess evaluation funtion using games played through the internet, is atually an example ofo�ine learning, sine the evaluation funtion is hanged only after the games have been played.10Usually, the oasional ourrene of a non-hallenging agent is permissible, sine the playerwill attribute an oasional easy win to luk. Note that, if adaptive game AI meets this requirement,the main fear of game publishers, that agents will learn inferior behaviour, is resolved.



2.4 � Chapter Summary 29The four funtional requirements are the following.11Clarity: Online learning in games must produe easily interpretable results, beausegame developers distrust learning tehniques of whih the results are hard tounderstand.Variety: Online learning in games must produe a variety of di�erent behaviours,beause agents that exhibit preditable behaviour are less entertaining thanagents that exhibit unpreditable behaviour.Consisteny: The average number of trials needed for adaptive game AI to produesuessful results should have a high onsisteny, i.e., a low variane, to ensurethat it is rare for players to �nd that learning in a game takes exeptionallylong.Salability: Online learning in games must be able to sale the di�ulty level ofits results to the experiene level of the human player (Lidén, 2004).To meet the four omputational requirements, an online learning algorithm mustbe of `high performane'. Aording to Mihalewiz and Fogel (2000), the two mainfators of importane when attempting to ahieve high performane for a learningmehanism are the exlusion of randomness and the addition of domain-spei�knowledge. Sine randomness is inherent in most games, it annot be exluded.Therefore, it is imperative that the learning proess is based on domain-spei�knowledge (Manslow, 2002).Obviously, it is hard to reate an online-learning tehnique for games that meetsall the eight requirements. However, the `dynami sripting' tehnique, disussed inChapter 5, is designed to do just that.2.4 Chapter SummaryThis hapter provided bakground information on the researh in this thesis. It dis-ussed mahine-learning tehniques used in the researh (evolutionary algorithms,arti�ial neural networks, evolutionary arti�ial neural networks, evolutionary on-trol, and reinforement learning), and gave an overview of ommerial omputergames and game-AI researh. It distinguished three di�erent ways in whih mahinelearning an be applied to game AI, namely (i) o�ine learning, (ii) supervised learn-ing, and (iii) online learning. For online learning four omputational requirementswere listed, namely the requirements of (i) speed, (ii) e�etiveness, (iii) robustness,and (iv) e�ieny. Furthermore, four funtional requirements were listed, namelythe requirements of (i) larity, (ii) variety, (iii) onsisteny, and (iv) salability. Thefous of this thesis is on unsupervised learning, that is, on o�ine and online learning.11The �rst two funtional requirements, the requirements of larity and variety, were expressedby three of the lead developers of BioWare Corp, during a personal exhange I had with them in2003.





Chapter 3Doping in Agent ControlBetter Living Through Chemistry.� Advertising slogan of Monsanto Corporation.Agents in games have a task to aomplish; usually, it is defeating a human player.Game AI ontrols the behaviour of the agents in game environments. The presenthapter1 investigates evolutionary ontrol of agents in game-like environments. Agame-like environment has two major harateristis with respet to agents, namely(i) agents have only a limited view of the environment, and (ii) agents an interatwith the environment to aomplish their tasks.Evolutionary ontrol is an e�etive tehnique for reating the ontrollers of theagents (2.1.4). To ahieve good results, evolutionary ontrol must deal with the`problem of hard instanes'. This hapter explores a novel tehnique designed toalleviate the problem of hard instanes, alled the `Doping-driven Evolutionary Con-trol Algorithm' (DECA). Setion 3.1 desribes the problem of hard instanes, andintrodues DECA. Setion 3.2 desribes the experimental proedure employed forevaluating DECA. Setions 3.3 and 3.4 are devoted to two experiments that on�rmDECA's e�etiveness. Setion 3.5 provides a general disussion of the experimentalresults. A summary of the hapter is provided in Setion 3.6.3.1 DECA and the Problem of Hard InstanesAgents in game-like environments have a task to aomplish. A `task instane' isa spei� example of the environment in whih the agent resides. Evolutionaryontrol an be used to determine the agent's behaviour in the environment (2.1.4).Evolutionary ontrol tends to favour ontrollers that solve easy task instanes, butthat fail to solve the hard ones. This phenomenon is alled `the problem of hardinstanes' (Spronk, Sprinkhuizen-Kuyper, and Postma, 2001a). It an be alleviatedby the Doping-driven Evolutionary Control Algorithm (DECA), whih is based on1This hapter is based on a paper by Spronk, Sprinkhuizen-Kuyper, Postma, and Kortmann(2003), and a submitted paper by Spronk, Sprinkhuizen-Kuyper, and Postma (2005).



32 Doping in Agent Controlthe notion of `doping'. This setion explains the problem of hard instanes (3.1.1),provides bakground information on doping (3.1.2), and de�nes and explains DECA(3.1.3). From hereon I will refer to a `task instane' with the shorter term `instane'.3.1.1 The Problem of Hard InstanesEvolutionary learning is e�etive for reating the ontrollers of situated agents(Arkin, 1998). When applying evolutionary learning to ontroller design, the map-ping exeuted by the ontroller is generated by setting the ontroller parameters. Thequality of ontrollers is de�ned in terms of an appropriate measure as determinedby the �tness funtion. In general, the �tness funtion is based on the evaluation ofa ontroller on a series of typial instanes varying in di�ulty from easy to hard.An easy instane is an instane for whih a solution an be found easily, i.e., in thesearh spae, solutions to easy instanes are abundant and loated in `�at' regions ofthe searh spae. In ontrast, a hard instane is an instane for whih it is di�ultto �nd a solution, i.e., in the searh spae, solutions to hard instanes are rare andloated at `peaks' surrounded by inferior solutions (Spronk et al., 2001a).In the evolutionary learning proess new ontrollers are generated by reombiningelements of previously-generated ontrollers, favouring those that have a relativelyhigh �tness. Obviously, a ontroller that solves at least one of the instanes isassigned a higher �tness value than one that solves no instanes at all. Sine it isvery likely that ontrollers that ope with easy instanes are disovered before thosethat ope with harder instanes, the performane on the easy instanes determinesthe ourse of the evolutionary proess to a great extent. Therefore, the evolutionarysearh is more or less on�ned to the regions of searh spae where most of thesolutions to easy instanes reside. Unless a good solution that overs both easy andhard instanes is found in the viinity of these regions, the end result is a ontrollerthat handles easy instanes well, but fails on the hard ones. This is alled `theproblem of hard instanes'.If the problem of hard instanes is not dealt with, evolutionary algorithms arebound to produe inferior solutions to task ontrol problems. To deal with the prob-lem of hard instanes, I propose the Doping-driven Evolutionary Control Algorithm(DECA). DECA is based on the notion of `doping', whih is explained below.3.1.2 DopingDoping is de�ned as the addition of some very good solutions to a population (usuallythe initial one) in order to failitate the evolution proess. These solutions may begenerated by a di�erent algorithm or may express the user's knowledge about theproblem domain (Dumitresu, Lazzerini, Jain, and Dumitresu, 2000). Commonterms used for similar tehniques are `seeding', `ase injetion' (Louis, 2002) and`infusion' (Spronk et al., 2001a). If there are di�erenes between the exat meaningsof these terms, they are not well de�ned. The term `seeding' is used in the literaturemost often. It refers to the injetion of any kind of geneti material into a population.



3.1 � DECA and the Problem of Hard Instanes 33I hose to use the term `doping' to refer to the injetion of omplete solutions intoa population, rather than the injetion of any kind of geneti material.The appliation of doping (or seeding) is restrited to those ases where it isimportant to retain spei� geneti material in the population (Dumitresu et al.,2000). The best-known example is in the `messy Geneti Algorithm' (mGA), wherein the primordial phase of the evolution the population is doped with all possiblebuilding bloks of a spei� length (Goldberg, Deb, and Korb, 1991). Sometimesdoping takes the form of inserting manually-designed solutions into the initial pop-ulation. An example is the work of Matthews et al. (2000) on a problem in land-useplanning where the initial population was doped with heuristi and expert-basedsolutions. In Case-Initialised Geneti Algorithms (Louis and Johnson, 1999), a solu-tion to a problem similar to the target problem is inserted in the initial populationto failitate the evolution proess in �nding a good solution to the target problem.Grefenstette and Ramsey (1992) reated an initial population that onsisted of 50per ent solutions that worked well in the past, 25 per ent manually-designed solu-tions for the problem in general, and only 25 per ent solutions generated randomly.While the examples mentioned above demonstrate bene�ial e�ets of doping, itshould be onsidered whether doping an be detrimental to the evolution proess.Doping geneti material that is unrelated to any known solution, as is done in themGA, does little harm to the �nal solution. However, doping an initial populationwith known solutions may lead to inferior results. The reason is that within apopulation of random solutions, a fairly good solution is likely to have the highest�tness, whih leads to onvergene to a loal optimum in the viinity of the dopedsolution. The evolution proess is used as a loal optimisation proess, rather thanas a method to san the searh spae. Good solutions that are too remote from thedoped solution are likely to be missed. In order for doping to yield good results intask-ontrol problems, the evolutionary proess needs to be biased to deal with hardinstanes. This is exatly what is done in DECA as will be detailed below.3.1.3 DECAThe Doping-driven Evolutionary Control Algorithm (DECA) ensures that the evo-lutionary searh is on�ned to those regions of the searh spae where the solutionsto hard instanes are likely to be found. In order to ahieve the bias, DECA appliesdoping as desribed in the following six steps.1. Training-set design: Selet a series of instanes that enompass most or allrelevant harateristis of a task.2. Hard-instane seletion: Identify a hard instane that enompasses most ofthe relevant harateristis.3. Hard-instane evolution: Evolve a good solution to the hard instane seletedin the previous step.4. Initialisation: Generate a random population and `dope' this population withthe solution evolved in the previous step.



34 Doping in Agent Control5. Evolution: Evolve good solutions to the omplete series of instanes seletedin step 1 using the doped population.6. Validation: Evaluate the validity of the evolved solution on a new seletion ofinstanes.If no domain knowledge is available to selet hard instanes in step 2, a (time-onsuming but generally appliable) way to identify hard instanes is to attemptto evolve separate solutions to all the instanes in the training set, and observe forwhih instanes the evolution proess takes the longest on average.DECA is expeted to yield good results beause I assume that there is an asym-metry in the searh spae with respet to easy and hard solutions (i.e., loal minimaof the �tness funtion). Solutions to easy instanes are readily found in the viinityof solutions to hard instanes, whereas the reverse is not true. The asymmetry isaused by the abundane of solutions to easy instanes and the relative sarity ofsolutions to hard instanes. The validity of this assumption is disussed in moredetail in Subsetion 3.5.1.3.2 Experimental ProedureTo evaluate the e�etiveness of DECA, two experiments were performed with twodi�erent tasks. The �rst task is a box-pushing task wherein a robot has to push a boxbetween two walls. The seond task is a food-gathering task in whih an agent hasto ollet food while avoiding to be damaged. For both tasks neural ontrollers wereused, whih are suitable adaptive strutures for situated agents (Arkin, 1998). Theweights and arhitetures of the ontrollers were generated using an evolutionaryalgorithm, using the Elegane environment (2.1.4).Preliminary experiments with the evolution of a neural box-pushing ontroller in-diated that a reurrent neural ontroller outperforms various kinds of feed-forwardontrollers on this partiular task (Sprinkhuizen-Kuyper, Postma, and Kortmann,2000b). I therefore deided for both experiments to use a neural network on�gu-ration that gave the best results in the preliminary experiments, namely an Elmannetwork (2.1.2) with a maximum of four hidden nodes, and the network outputvalues onstrained by applying a sigmoid funtion.In the experiments the following six geneti operators were employed, whihwere found to perform well in evolving solutions for other neural ontrol problems(Spronk, 1996).
• Uniform rossover : Child hromosomes are reated by opying eah allele fromone of two parents, eah parent having a 50 per ent hane of being seletedfor eah allele (Goldberg, 1989).
• Biased weight mutation (Montana and Davis, 1989): Child hromosomes areopies of parent hromosomes, with eah weight having a 5 per ent hane tobe mutated by adding a random value seleted from the range [−0.3, 0.3].



3.3 � Box-Pushing Behaviour 35
• Biased nodes mutation (Montana and Davis, 1989): Child hromosomes areopies of parent hromosomes, with all the input weights of one randomlyseleted node hanged by adding a random value seleted from the range

[−0.3, 0.3].
• Nodes rossover (Montana and Davis, 1989): Child hromosomes are reatedby opying eah of their nodes (inluding their input onnetions) from oneof two parents, eah parent having a 50 per ent hane of being seleted foreah node.
• Node existene mutation (Spronk, 1996): Child hromosomes are opies ofparent hromosomes, with a 95 per ent hane of having all inoming andoutgoing onnetions of one randomly-seleted node being removed, and a 5per ent hane of having all absent onnetions of a randomly-seleted nodebeing ativated.
• Connetivity mutation (Spronk, 1996): Child hromosomes are opies of par-ent hromosomes, with eah onnetion having a probability of 5 per ent toswith from being onneted to being disonneted and vie versa.During evolution, one of these six operators was seleted at random. For therossover operators, I arbitrarily deided to add only the �ttest of the two hildren tothe population, while the other hild was rejeted. To alleviate the problem of om-peting onventions (2.1.3) the hidden nodes of the parents were rearranged to maketheir signs math (insofar as possible) before a rossover took plae (Thierens et al.,1993). Newly-generated individuals replaed existing individuals in the population,while taking into aount elitism. Crowding (Goldberg, 1989) with a fator of 3 wasused as replaement poliy. For the seletion proess, size k tournament seletion(Goldberg and Deb, 1991) was used, with k = 2 for the box-pushing experiment and

k = 3 for the food-gathering experiment.In all experiments, the population size was equal to 100 and real-valued weightswere used. In preliminary experiments larger population sizes were tested, witha maximum of 250, but these did not give signi�antly better results. Based onthe observed onvergene rates, I set the maximum number of generations to 35for the box-pushing experiment, and to 30 for the food-gathering experiment. Pre-liminary experiments showed that in rare ases slightly better solutions ould beahieved if the evolution was allowed to ontinue for more generations, but in myview the onsiderable inrease in omputation time required was not worth the smallimprovement in performane.Having disussed the experimental proedure, I now turn to the desription ofthe two experiments to evaluate the e�etiveness of DECA.3.3 Box-Pushing BehaviourThe box-pushing task is the �rst task to evaluate DECA. The task involves thepushing of a box between two walls. A simpler version of the task was introdued



36 Doping in Agent Control

Figure 3.1: Simulation environment of the Khepera robot.by Lee, Hallam, and Lund (1997). Pushing an objet (in this ase a irular box)between two walls is an elementary behaviour that is relevant in, for instane, thegame of robot soer in whih a ball has to be pushed towards the opponent'sgoal (Asada and Kitano, 1999). The task is non-trivial, beause it requires theagent to adapt ontinuously to the position of the ball as pereived through thenoisy sensors. Elementary behaviours, of whih the box-pushing task is only anexample, are believed to underlie more omplex behaviours suh as target following,navigation and objet manipulation. I desribe the box-pushing task in Subsetion3.3.1, present the ahieved results using DECA in Subsetion 3.3.2, and provide adisussion of the results in Subsetion 3.3.3.3.3.1 The Box-Pushing TaskTo study box-pushing behaviour, a publily available mobile robot simulator wasemployed. The simulator is based on the widely used mobile robot Khepera (Mon-dada, Franzi, and Jenne, 1993). It is illustrated in Figure 3.1. The square area onthe left side is the robot world and measures 1000× 1000 units. The grey irle rep-resents the robot, the blak irle the box, and the six small blak dots the startingpositions of the box (the upper three dots) and the robot (the lower three dots).The starting positions an be ombined to nine instanes, that di�er in the initialon�guration of robot and box (illustrated in Figure 3.4).The (simulated) Khepera displayed in Figure 3.2 is equipped with eight sensorsand two motors, one for eah of the wheels. The sensors provide the robot with prox-imity values. For the purpose of the experiment, the simulator was oupled to theElegane environment. The Khepera simulation is ontrolled by a neural network
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Figure 3.2: Shemati overview of the Khepera robot, with a mapping to the neuralontroller inputs.with fourteen inputs, provided by the eight proximity sensors and six additionalvirtual `edge-detetor' sensors. The outputs of the virtual sensors are de�ned as thedi�erenes in proximity values between all pairs of neighbouring sensors, e.g., sensor8 gets the proximity value of sensor 0, from whih the proximity value of sensor1 is subtrated. It is important to note that the Khepera simulation is stohastibeause the sensors and ontroller outputs generate noisy signals.The motors driving the wheels are ontrolled by the outputs of two neural net-works, one for the left and one for the right wheel. Exploiting the mirror symmetryof the pereption-to-ation mapping, the two neural networks are idential exeptfor the mapping of sensors to network inputs and the de�nition of the signs of theedge-deteting inputs. Figure 3.3 illustrates the di�erent mapping and signs forboth networks. In the �gure, the small retangles at the left of the neural networksindiate the sensors. In these retangles, x − y indiates an edge detetor in whihthe value of sensor y is subtrated from the value of sensor x.The task set to the simulated robot was to push the box as far away as possiblefrom its starting position within a limited period of time. Figure 3.4 illustrates thenine instanes numbered 0 to 8. The box-pushing task is di�ult beause the robot(i) must identify the box, (ii) must remain behind the box while pushing, (iii) mustprevent the box from getting stuk, and (iv) must deal with noise generated bythe sensors and the motor ontrols. Preliminary experiments revealed that the nineinstanes exhibited these di�ulties in various degrees. For instane, in instanes 0,4, and 8, the box is positioned diretly in front of the robot, whih means the robotan perform its task by simply moving forward and orreting for small deviations.Instanes 2 and 6 are harder sine the initial separation of the robot and box is largerthan in instanes 0, 4, and 8. Instanes 3 and 5 an be onsidered the most di�ultbeause in these tasks the robot su�ers more from the roughness of the walls thanin any of the other instanes (Spronk et al., 2001a).At �rst glane it may seem that instanes 2 and 6 are equally di�ult, if notmore di�ult than instanes 3 and 5. However, I found that, in general, evolving aontroller for instanes 3 and 5 takes onsiderably longer than for instanes 2 and
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Figure 3.3: The two almost idential networks that drive the left and right robotmotors. The network inputs are proximity values derived from the robot in Figure3.2.6, with worse results for the �nal �tness values reahed. The explanation for theseounterintuitive results is as follows. In instanes 2 and 6, the robot travels a longerdistane from its starting position to the box than in instanes 3 and 5. The longerdistane allows the robot more time and more room to manoeuvre to a good positionto slide the box along the wall. In instanes 2 and 6 the robot learns to positionitself diretly `below' the entre of the box. In instanes 3 and 5, the robot has lesstime and less room to manoeuvre to a good position, and so it tends to push the box`sideways', thereby hitting the wall under an inonvenient angle. This is illustratedin Figure 3.4. In this �gure, the irles shown are the robot (largest irles) andthe irular box (slightly smaller irles) at their initial (bottom) and �nal (top)positions. The lines onneting the initial to the �nal positions represent typialpaths followed by the robot and the box.Sprinkhuizen-Kuyper, Kortmann, and Postma (2000a) determined a suitable �t-ness funtion to measure the suess of the robot's behaviour in this experimentalsetup. I opied their �tness funtion, whih is de�ned as follows. If robott is theposition of the robot at time t, and boxt is the position of the box at time t, the�tness value assigned to a robot upon ompletion of a single instane i is de�ned asfollows.
Fi = di(boxT , box0) −

1

2
di(boxT , robotT ) (3.1)In this equation, di(boxT , box0) represents the Eulidian distane between the initial(t = 0) and �nal positions (t = T ) of the box, and di(boxT , robotT ) the Eulidiandistane between the robot and the box at their �nal positions for instane i (alldistanes are alulated between the entres of the objets). An experimental trialomprises T = 100 steps on eah of the nine instanes. The average �tness Favg on
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Figure 3.4: The nine instanes (0 to 8) and typial trajetories of the robot and thebox. Note that the roughness of the walls hinders the robot in sliding the box alonga wall.a trial is de�ned as the average �tness over all instanes, i.e., Favg = 1
9

∑8
i=0 Fi.In the present experiment, to redue the e�et of the noise the overall �tness Fwas de�ned as the average of the trial �tness values over a number of R repetitionsof trials, i.e., F = 1

R

∑R
r=1 F r

avg
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avg
representing the average �tness Favgobtained at the r�th repetition. Computational resoures onstrained the numberof repetitions. The number of repetitions was varied between R = 1 and R = 100depending on the following onsiderations. In preliminary experiments I alreadydetermined that ontrollers with a �tness value of 250 or less on a single trial areinferior, and remain inferior on repliations of the trial.2 The ontribution of inferiorontrollers to the evolution proess is limited, and onsequently their ranking neednot be very preise, espeially sine tournament seletion is used. Therefore, in aseof suh low �tness values, a single trial su�es (R = 1). For higher �tness values,the number of repetitions was set to R = 10. For a ontroller that has the potentialto be the best of the population, the overall �tness was determined on the basis of

R = 100 repetitions. Using this proedure the overall �tness of the �ttest ontrollerhas a standard error of the mean of about 1.3, yielding an auray of about 2.5�tness points (reliability of 95%; Cohen, 1995).The validity of the evolved ontrollers was on�rmed by testing them on a realKhepera robot. The ontrollers proved to be e�etive and e�ient in letting a realKhepera robot push a irular box between walls. It is my opinion that this suessis owing to the high amount of noise inherent in the simulation, whih requires anevolved ontroller to be robust (Jakobi, 1997).3.3.2 Results of the Box-Pushing ExperimentOne experiment without doping and ten experiments with doping using various solu-tions were performed, and the overall �tness values were determined. For the doping2I determined empirially that, in general, ontrollers with a �tness value of 250 or less workedwell on the easy instanes 0, 1, 4, 7 and 8, but were unable to deal with the hard instanes 2, 3, 5and 6.
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Figure 3.5: Fitness values of experiments with doping of a solution to a singleinstane (`0' to `8'), without doping (`no') and with doping of all solutions (`all').From left to right, the bars represent the average, the highest, and the lowest �tness.experiments DECA was applied by exeuting the six steps desribed in Subsetion3.1.3. Figure 3.4 shows examples of the trajetories of suessful robots on the nineinstanes. To determine how doping with a solution to a hard instane omparesto doping with a solution to an easy instane (instead of seleting a hard instane,as presribed in step 1), I performed separate doping experiments with solutionsto eah of the nine instanes (that vary from easy to hard). In addition, a dop-ing experiment using solutions to all instanes was performed. The average �tnessvalues were obtained by averaging over the highest �tness values obtained in sevenrepliations of eah of the experiments.I expeted that doping with ontrollers trained on the hardest instanes 3 and5 to yield the best results. Indeed this was what I found. Figure 3.5 displays theresults obtained with doping using ontrollers trained on a single instane (labelled`0' to `8'), without doping (labelled `no') and with doping using ontrollers trainedon all nine instanes (labelled `all'). Doping with ontrollers trained on instanes 3and 5 yield the best results (average �tness of 320.3 and 319.5, respetively), and themost onsistent results (highest/lowest �tness values 322.9/318.1 and 322.1/316.8,respetively). Doping with ontrollers trained on all tasks yields better results thandoping with ontrollers trained on instanes that are easy or moderate (i.e., instanes0, 1, 2, 4, 6, 7, and 8). Presumably, the inlusion of solutions to the hardest instanesontributes to the high �tness obtained in this ase. It should be noted, however,that while doping with all instanes gives the highest �tness, the results have a muhhigher variane than those obtained by doping with ontrollers trained on instanes3 and 5 (highest/lowest �tness values 323.0/304.3). I assume that the reason for thisis that the evolutionary algorithm oasionally onverges to a loal optimum nearto the optimal solution for instanes other than 3 and 5.



3.4 � Food-Gathering Behaviour 41Overall, these results show that on the box-pushing task DECA gives a signi�-ant improvement over non-doped evolutionary learning. The solutions found alsoperform onsiderably better than those found for the same problem by Sprinkhuizen-Kuyper (2001).3.3.3 Disussion of the Box-Pushing ExperimentThe box-pushing experiment was not spei�ally designed to test DECA. Yet, I waspleasantly surprised by the improved results obtained by applying DECA. Notwith-standing these results, it must be aknowledged that the box-pushing experimenttask is of limited value for evaluating DECA. The reason is that it su�ers fromtwo main shortomings, namely (i) the task is based on a stohasti simulation re-quiring many repetitions to obtain reliable results, and (ii) the lak of variety inpossible instanes preludes the assessment of the ability to generalise beyond theinstanes given (even though the ontroller's ability to generalise was demonstratedby applying it to a real Khepera).I expeted that the suess of DECA an be generalised to other evolutionaryontrol tasks. To support this expetation, I deided to evaluate DECA on a seondontrol task, designed to deal with the limitations of the box-pushing experiment.3.4 Food-Gathering BehaviourThe food-gathering experiment was designed to have the following two requirements:(i) the task should be deterministi, and (ii) the task should allow for generatinginstanes with variable levels of di�ulty. The food-gathering task is desribed inSubsetion 3.4.1, the ahieved results using DECA are presented in Subsetion 3.4.2and a disussion of the results is provided in Subsetion 3.4.3.3.4.1 The Food-Gathering TaskThe food-gathering task is designed as follows. A rabbit is plaed on a square two-dimensional grid of N ×N ells. The rabbit an move by one step in eah of the fourorthogonal diretions: north, east, south and west. The grid has periodi boundaryonditions, i.e., it is de�ned as a torus. As illustrated in Figure 3.6, the rabbit's �eldof vision enompasses all ells that are within two moves from its urrent position. Aell may be empty, it may ontain one or more arrots, or it may ontain one or morepoison bottles. If the rabbit enters a ell that ontains c arrots, it removes (eats)all of them leaving an empty ell, and inreases its sore by c points. If the rabbitenters a ell with p poison bottles, it dereases its sore by p points. In ontrast toarrots, poison bottles are not removed from the grid when visited by the rabbit. Ineah experimental trial, a rabbit has to sore as many points as possible within 100moves. Initially, the rabbit is always positioned in an empty ell.The rabbit is ontrolled by a neural network with thirteen inputs. Eah input
I is de�ned as the value of a ell visible to the rabbit (a shaded square in Figure



42 Doping in Agent Control3.6; this inludes the ell the rabbit urrently oupies, whih may ontain poison).The magnitude |I| of the input value represents the number of elements within thepath oupying the ell. The sign of the input indiates whether the path ontainsarrots (I > 0) or poison bottles (I < 0). An empty ell is represented by zero input(I = 0). The network has four outputs, representing the four diretions of movementof the rabbit. The rabbit moves in the diretion orresponding to the output withthe highest value.For the training set grids were randomly generated with N = 15, a total numberof arrots C = 100 and a total number of poison bottles P varying between 0 and
150. Carrots and poison bottles are lustered in small pathes of one to �ve arrotsor poison bottles per path. The number of poison pathes diretly bordering aarrot path also varies aording to a density value d (d ∈ {0, 1, 2, 3, 4}). Arguably,the omplexity of an instane is proportional to d and P , beause an inreased totalnumber of poison bottles and an inreased density of poison bottles adjaent toarrots make it harder for the rabbit to ollet arrots without losing points.Table 3.1 displays the twenty instanes (numbered 0 to 19) in the training set inrelation to the parameters d and P , inluding a quali�ation of their di�ulty. Forinstanes 5 to 17, the parameter d is de�ned as a range. Figure 3.7 shows six of thetwenty instanes that serve as the training set.To assess the generalisation performane of evolutionary designed rabbits, anextensive test set of a hundred instanes was generated, omprising �ve subsets oftwenty randomly-generated instanes eah. The instanes within eah subset weregenerated aording to the same values of d and P as spei�ed in Table 3.1.The �tness F of a ontroller (or rabbit) is de�ned as the average sore on thetwenty instanes of the training set. Sine eah instane ontains 100 arrots, an up-

Figure 3.6: Part of the grid de�ned as the environment of the rabbit. The envi-ronment ontains food (arrots) and danger (poison bottles). The rabbit's �eld ofvision onsists of all ells (squares) that an be reahed in a maximum of two moves(the shaded squares in the image), i.e., the Manhattan distane = 2.
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Figure 3.7: Six of the twenty instanes in the training set of the food-gatheringexperiment.



44 Doping in Agent Controlinstane d P di�ulty instane d P di�ulty0 0 0 very easy 10 1�2 50 medium1 0 25 very easy 11 1�2 100 medium2 0 50 easy 12 1�2 150 hard3 0 100 easy 13 2�3 50 medium4 0 150 medium 14 2�3 100 hard5 0�1 25 easy 15 2�3 150 hard6 0�1 50 easy 16 3�4 100 hard7 0�1 100 medium 17 3�4 150 very hard8 0�1 150 medium 18 4 100 very hard9 1�2 25 easy 19 4 150 very hardTable 3.1: Spei�ation of the twenty instanes (numbered 0 to 19) used in the food-gathering experiments in relation to the density value d and the number of poisonbottles P . In all instanes C = 100.per bound to the �tness is 100. In most instanes it is impossible to reah this upperbound, beause even without poison pathes, usually the shortest path onnetingall arrot pathes in the grid is longer than 100 steps.3.4.2 Results of the Food-Gathering ExperimentFor the food-gathering experiment two series of tests were ompared. In the �rstseries, the evolutionary algorithm disussed in Setion 3.2 was used to evolve, in 30generations, a neural ontroller for the rabbit, with a �tness funtion de�ned as theaverage sore of the ontroller on the twenty grids in the training set. In the seondseries DECA was applied, as follows. First, a good ontroller for a single instane wasevolved. Then a neural ontroller was evolved with the overall �tness funtion in 27generations, using an initial population doped with the solution found for the singleinstane. The reason for using 27 (rather than 30) generations for the evolution withthe overall �tness funtion was to ensure that the omputational resoures used forboth series of experiments were approximately equal.I deided to use instane 17 as the hard instane to develop a good ontrollerfor doping. In this instane P = 150 and d = 3�4. I preferred instane 17 over theseemingly harder instane 19 (with P = 150 and d = 4), beause in instane 19 allarrot pathes are ompletely surrounded by poison. I suspeted this would reduethe omplexity of the task, beause it would be impossible for a ontroller to avoiddamage to get to arrots. Therefore, damage avoidane is of less importane forinstane 19 than for instane 17.
R = 100 repetitions of eah of the series of tests were run. Of eah of the tests,the ontroller with the highest �tness on the training set ontaining twenty grids,was used as the solution found. Then this ontroller was evaluated on the test setontaining 100 grids. In the statistial analysis the �tness of a ontroller was de�ned
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Figure 3.8: Comparison of the sores of 100 tests with doping and 100 tests withoutdoping in the food-gathering experiment.as its sore on the test set. In Figure 3.8 the histograms of the experiments withand without doping are displayed.As is evident from the histograms, the experiments with doping tend to givebetter solutions than those without doping. The minimum sore ahieved withoutdoping is 27, while the minimum sore ahieved with doping is 43. The highest soreahieved is 61 both with doping (twie) and without doping (one). For doping, thebulk of the sores range from 50 to 60, whereas the bulk of the sores obtainedwithout doping are more widely distributed, namely between 40 and 60.Without doping, the sore of evolutionary-designed ontrollers averaged over 100experiments is 48.9 with a standard error of the mean of 0.6. With doping, the soreaveraged over 100 experiments equals 53.6 with a standard error of the mean of 0.4.From these numbers it an be onluded that the results ahieved with doping aresigni�antly better than those ahieved without doping (reliability > 99.9%; Cohen,1995).3.4.3 Disussion of the Food-Gathering ExperimentThe food-gathering task is deterministi and allows for the generation of novel in-stanes. Both harateristis o�er the advantage that the e�et of doping an easilybe assessed. Clearly, the results show that doping is useful for enhaning the qualityand generalisation performane of evolutionary-designed ontrollers.To illustrate the type of solutions obtained, a striking example is presented inFigure 3.9. It shows a path followed by a suessful rabbit (ontroller) on a hardinstane (P = 150 and d = 3�4). Despite the ability to move in four diretions,
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Figure 3.9: An example of the path taken by a suessful rabbit in a hard environ-ment.the rabbit moves to the east and south only. In a post-ho analysis of suessfulontrollers, I notied that two of their four outputs (namely one of the two longitudeoutputs and one of the two latitude outputs) were disonneted. Constraining themovement to two orthogonal diretions prevents rabbits from moving in irles,whih leads to suboptimal performane.3.5 DisussionThe appliation of DECA to two di�erent tasks showed the feasibility of the DECAapproah. In this setion DECA will be disussed in more detail. Subsetion 3.5.1provides insight into why the doping e�et ours. Doping is ompared to hill-limbing in Subsetion 3.5.2. I disuss �ve searh tehniques that provide an alter-native approah to deal with the problem of hard instanes, namely (i) multitasklearning (3.5.3), (ii) multi-objetive learning (3.5.4), (iii) boosting (3.5.5), (iv) island-based evolutionary learning (3.5.6), and (v) onstraint-satisfation reasoning (3.5.7).Finally, Subsetion 3.5.8 disusses how DECA an be applied to the evolutionarylearning of game AI.Note that I do not laim that evolutionary learning of a neural ontroller withDECA provides the best solutions for the problem domains disussed in this hap-ter. Other tehniques that use a training set, suh as reinforement learning, may
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Figure 3.10: Typial developments of �tness for evolutionary learning with doping(top graph) and without doping (bottom graph). In both graphs the �tness (dividedby 1000) is plotted against the generation. The top urve in eah of the graphs showsthe maximum, and the bottom urve the average �tness in the population.generate solutions of a quality omparable to, or even higher than the quality of thesolutions disovered by evolutionary learning. The point is that these other teh-niques are also likely to disover better solutions when the doping e�et is taken intoaount. Therefore, I refrain from disussing suh alternative tehniques.3.5.1 Explanation of the Doping E�etWhy is DECA a suessful strategy? Below I attempt to provide a qualitativeexplanation for the suess of doping.The searh spae of task ontrol problems is spanned by the adaptable parame-ters de�ning the ontrollers, i.e., by the onnetion weights in the neural networks.Hene, the dimensionality of the searh spae is de�ned by the number of adaptableparameters speifying the ontrollers (the dimensionalities of the box-pushing andfood-gathering ontrollers are 81 and 92 respetively). As stated in Subsetion 3.1.3I assume that the high-dimensional searh spae ontains abundant regions wheresolutions to easy instanes are found, but only a few small regions where solutionsto hard instanes reside. Beause the hard instanes enompass many, if not allof the di�ulties posed by the environment, a solution that applies to instanes ofarbitrary omplexity is likely to be found relatively near to a hard-instane region.Hene, doping the initial population with a solution speialised to hard instanesleads to good generalised solutions.The explanation is supported by the development of the �tness of evolutionproesses with and without doping. In Figure 3.10 the developments of �tness in
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Figure 3.11: The �tness of doped solutions to a single task, tested on all instanes,averaged over 100 tests. For doping with solutions to eah of the nine instanes (0to 8), the graph shows the �tness (the left, blak bar), and the standard deviation(the right, shaded bar).the evolution of a box-pushing task with doping (the upper graph) and withoutdoping (the lower graph) are ompared. While these are only two examples, I foundthat they are typial for all tests. With doping the �tness of the best ontrollerin the population starts between 200 and 250. Within one or two generations, the�tness jumps to around 300. After that, the �tness slowly inreases towards avalue around 320. Without doping, the �tness starts anywhere between 0 and 200.Initially, the �tness inreases quikly to a value between 200 and 250. After that, the�tness progresses slowly towards a value of about 310. These di�erent patterns ofdevelopment, in partiular the quik rise in �tness at the start of the doped evolutionproess, suggest that DECA takes the best available solution (the doped one) andadapts it to handle the other instanes.Further support for the explanation is found in experiments that indiated thatsolutions to hard instanes also perform reasonably well on the easy instanes,whereas the same is not true the other way round. For the box-pushing task thisis illustrated in Figure 3.11. It shows, for eah of the doped ontrollers used in thebox-pushing experiments, the �tness and standard deviation on all instanes, aver-aged over 100 tests. Controllers evolved on the hardest instanes 3 and 5 yield thehighest �tness on all other instanes, ombined with the lowest standard deviation.To provide solid evidene for the explanation, �rst the key assumption in theexplanation for DECA's suess, namely the supposed asymmetry of the searhspae with respet to easy and hard solutions, needs to be veri�ed. Moreover,the belief that solutions to hard instanes enompass harateristis of solutions toeasy instanes is a major ingredient for DECA's suess, must be on�rmed. Apossible approah to this future researh is testing DECA on a variety of benhmark



3.5 � Disussion 49problems, designed to exhibit spei� harateristis with respet to the arhitetureof the searh spae, and with respet to overlapping features between instanes.Traing the lineage of the best evolved solutions to the benhmark problems, todetermine whether and how they inlude doped solutions in their anestry, will bea key ativity in understanding the fators responsible for DECA's suess.3.5.2 DECA and HilllimbingSine the explanation for the doping e�et states that the evolution proess adaptsthe doped solution to beome a general solution, the question may be posed whetherDECA may be ombined with hilllimbing. Given a doped solution, hilllimbingmay represent a good alternative to standard evolutionary learning to obtain goodresults. I believe, however, that hilllimbing is not a good alternative to evolutionarylearning in DECA for the following reason. While the generalised solution may bein the viinity of the solution to a hard instane, it is unlikely that it is in theviinity of all dimensions of the hard instane. Sometimes, adapting the solution tothe hard instane to generalise over all instanes requires large steps in one or a fewdimensions of the searh spae. In ontrast to hilllimbing, evolutionary algorithmsare apable of doing that.Of ourse, the nature of the searh spae depends on the type of problem. Hene,hilllimbing may yield good results in some ases, whih should be examined in futurework. Montana and Davis (1989) support my line of reasoning in this respet, bystating that hilllimbing does not work well for neural network training, sine ittends to fore onvergene to a loal optimum instead of a global optimum. Theyreommend using hilllimbing only in those ases where the best solution ahievedis lose to the global optimum.3.5.3 DECA and Multitask LearningThe prinipal goal of multitask learning is to improve generalisation performane ofa ontroller on a task, by leveraging information obtained from ontrolling relatedtasks. It does this by training tasks in parallel using a shared representation. Caru-ana (1997) laims, and shows empirially, that it is more di�ult to train a ontrolleron an isolated, di�ult task, than it is to train a ontroller on a ombination of re-lated tasks that inludes the di�ult one. At �rst glane, this seems to be in on�itwith my laim, that doping with a ontroller for a hard instane generalises betterthan doping with a ontroller for an easy instane.As Caruana (1997) explains, the `related tasks' used in multitask learning are notso muh various instanes, but simpler subtasks. With DECA the task is the samefor eah instane, only the environment di�ers. The laims Caruana (1997) makesabout multitask learning are, therefore, not in on�it with the laims I make aboutDECA. Moreover, I suspet that multitask learning atually su�ers from the hard-instanes problem, beause it deliberately fousses on easier tasks before takling ahard one. It does that for a good reason, namely that the hard task annot be solveddiretly. Obviously, DECA is not intended to deal with these `unsolvable' tasks.



50 Doping in Agent ControlLouis and Li (1997) use an approah to multitask learning reminisent of DECA.They evolve solutions to subtasks and use those to dope the initial population ofan evolution run that solves the overall task. They disovered that doping with thebest solution to eah of the subtasks atually results in worse overall solutions thanstarting with a randomly initialised population. However, doping with solutions tosubtasks that also give good results on the overall task, leads to signi�antly bettersolutions than ahieved with a randomly initialised population. This result supportsmy suggestion in Subsetion 3.5.1, where it is stated that the doping e�et resultsfrom solutions to hard instanes enompassing harateristis that are needed tosolve the easier instanes.It is possible that a ombination of multitask learning and DECA, where on-trollers for hard instanes of the subtasks are doped, may improve the performaneof either tehnique alone. This is an interesting notion that warrants exploration infuture work.3.5.4 DECA and Multi-Objetive LearningMulti-objetive learning aims to �nd a solution that performs well with regard toall individual objetives in a set of (often) on�iting objetives (Van Veldhuizenand Lamont, 2000). The main problem of multi-objetive learning is that it tendsto get stuk in a loal minimum one a solution is found for one of the objetives.It is generally appreiated (Horn, 1997; Van Veldhuizen and Lamont, 2000) thata suessful Multi-Objetive Evolutionary Algorithm (MOEA) needs a seondarypopulation to store Pareto-optimal solutions (e.g., solutions to single objetives),sometimes atually involving the seondary population in the evolution proess.The instanes used in the DECA experiments bear some resemblane to theobjetives in multi-objetive learning. Interpreting the task instanes as di�erentobjetives, multi-objetive learning tehniques an be applied to the problem ofhard instanes, sine they seek a balane between several on�iting objetives (VanVeldhuizen and Lamont, 2000). However, the instanes in the DECA experimentsdo not represent di�erent objetives, but di�erent inarnations of the environment,while the task to be performed is the single objetive. Furthermore, the environ-ments are mostly not in on�it with eah other. Sine, in general, multi-objetivelearning tehniques are geared towards on�iting objetives, they do not exploit thesimilarity between the various environments. Therefore, I believe DECA to be bet-ter suited for handling the partiular domain of task ontrol problems. This beliefmust be tested in future work.3.5.5 DECA and BoostingBoosting (Shapire, 2002) is a learning method, usually employed to design lassi-�ers, that assigns eah sample in the training set a weight. At the beginning allweights are equal, but over time the samples that are handled badly reeive higherweights than those that are handled well, so that the fous of the learning shifts tothe harder samples. If the explanation we gave in Subsetion 3.5.1 for the doping



3.5 � Disussion 51e�et is orret, boosting will at least give evolutionary algorithms a better haneto esape from loal optima where easy instanes are handled well but hard instanesare not. However, it does not have DECA's advantage of starting in a loal opti-mum for a hard instane, in the neighbourhood of whih a global optimum shouldbe loated. I therefore expet that ontrollers reated with boosting on average willbe inferior to those reated with DECA. Clearly, this expetation requires empirialvalidation, whih is onsidered future work.3.5.6 DECA and Island-Based Evolutionary LearningEvolutionary algorithms are inherently parallel. On multi-proessor omputers thisis ommonly exploited by dividing the population into smaller sub-populations, eahof whih is handled by a di�erent proessor. The sub-populations are often referredto as `islands' (Goldberg, 1989). On eah island the population is evolutionarytrained on a partiular task. The islands exhange geneti material on a regularbasis. Apart from enabling parallel proessing, the islands may onverge to di�erentsolutions. The exhange of geneti material might result in an overall solution thatombines the best of the island-based solutions.Island-based evolutionary learning (Spronk, Sprinkhuizen-Kuyper, and Postma,2001b) is an attempt to exploit the priniples behind parallel evolutionary algorithmsto solve the problem of hard instanes. The basi idea of island-based evolutionarylearning is to distribute the population evenly over a few islands, whereby eah islandis assigned a di�erent task instane. After all island populations have onverged to asolution to their assigned task, a new population of the best solutions of eah of theislands and a number of random solutions is reated. A onventional evolutionaryalgorithm is applied to this new population that is trained to deal with all instanes.The idea is that the evolution ombines geneti material developed using singleinstanes to solve the general task.Clearly, island-based evolutionary learning may very well be applied to the prob-lem of hard instanes. However, empirial studies, using the box-pushing task, haverevealed that island-based evolutionary learning tends to generate solutions thatperform well on the hard instanes (even better than when a regular evolutionaryalgorithm is applied), but show an inferior performane on the easy instanes. As aonsequene, a gain in overall �tness is not obtained (Spronk et al., 2001b). Fur-thermore, sine island-based evolutionary learning evolves a separate solution for allinstanes, the omputational time required by the island-based evolution proess ismuh larger than the omputational time required by DECA.3.5.7 DECA and Constraint-Satisfation ReasoningConstraint satisfation reasoning (CSR) deals with problems where the solution hasto satisfy a given set of restritions or onstraints (Tsang, 1993). A solution isinvalid unless it ful�ls all the onstraints. Hene, in CSR the problem is to �nd asolution that takes into aount all onstraints rather than one that addresses someof the onstraints. Interpreting the instanes as onstraints, CSR seems appliable



52 Doping in Agent Controlto alleviate the problem of hard instanes. However, CSR annot be readily appliedto the problem. The reason is that in CSR all onstraints must be stritly satis�ed,whereas in task learning it su�es if the instanes are handled reasonably well.3.5.8 DECA and Game AIBoth the box-pushing task and the food-gathering task have strong ties to tasksthat agents have to solve in modern omputer games. The box-pushing task on-erns robot ontrol in a noisy environment, whih an be ompared to, for instane,ontrolling a rae ar in a raing game (Pyeatt and Howe, 1998), or ontrolling asoer-playing agent in a sports game (Van Rijswijk, 2003). The food-gatheringtask onerns e�etive path-�nding in an environment �lled with dangers and re-wards, whih an be ompared to, for instane, army movement in a strategy game(Buro, 2003b), or maze-traversing in an arade game (Ledwih, 2003). In games,the game AI is responsible for ontrolling the agents. The results ahieved withDECA indiate, that when game AI is reated by an evolutionary algorithm, dopingthe initial population with game AI that has been evolved on the hardest agenttask, is likely to result in game AI that is more e�etive than when evolved using arandomly-initialised population. This onjeture will be used in Chapter 6.Despite the similarities between the two experimental environments used in thishapter, and some types of agents in games, the question remains whether the learn-ing tehniques used, evolutionary algorithms and neural networks, are suitable forgame AI. Spronk et al. (2002) provided an answer to that question, stating thatthey are suitable for o�ine learning of game AI, but not for online learning of gameAI. Chan et al. (2004) and Madeira, Corruble, Ramalho, and Ratith (2004) reahedsimilar onlusions with respet to evolutionary algorithms. Chapter 4 will furtherexplore this subjet.3.6 Chapter SummaryIn this hapter the problem of hard instanes was identi�ed, and the DECA approahwas proposed to deal with it. In partiular, it was demonstrated how doping an ini-tial population with a solution to a single hard instane improved the performane ontwo quite di�erent tasks. Given the results on the box-pushing and food-gatheringtasks it may be onluded that the problem of hard instanes is alleviated by theappliation of DECA. Moreover, ompared to `regular' evolutionary algorithms, so-lutions disovered by DECA not only perform better on hard instanes, but alsoperform better overall, i.e., ahieve a signi�antly higher average �tness. With re-spet to games, this means that, when evolutionary algorithms are used to reatethe game AI, doping the initial population an be expeted to generate better resultsthan when using a randomly-initialised population.



Chapter 4Evolutionary Game AIThe art of progress is to preserve order amid hangeand to preserve hange amid order.� Alfred North Whitehead (1861�1947).In Chapter 3 it was shown that evolutionary algorithms an improve the behaviour ofagents for task ontrol problems. The present hapter1 disusses evolutionary gameAI, i.e., game AI that employs evolutionary algorithms. The purpose of using evo-lutionary algorithms in game AI is providing a high-entertainment value for humanplayers by evolving hallenging agent tatis. Setion 4.1 empirially investigateso�line evolutionary game AI, that has the ability to pinpoint potential weaknessesin the agent's behaviour, and to design new tatis. Setion 4.2 empirially inves-tigates online evolutionary game AI, that has the ability to improve game-playingtatis against a spei� human player. Setion 4.3 provides a general disussion ofevolutionary game AI. A summary of the hapter is provided in Setion 4.4.4.1 O�ine Evolutionary Game AIO�ine evolutionary game AI ontrols agents that are in ompetition with agents thatemploy existing (usually manually-designed) game AI. O�ine evolutionary game AIhas two appliations: (i) to detet exploits in the existing game AI (Spronk et al.,2002; Chan et al., 2004), and (ii) to disover new tatis that an be used against theexisting game AI (Spronk et al., 2002; Madeira et al., 2004). Note that, beausehuman players are only indiretly involved when o�ine learning takes plae, it isinfeasible to use o�ine evolutionary game AI to adapt the agent's behaviour tospei� human-player tatis (Madeira et al., 2004). To investigate the e�etivenessof o�ine evolutionary game AI, I tested it on a duelling task in a small strategygame alled Pioverse. The approah used onsisted of the following four steps.1This hapter is based on two papers. Setion 4.1 on o�ine evolutionary game AI is based on apaper by Spronk, Sprinkhuizen-Kuyper, and Postma (2003a). Setion 4.2 on online evolutionarygame AI is based on a paper by Bakkes, Spronk, and Postma (2004).
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Figure 4.1: Pioverse.1. Evolution: Evolving duelling behaviour that is suessful against the manually-designed game AI.2. Analysis: Observing and analysing the evolved duelling behaviour, to gaininsight into whih areas of the manually-designed game AI an be improved.3. Derivation: Deriving potential improvements for the manually-designed gameAI.4. Validation: Implementing the potential improvements in the manually-designed game AI, and repeating the Evolution step to investigate their e�et.This setion desribes the duelling task (4.1.1), the experimental proedure(4.1.2), the results of the Evolution step (4.1.3), the results of the Analysis step(4.1.4), the results of the Derivation step (4.1.5), the results of the Validation step(4.1.6), and a disussion of the results (4.1.7).4.1.1 The Duelling TaskPioverse, illustrated in Figure 4.1, is a strategy game for the Palm (handheld)omputer. Pioverse's design was inspired by the lassi game Elite by D. Brabenand I. Bell (Spu�ord, 2003). It was developed for two reasons: (i) to support andillustrate views on the design of omplex Palm games (Spronk and Van den Herik,2003), and (ii) in the present ontext, to investigate the appliation of mahine-learning tehniques to improve game AI.2In Pioverse, a human player ontrols a spaeship (heneforth alled the`player's ship'). In the game, the player's ship may enounter omputer-ontrolledenemy ships, and ombat may ensue between the player's ship and the enemy ships.All ships are equipped with laser guns, and are proteted from destrution by theirhulls. Hull strength dereases when a hull is hit by laser beams �red from the laser2Beause of time onstraints, in 2003 developments on Pioverse were put on hold, to beontinued at a later date.



4.1 � O�ine Evolutionary Game AI 55guns. The strength of laser guns and the hull strengths vary from ship to ship. Aship is destroyed when its hull strength is redued to zero. Ships are ontrolled byhanging their aeleration (whih inreases or dereases veloity), and by hang-ing their rotation (whih steers a ship in a di�erent diretion). While the relativestrength of laser guns and relative hull strength of battling ships are important fa-tors in deiding the outome of ombat, ships have a hane to �ee from a battleeven when they are overpowered, provided they are equipped with fast and �exibledrives. However, attempting to �ee is a risky ation, beause a �eeing ship is unableto ounterattak. The reason is that, to �ee, a ship must turn its bak to its attaker,and laser guns an only �re within a 180-degree ar at the front of a ship.As is usual for modern games, the omputer-ontrolled enemy ships are pro-grammed manually. Upon deteting the player's ship, an enemy ship will turntowards it and attempt to ath up with it. When the player's ship is within laserrange of an enemy ship, the enemy ship will �re its lasers. It will also attempt tokeep the player's ship within laser range, by mathing the speed of the player's ship.To evoke a suspension of disbelief, an enemy ship will attempt to esape from aduel that it is bound to lose, rather than ontinue �ghting until it is destroyed. This�eeing behaviour is implemented as follows: if the ratio of the urrent and maximumhull strength of the enemy ship is lower than the orresponding ratio of the player'sship, the enemy ship attempts to �ee by turning around and �ying away at maxi-mum speed. This simple yet e�etive behaviour mimis a basi tati often used ingames. It makes the opponent intelligene for Pioverse non-trivial, despite therelatively low level of omplexity ompared to state-of-the-art games.Figure 4.2 illustrates the manually-programmed behaviour. The duelling spae-ships are represented by the small irles. A ship's diretion is indiated by a lineinside the irle, and its speed is indiated by the length of the line extending fromthe ship's `nose'. The dotted ar indiates the laser range. The player's ship is �xedat the entre of the sreen and direted to the right. During the sequene shownin Figure 4.2 it remains stationary. From left to right, top to bottom, the pituresdemonstrate the following six events: (i) The two ships starts within viewing rangeof eah other (the viewing range of the player's ship is delimited by the large irle).(ii) The omputer-ontrolled enemy ship moves towards the player's ship. (iii) Theships bump head-on into eah other, whih redues the speed of both ships to zero.Both ships are �ring their lasers. (iv) The enemy ship has determined it should �eeand turns around. (v) The enemy ship �ees. (vi) The enemy ship esapes by leavingthe viewing range of the player's ship.The duelling task entails designing suessful behaviour for the player's shipagainst the enemy ships. Suessful behaviour for the player's ship an be used todetet weaknesses in the manually-programmed behaviour of the enemy ships, andto design ompletely new tatis.4.1.2 Experimental ProedureO�ine evolutionary game AI was used to solve the duelling task experimentally. Thesuess of the experiments with agents in game-like environments (Chapter 3) war-
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Figure 4.2: Manually-programmed behaviour for the Pioverse omputer-ontrolled ships.ranted a similar approah to the duelling task. The duelling task was implementedin the Elegane environment (2.1.4). Elegane uses evolutionary learning toevolve solutions for `plants'. Below, I desribe four elements of the experimentalproedure: (i) the plant implementation, (ii) the neural-network ontroller, (iii) theevolutionary algorithm, and (iv) the �tness funtion.The �rst element of the experimental proedure is the duelling-task plant. Theduelling-task plant represents a player's ship, in a series of ombat situations withan enemy ship. The player's ship uses dynamially determined behaviour, and isalled the `dynami ship'. The enemy ship uses manually-programmed, stati gameAI (as desribed in Subsetion 4.1.1), and is alled the `stati ship'. For both ships,laser guns �re automatially at appropriate times, and need not be ontrolled. Thus,plant ontrol onsists of setting the aeleration and rotation values for the dynamiship.The movement of the ships is turn-based. Movements are exeuted in an al-ternating sequene. The dynami ship is allowed to move �rst and the stati shipis always allowed a last move even if its hull strength is redued to zero. For tworeasons a turn-based approah was preferred over a simultaneous approah to theombat sequenes: (i) a turn-based approah is used in a number of popular strategygames, and (ii) a turn-based approah is omputationally signi�antly heaper than



4.1 � O�ine Evolutionary Game AI 57a simultaneous approah, whih is an important onsideration for time-intensiveevolutionary-learning experiments.The seond element of the experimental proedure is the neural-network on-troller. In the experiments, the dynami ship is ontrolled by a neural network, i.e.,the game AI of the dynami ship is implemented by a neural-network ontroller. Toredue the number of required neural-network inputs, oordinates are used relativeto the dynami ship, i.e., the `game world' is moved so that the dynami ship isloated at its entre, and rotated so that the dynami ship's `nose' is pointed at anangle of zero degrees.Ten neural-network inputs were used to represent the environment. Four inputsrepresent harateristis of the dynami ship: (i) the laser-gun strength, (ii) thelaser-gun range, (iii) the hull strength, and (iv) the speed. Five inputs representharateristis of the stati ship: (i) the loation diretion of the stati ship relativeto the dynami ship, (ii) the distane between the stati ship and the dynami ship,(iii) the urrent hull strength, (iv) the �ying diretion, and (v) the speed. The tenthinput is a random value, to allow the dynami ship an element of randomness in itsdeisions. The neural network has two outputs, namely the aeleration and rotationof the dynami ship. The hidden nodes in the network have a sigmoid ativationfuntion. The outputs of the network are saled to ship-spei� maximums.The third element of the experimental proedure is the evolutionary algorithm.The parameters for the evolutionary algorithm were determined during a few trailruns. For the evolutionary algorithm, the population size was equal to 200 and real-valued weights were used. Experiments were allowed to ontinue for 50 generations.The following six geneti operators were employed.
• Uniform rossover : Child hromosomes are reated by opying eah allele fromone of two parents, eah parent having a 50 per ent hane of being seletedfor eah allele (Goldberg, 1989).
• Biased weight mutation (Montana and Davis, 1989): Child hromosomes areopies of parent hromosomes, with eah weight having a 10 per ent haneto be mutated by adding a random value seleted from the range [−2.0, 2.0].
• Nodes rossover (Montana and Davis, 1989): Child hromosomes are reatedby opying eah of their nodes (inluding their input onnetions) from oneof two parents, eah parent having a 50 per ent hane of being seleted foreah node.
• Node existene mutation (Spronk, 1996): Child hromosomes are opies ofparent hromosomes, with a 75 per ent hane of having all inoming andoutgoing onnetions of one randomly-seleted node being removed, and a 25per ent hane of having all absent onnetions of a randomly-seleted nodebeing ativated.
• Connetivity mutation (Spronk, 1996): Child hromosomes are opies of par-ent hromosomes, whereby eah onnetion has a probability of 10 per ent toswith from being onneted to being disonneted and vie versa.
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• Randomisation: A random new hild hromosome is generated to preventpremature onvergene.During evolution, one of these six operators was seleted at random. For therossover operators, I deided to add both hildren to the population. To alleviatethe problem of ompeting onventions (2.1.3) the hidden nodes of the parents wererearranged to make their signs math (insofar as possible) before a rossover tookplae (Thierens et al., 1993). Newly generated individuals replaed existing individ-uals in the population, while taking into aount elitism. Size-3 rowding (Goldberg,1989) was used as replaement poliy. For the seletion proess, size-2 tournamentseletion was used (Goldberg and Deb, 1991).The fourth element of the experimental proedure is the �tness funtion. The�tness of the dynami-ship ontroller, with a value in the range [0, 1], is de�ned asthe average result on a training set of �fty duels between the dynami ship and thestati ship. The starting distane between the two ships in all of the 50 training-setases is in the range [80, 125]. Eah duel lasts T = 50 time steps. To ensure equalopportunities for the dynami ship and the stati ship to ahieve high �tness, eahduel in whih the ships start with di�erent harateristis is followed by a duel inwhih the harateristis are exhanged between both ships. At time step t the�tness is de�ned as in the following equation.
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(4.1)In this equation, Dt and St are the hull strengths of respetively the dynami shipand the stati ship at time t. The �tness is 0.5 if both ships remain passive or aredamaged for an equal perentage. If the stati ship is damaged for a larger perentagethan the dynami ship, the �tness is greater than 0.5, and if the reverse is true (orwhen the dynami ship is destroyed) the �tness is smaller than 0.5. Consequently, the�tness funtion favours attaking if it leads to vitory, and favours �eeing otherwise.The overall �tness F for a duel is determined as the average of the �tness values ateah time step, i.e., F =
∑T

t=1
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T .4.1.3 Evolving Suessful Duelling BehaviourAn experiment with o�ine evolutionary game AI was performed, with the pur-pose of evolving duelling behaviour that is suessful against the manually-designedgame AI, desribed in Subsetion 4.1.1. Sine the experiment was exeuted usingElegane, a neural network was used to implement the evolved behaviour. Dif-ferent neural-network arhitetures may yield di�erent results. For lak of insightinto whih neural-network arhiteture gives the best results for the duelling task, Ideided to test seven di�erent arhitetures, whih are listed in Table 4.1.The question should be answered how suessful duelling behaviour an be reog-nised. It an be argued that a neural-network ontroller with a �tness value > 0.5



4.1 � O�ine Evolutionary Game AI 59Neural network type Hidden Hidden Tests Average Lowest Highestlayers nodes �tness �tness �tnessReurrent 1 5 5 0.516 0.459 0.532Reurrent 1 10 5 0.523 0.497 0.541Reurrent 2 10 7 0.504 0.482 0.531General feed-forward n/a 7 5 0.472 0.382 0.527Layered feed-forward 2 10 5 0.541 0.523 0.579Layered feed-forward 2 20 8 0.537 0.498 0.576Layered feed-forward 3 15 7 0.515 0.446 0.574Table 4.1: Results ahieved in the duelling-behaviour experiment, for seven di�erentneural-network ontroller arhitetures.performs better than the stati ship's game AI. But how high an we expet the�tness atually to beome? To provide an answer to that question, I alulated the�tness of a dynami ship that is stationary, i.e., that will �re its laser guns at thestati ship when appropriate, but that will not aelerate or rotate. I found that, onthe training set, a stationary dynami ship ahieves a �tness of 0.362. If the �tnessfor the stati ship is alulated aording to formula 4.1, the stati ship's �tness is
1 − F , where F is the dynami ship's �tness. Sine it is reasonable to assume thatthe stati ship performs better than a stationary ship, a �tness of 1− 0.362 = 0.638an be onsidered an upper bound to the �tness of the dynami ship's ontroller.Table 4.1 presents the results ahieved for evolving neural-network ontrollers forthe dynami ship. For eah of the neural-network arhitetures tested, from left toright, the olumns indiate (i) the neural-network arhiteture, (ii) the number ofhidden layers, (iii) the number of hidden nodes (the hidden nodes are evenly distrib-uted over the hidden layers), (iv) the number of tests, (v) the average �tness value,(vi) the lowest �tness value ahieved, and (vii) the highest �tness value ahieved.The best results for the average and highest �tness values ahieved are printed inboldfae. Two onlusions are derived from Table 4.1.First, it is evident that, in this environment, two-layered feed-forward networksoutperform all other networks in terms of both average and maximum �tness values.The network with �ve nodes in eah hidden layer did not sore signi�antly betterthan the network with ten nodes in eah layer.Seond, a layered feed-forward neural network with 10 hidden nodes in two layersahieved a �tness of 0.579. Compared to the theoretial upper bound of 0.638, a�tness value of 0.579 indiates very suessful duelling behaviour.It should be noted, that from the perspetive of game-play experiene, the �tnessrating as alulated in the experiment is not as important as the objetive resultof a �ght. A �ght an end in a vitory, a defeat, or a tie.3 For the best ontroller3A tie means that both ships survive the enounter. It does not mean that both ships aredestroyed. The destrution of both ships is onsidered to be a loss for the dynami ship.



60 Evolutionary Game AIevolved, we found that 42 per ent of the enounters ended in a vitory for thedynami ship, 28 per ent in a defeat, and 30 per ent in a tie. This means that 72per ent of the enounters ended in a situation not disadvantageous to the dynamiship. The dynami ship ahieved 50 per ent more vitories than the stati ship.Clearly, on the training set the dynami ship performs onsiderably better than thestati ship. This supports the statement that the �tness value of 0.579 indiatessuessful duelling behaviour.4.1.4 Analysis of Suessful Duelling BehaviourAn analysis of the behaviour of the best-performing dynami ship showed that itexhibited appropriate following behaviour when it overpowered the stati ship. Inthe experiment, suh following behaviour is never detrimental to the performane.The reason is that the stati ship's game AI ensures that, while �eeing, the statiship will only turn around to attak if the dynami ship's hull strength beomes lessthan its own. As long as the dynami ship remains behind the stati ship, this willnot happen.While in pursuit, the dynami ship avoided bumping against the stati ship.Avoiding bumping is appropriate behaviour, beause bumping would redue the dy-nami ship's speed to zero, while leaving the stati ship's speed una�eted. Thiswould give the stati ship an opportunity to esape. However, ontrary to expeta-tion the dynami ship did not avoid bumping by reduing its speed when approah-ing the stati ship, but by swerving as muh as needed to keep a onstant relativedistane to the stati ship.The dynami ship did not try to �ee when losing a �ght. The probable reasonis that for a spaeship to �ee, it must turn its bak toward the enemy. The �eeingship then beomes a target that does not have the ability to �ght bak (sine laserguns only �re from the front of the ship). As a result, �eeing ships are almostalways destroyed before being able to esape. Attempts to esape seem thereforeof little use. From this observation it an be onluded that in the atual game abetter balane between the power of the weapons and the versatility of the ships isrequired to enable e�etive esaping behaviour.The purpose of the experiment was to disover possible improvements to thestati ship's game AI. I found two suh improvements, whih are detailed below.The �rst possible improvement was suggested by the dynami ship's ability toexploit a weakness in the stati ship's game AI. The weakness spotted was thefollowing. The stati ship bases its deision to �ee on a omparison between therelative hull strengths. The omparison does not take into aount that it is the statiship's initiative (i.e., turn to at) when it makes the deision. If the omparativehull strengths are lose to eah other, this beomes an important onsideration. Forinstane, if on the initial approah the stati ship omes within the dynami ship'slaser-gun range before being able to �re its own laser guns, it will be damaged whilethe dynami ship remains undamaged. Regardless of its own laser-gun strength andhull strength, this would ause the stati ship's initial reation to be attemptingto �ee. Sine in most ases it would still be able to �re its laser guns one, this
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Figure 4.3: The stati ship approahes the dynami ship from behind.behaviour had little in�uene when the stati ship signi�antly overpowered thedynami ship. However, if the strengths of the ships were about equal, we found thedynami ship to exploit this weakness of the stati ship, by attempting to manoeuvreinto a position from whih it ould �re the �rst shot.4 Removing this exploit fromthe stati ship's game AI an be onsidered as a possible improvement.The seond possible improvement was suggested by a surprising manoeuvre of thedynami ship, that was observed when the stati ship started behind the dynamiship, as illustrated in Figure 4.3. In suh ases, the dynami ship often attemptedto inrease the distane between the two ships, up until the point where a furtherinrease in separation would imply a tie. At that point, the dynami ship turnedaround and either (i) started to attak, or (ii) inreased the distane between the twoships again, and attaked after a seond turn. Figure 4.4 illustrates this sequene ofevents. In the �gure, the right panel displays a trae of the movements of the dynamiship up to the moment that it �res its �rst shot. The stati ship is overpowered (itshull strength is very low ompared to the hull strength of the dynami ship, asan be observed at the top of the display) and tries to �ee, but the dynami shipfollows, as shown in the left panel. An explanation for the suess of the observedbehaviour is that, if the distane between the two ships is maximal, the dynamiship will have a maximal amount of time to turn around and fae the stati shipbefore the stati ship an �re its laser guns. Sine faing the opponent is requiredto ounter-attak, the observed behaviour is bene�ial to the dynami ship's tatis.Below this behaviour is reformulated as a possible improvement of the stati ship'sgame AI.4It is noteworthy that in many ommerial turn-based games similar shortomings in the gameAI an be observed. For instane, in many games it is a good tati for the player to pass gameturns until the enemy has approahed to a ertain distane, so that the player an initiate the �rstattak. Game designers will seldom let game-playing agents employ suh a tati, beause it ouldlead to a stalemate, where both the player and the omputer refuse to move, sine whoever makesthe �rst move is at a disadvantage. Similarities with trenh warfare are striking.
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Figure 4.4: The dynami ship evades the stati ship before it attaks.4.1.5 Deriving Duelling ImprovementsThe two possible improvements derived from the analysis of the most suessfuldynami ship (4.1.4), resulted in two possible hanges to the stati ship's game AI.The hanges are the following.Fleeing hange: Before omparing the hull strength ratios of the two ships, thestati ship assumes that it is able to shoot the dynami ship one more beforeevaluating the ratios. This hange e�etively removes the possibility for thedynami ship to trik the stati ship into attempting to �ee, when the dynamiship is able to strike �rst.Aft-attak hange: When attaked from behind it may be bene�ial for the statiship to attempt to inrease the distane between the two ships before turningaround. This was implemented as follows. First, three onditions are heked,namely (i) whether the dynami ship is behind the stati ship, (ii) whether thestati ship is undamaged, and (iii) whether the distane between the ships is inthe range [75, 150] (180 being the distane beyond whih a �ght ends in a tie).If all three onditions are true, then the stati ship does not rotate, but simplyinreases its speed to maximum, in order to inrease the distane between



4.1 � O�ine Evolutionary Game AI 63AI AI-0 AI-1 AI-2 AI-3AI-0 0.499 (15/16) 0.481 (15/18) 0.504 (13/15) 0.505 (15/16) 0.497AI-1 0.525 (18/17) 0.491 (16/17) 0.500 (13/17) 0.504 (15/17) 0.505AI-2 0.501 (13/14) 0.485 (13/15) 0.494 (10/13) 0.489 (11/13) 0.492AI-3 0.507 (14/14) 0.487 (13/14) 0.497 (10/13) 0.492 (11/13) 0.4960.508 0.486 0.499 0.498 Avg.Table 4.2: Comparison of four game-AI variations.the two ships. If the distane beomes larger than 150, it is onsidered to besu�iently large to let the stati ship turn around safely. If the distane issmaller than 75, the stati ship is assumed to be unable to outrun the dynamiship, so it always turns towards the dynami ship.With these two possible hanges, four variations of the stati ship's game AIan be de�ned. These are the following. `AI-0' is the unhanged, original gameAI. `AI-1' is the original game AI, enhaned with the �eeing hange. `AI-2' is theoriginal game AI, enhaned with the aft-attak hange. `AI-3' is the original gameAI, enhaned with both the �eeing hange and the aft-attak hange.The relative strengths of these four game-AI variations an be derived by pittingthem against eah other. The results of the ross-omparison are shown in Table4.2. The rows and olumns represent the game AI variations used for the two ships;the ship represented by a row is allowed to move �rst. The ells of the table showthe resulting �tness of the game AI of the �rst-moving ship. Next to the �tness,between brakets, the number of wins and losses (`wins/losses') is shown. The rightolumn shows the average �tness over the rows, and the bottom row the average�tness over the olumns.It is lear from Table 4.2 that the four game-AI variations do not greatly di�er instrength. This omes as no surprise, beause their implementations are very similar.The average �tness is highest for AI-1 (0.505), and the average �tness is lowest whenit is alulated against an opponent using AI-1 (0.486). Therefore, AI-1 seems to bethe most e�etive of the four variations. However, the di�erene between AI-1 andthe other three variations is too small to be onsidered signi�ant.Two unexpeted results an be derived from Table 4.2. The �rst unexpetedresult is that the �tness values on the main diagonal deviate from 0.5, despite thefat that the ompeting variations on the diagonal are equal. The deviation is ausedby the turn-based handling of the enounters. Sine all values on the diagonalare slightly lower than 0.5, it an be onluded that on the 50 training-set asesthe seond-moving ship has a small advantage over the �rst-moving ship. Notethat this does not entail that initiative is disadvantageous per se, only that it isdisadvantageous in the training set.The seond unexpeted result onerns the �tness values and the assoiated win-loss ratios, whih in some ases seem ounter-intuitive. For instane, AI-0 for the



64 Evolutionary Game AIAI Tests Average Lowest Highest Win/loss Average Win/losson test set on test setAI-0 8 0.537 0.498 0.576 19/14 0.490 16/19AI-1 6 0.486 0.471 0.528 9/12 0.434 9/20AI-2 6 0.547 0.479 0.615 16/8 0.476 10/16AI-3 7 0.517 0.463 0.570 17/11 0.442 13/19Table 4.3: Results of testing o�ine evolutionary game AI against four game-AIvariations.�rst-moving ship, pitted against AI-2 for the seond-moving ship, has a �tness valueof 0.504. This value, whih is slightly greater than 0.5, indiates that AI-0 performsbetter than AI-2. However, this is ombined with 13 wins against 15 losses. Despitethe higher �tness value, AI-0 appears weaker than AI-2 in terms of number of wins.The explanation is that the �tness is not based on the number of wins and losses,but on the hange of the relative hull strengths during a �ght. A fast win mightyield a higher �tness than a slow win. As a result, in the �tness rating a few fastwins an ompensate for a few extra (slow) losses.4.1.6 Validating Duelling ImprovementsTo validate the improvements to the stati ship's game AI, the experiment detailedin Subsetion 4.1.2 was repeated with three hanges: (i) for the stati ship I tested allfour variations of the game AI de�ned in Subsetion 4.1.5, (ii) beause preliminarytests revealed that a feed-forward ontroller with 5 nodes in eah layer was notpowerful enough to oppose the new versions of the stati ship, for the neural-networkontroller only a feed-forward ontroller with two 10-node hidden layers was used,and (iii) the best results ahieved on the training set were re-evaluated on �ve testsets, eah onsisting of 50 novel enounters.Table 4.3 shows the results of the validation experiment. From left to right,the eight olumns represent: (i) the game AI of the stati ship, (ii) the number ofexperiments performed against this game AI, (iii) the average �tness of the dynamiship, (iv) the lowest �tness value, (v) the highest �tness value, (vi) the number ofwins and losses of the dynami ship with the highest �tness value, (vii) the average�tness of the best dynami ship re-evaluated on �ve test sets, and (viii) the averagenumber of wins and losses for the re-evaluation.Clearly, on the training set the dynami ship outperforms three out of four game-AI variations. Only the stati ship using AI-1 (whih implements the �eeing hange)outperforms the dynami ship. Against AI-1, the dynami ship has an average �tnesslower than 0.5, and even the dynami ship with the highest �tness value against AI-1 loses more often than the stati ship. It is also lear that AI-2 (the game-AIvariation that implements the aft-attak hange) does not inrease the e�etivenessof the stati ship. AI-2 performs even worse than the original (unhanged) AI-0.



4.1 � O�ine Evolutionary Game AI 65The results of the best dynami ships on the test sets show that the average �tnessdrops onsiderably from its original value. This indiates that, unsurprisingly, thedynami ship is foused too muh on the enounters omprising the training set,i.e., it is over�tting the training set. Interestingly, both the �tness and the win-lossratio derease to a larger extent for AI 2 and AI 3 (the game-AI variations that bothontain the aft-attak hange) than for AI-0 and AI-1. Therefore, over�tting seemsto be a more severe problem when trained on AI-2 and AI-3, than when trainedon AI-0 and AI-1. Moreover, the dynami ships evolved against AI-0 and AI-2(the two game-AI variations that do not implement the �eeing hange) end up witha signi�antly higher average �tness on the test sets than the other two game-AIvariations. This means that for the dynami ship it is easier to deal with a game-AI variation that does not implement the �eeing hange, than with one that does.Therefore, the onlusion is warranted that implementation of the �eeing hangeimproves the e�etiveness of the stati ship's game AI.4.1.7 Disussion of the Duelling ExperimentsWhile implementation of the �eeing hange learly improves the behaviour of the sta-ti ship, implementation of the aft-attak hange seems to weaken it somewhat. Thisdoes not mean that the aft-attak hange should not be implemented in a publishedgame. In a game suh as Pioverse there should be several di�erent game-AI vari-ations available to omputer-ontrolled agents. They must vary in strength and beappliable in various situations. The aft-attak hange may be more e�etive whenthe situations in whih it is a sound tati an be suessfully identi�ed. In addition,allowing some (but not all) agents to use this tati introdues heterogeneity whihmakes opponent behaviour less preditable, and thus more entertaining.In Table 4.2 a disrepany between the �tness results and the ratio of wins andlosses an be observed. Sine in terms of game-play experiene the win-loss ratio isa more important measure for suess than the hange in hull strength, the �tnessfuntion used is probably not the most suitable for these experiments. In itself, thewin-loss ratio is not a good alternative for a �tness measure, beause it does notreward small favourable hanges in the behaviour of the dynami ship. However,extending the �tness funtion with penalties for losing a duel and with extra rewardsfor winning a duel may improve the orrespondene between the �tness rating andthe win-loss ratio.The fat that the results of the re-evaluation of the dynami ships on the test setsdi�ered onsiderably from the results on the training set, indiates that the dynamiship did not generalise to novel situations. A larger training set would probably yielda more general ontroller, at the ost of a onsiderably inreased omputation time.However, in this partiular researh domain the lak of the ability to generalise isnot a problem, as long as existing exploits in the game AI are disovered. The goalof the present experiments is not to generate good game AI, but to disover exploitsand new tatis.5 O�ine evolutionary game AI managed to ahieve that goal.5Of ourse, that does not mean game AI researhers and developers are not interested in usingo�ine learning to reate generalised game AI. Suh o�ine learning will be disussed in Chapter 6.



66 Evolutionary Game AIChan et al. (2004) investigated the evolution of ation sequenes for FIFA-99.As Spronk et al. (2002) onluded, they, too, found that o�ine evolutionary gameAI an be used to detet exploits and disover new tatis. However, instead ofa neural network to implement adaptive game AI, they used a Markov DeisionProess (MDP), whih is arguably a better hoie in this respet. Usually, gameAI needs to ouple environmental irumstanes to spei� ations for an agent toundertake. The game AI should re�et the human thought proess, whih gamedevelopers aspire to imitate in agents. For this, sripts (whih are preferred by mostgame developers), �nite-state mahines, and MDPs may be suitable hoies, but aneural network is not. Neural networks are suitable to emulate non-linear funtions,not prodution rules. An approah to o�ine evolutionary learning based on diretlyevolving sripted AI will be used in Chapter 6.4.2 Online Evolutionary Game AIOnline evolutionary game AI ontrols agents that are in ompetition with humanplayers. It has two appliations: (i) to resolve weaknesses in the game AI whenthey are exploited by the human player (self-orretion), and (ii) to reate new ta-tis in response to tatis employed by the human player (reativity). For onlineevolutionary game AI to be appliable in pratie, it must meet the omputationalrequirements of (i) speed, (ii) e�etiveness, (iii) robustness, and (iv) e�ieny (2.3.4).In general, evolutionary algorithms are omputationally intensive (i.e., they are notfast), generate noisy results (i.e., they are not e�etive), and require numerous exper-iments (i.e., they are not e�ient). Furthermore, in an environment with inherentrandomness they an be made robust, but only at the ost of speed and e�ieny,whih for online learning annot be spared. These harateristis indiate that it isquite a hallenge to implement online evolutionary game AI suessfully.To investigate the potential of online evolutionary game AI, the Team-orientedEvolutionary Adaptability Mehanism (TEAM) was designed. TEAM applies onlineevolution to game AI that ontrols a team of agents, that play `apture-the-�ag'in the ation game Quake III Arena (heneforth referred to as Quake).6 Thissetion desribes apture-the-�ag inQuake (4.2.1), the design of online evolutionarygame AI that plays apture-the-�ag (4.2.2), the experimental proedure used to testthe design (4.2.3), the results of an experiment in whih team game AI was evolved(4.2.4), and a disussion of the results (4.2.5).4.2.1 Capture-the-Flag in QuakeQuake is a `3D shooter' (2.2.2). It has been used by several researhers in theirresearh, beause it is popular, state of the art, and highly adaptable (Laird, 2001;Van Waveren and Rothkrantz, 2002). In Quake, a human player ontrols an agentin a real-time 3D virtual world, alled a `map'. In regular Quake game-play, a6This experiment was performed by Bakkes (2003), in ollaboration with and under supervisionof the author.
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Figure 4.5: Quake III Arena in apture-the-�ag game-play mode. A shot is �redat an agent that arries the �ag.player's objetive is to eliminate opponent agents. The opponent agents are eitherontrolled by other human players, or by the omputer. The map provides agentswith objets that an be used to ahieve their goals, suh as weapons and armour.An eliminated agent is not removed from the game, but `respawns' at a designatedloation on the map (Van Waveren and Rothkrantz, 2002).Capture-the-�ag is a team-oriented game-play mode for Quake. In apture-the-�ag eah agent belongs to one of two opposing teams. Eah team has a base onthe map, and an objet representing a �ag, that is initially loated at the team'sbase. A team's primary goal in apture-the-�ag is to apture the opposing team's�ag and bring it to its own base, whih sores a point. After delivery of the �ag,the �ag returns immediately to its starting loation. The game is won by the teamthat sores the most points (Van Waveren and Rothkrantz, 2002). Figure 4.5 showsa sreenshot of Quake during a apture-the-�ag game.In apture-the-�ag modeQuake ontains two di�erent kinds of game AI, namely(i) agent AI, and (ii) team AI. Agent AI is the game AI that is loalised within eahindividual omputer-ontrolled agent, determining the behaviour of the agent, at an



68 Evolutionary Game AIState Sore O�ensive Defensive N = 4No �ags stolen winning max(0.4N, 4) max(0.5N, 5) (2,2,0)No �ags stolen losing max(0.5N, 5) max(0.4N, 4) (2,2,0)Home �ag stolen winning max(0.7N, 6) max(0.3N, 3) (3,1,0)Home �ag stolen losing max(0.7N, 7) max(0.2N, 2) (3,1,0)Opponent �ag stolen winning max(0.3N, 3) max(0.6N, 6) (1,2,1)Opponent �ag stolen losing max(0.3N, 3) max(0.6N, 6) (1,2,1)Both �ags stolen winning max(0.5N, 5) max(0.4N, 4) (2,2,0)Both �ags stolen losing max(0.5N, 5) max(0.4N, 4) (2,2,0)Table 4.4: Role divisions of the Quake stati team AI.operational level of intelligene. Team AI is the game AI that is implemented asa entralised oah for the omputer-ontrolled team, determining the behaviour ofthe team as a whole, at a tatial level of intelligene. The team AI provides eahof the members of a team with behavioural guidelines. The agent AI takes deisionswithin the boundaries set by the guidelines (Van der Sterren, 2002).The team AI implemented in Quake by the game developers assigns eah teammember a role, orresponding to the urrent game state and the urrent sore. Threedi�erent roles are de�ned, namely (i) o�ensive, (ii) defensive, and (iii) roaming. Fourdi�erent game states are de�ned, distinguishing whether or not eah of the two �agsis loated at its base. Two di�erent sore situations are de�ned, namely whetherthe team is winning or losing. The implementation of a role di�ers between gamestates. For instane, when the opposing team's �ag is at its base, an agent withan `o�ensive' role attempts to apture that �ag. When the opposing team's �agis aptured, an agent with an `o�ensive' role fouses on attaking members of theopposing team.The Quake team AI is stati, i.e., the role division and the role assignments arepre-programmed, although di�erent on�gurations are used for the four di�erentgame states and the two di�erent sore situations. The alulations for the eightdi�erent role divisions are listed in Table 4.4. The �ve olumns of the table represent(i) the game state, (ii) the sore situation (`winning' or `losing'), (iii) the alulationfor the number of team members in an o�ensive role, (iv) the alulation for thenumber of team members in a defensive role, and (v) the role division for a teamwith four members (respetively `o�ensive',`defensive', and `roaming'). In the alu-lations, N represents the total number of team members, and the alulation resultsare rounded to the nearest integer value.Adaptive team AI has the ability to tune automatially the team behaviour tothe tatis of the opposing team. Therefore, enhaning the Quake team AI withadaptive apabilities has the potential to improve a team's behaviour. In the presentresearh, online evolutionary learning is used to implement adaptive team AI.



4.2 � Online Evolutionary Game AI 694.2.2 Adaptive Team AI with TEAMThe Team-oriented Evolutionary Adaptability Mehanism (TEAM) is an online evo-lutionary learning tehnique designed to adapt the team AI of Quake-like games(Bakkes et al., 2004). TEAM is appliable under the ondition that the behaviourof a team in a game is de�ned by a small number of parameters, spei�ed per gamestate. A spei� instane of team behaviour is de�ned by values for eah of the para-meters, for eah of the states. TEAM is de�ned as a regular evolutionary algorithm,suh as a geneti algorithm, applied to team-behaviour learning, with the followingsix properties.State-based evolution: TEAM employs a separate evolutionary proess for eahstate, eah with its own population of hromosomes. The idea is that su-essful behaviour for eah of the separate states an be evolved faster thansuessful behaviour for all states, aknowledging the requirement that onlineevolutionary game AI must be e�ient. The ombination of the best solutionsfor eah of the states is onsidered to be the best solution for the team AI asa whole.State-based hromosome enoding: TEAM's hromosomes enode the state'sparameters, using real values.State-transition-based �tness funtion: TEAM uses a �tness funtion basedon state transitions. Bene�ial state transitions reward the hromosome thataused the state transition, while detrimental state transitions punish it. Usu-ally, an assessment of whether a state transition is bene�ial or detrimentalannot be given immediately after the transition; it must be delayed until thegame has been observed for a while.7Fitness propagation: TEAM propagates �tness values from hild hromosomesto their parents. This ensures that a parent hromosome with a high �tnessvalue, that mostly produes hildren with low �tness values, will get a low�tness value over time. The idea is that suh a parent probably ahieved high�tness due to hane, and not due to the quality of the solution it represents.This aknowledges the requirement that online evolutionary game AI must berobust.Elitist seletion: TEAM always selets the highest-ranking hromosome to use asparent for the evolution proess, aknowledging the requirement that onlineevolutionary game AI must be e�etive. While in most appliations elitistseletion is risky when randomness is involved in the �tness alulation (as isgenerally the ase in games), the �tness-propagation mehanism protets theevolution against inferior top-ranking hromosomes.7For instane, if a state transition happens from a state that is neutral for the team to a statethat is good for the team, the transition seems bene�ial. However, if this is immediately followedby a seond transition to a state that is bad for the team, the �rst transition annot be onsideredbene�ial, sine it may have been the primary ause for the seond transition.



70 Evolutionary Game AIManually-designed initialisation: TEAM's population is initialised with hro-mosomes that are designed manually. This ensures that the team AI is e�e-tive from the outset, aknowledging the requirement that online evolutionarygame AI must be e�etive.TEAM di�ers from reinforement learning, aording to the spei�ations givenby Sutton and Barto (1998), for two of its features, namely that (i) TEAM uses apopulation (admittedly, in a minor role), and (ii) TEAM uses undireted genetioperators to san the searh spae, whereas reinforement learning uses a gradient-based searh.4.2.3 Experimental ProedureTo evaluate the suitability of TEAM for implementing adaptive team AI, it wastested with the apture-the-�ag game-play mode in Quake III Arena. Similar tothe experimental proedure used for the duelling experiment (4.1), a dynami teamemploying TEAM was pitted against a stati team. The stati team used the defaultQuake team AI, whih has the ability to adapt the team behaviour to the urrentstate of the game. Eah team onsisted of four agents.The four game states of Quake in apture-the-�ag mode, with their state tran-sitions, are illustrated in Figure 4.6. Using D and S to denote the dynami team's�ag and the stati team's �ag respetively, and the subsripts b and s to denotea �ag being at its base and a �ag being stolen respetively, the states are de�nedas (Db, Sb), (Ds, Sb), (Db, Ss), and (Ds, Ss). Sine events in Quake are handledsequentially, in theory transitions are impossible between states that are loated di-agonally opposite eah other in Figure 4.6. From the point of view of the dynamiteam, state transitions an be bene�ial, indiated with a `+', or detrimental, indi-ated with a `−'. Depending on the irumstanes, some transitions an be both.For instane, when a transition (Ds, x) → (Db, x) ours, the reason is either thatthe dynami team interepted its stolen �ag, whih is bene�ial, or that the statiteam sored a point, whih is detrimental.The hromosome used to represent eah state was kept small, to eliit speedyevolution. It ontained only two parameters, namely (i) the ratio of `o�ensive' agents
ro, and (ii) the ratio of `defensive' agents rd. Both ro and rd were de�ned as realvalues in the range [0,1℄. Translation of a ratio to the number of agents in the orre-sponding role, was exeuted by multiplying the ratio with the total number of agents,rounding up for `o�ensive' agents, and rounding down for `defensive' agents. Theassignment of seleted roles to spei� agents was opied from the default Quaketeam AI. Agents that were assigned neither an `o�ensive' role, nor a `defensive' role,were assigned a `roaming' role.After eah state transition, a new hromosome was generated for the state inwhih the game then resided. This hromosome was used to determine the team AI.The team's behaviour under guidane of the new team AI was used to determinethe hromosome's �tness F ∈ [0, 1], aording to the following equation.
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Figure 4.6: State transitions in a apture-the-�ag game.
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(4.2)In this equation, T is the number of the state transition after whih the hromosomewas generated, and d is the `depth' of the alulation, i.e., the number of statetransitions that pass before the hromosome's �tness is alulated. In the experiment

d = 2 was used. The value Fi ∈ [0, 1] represents the pereived �tness between statetransitions i and i + 1. Fi is alulated aording to the following equation.
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) {− transition} (4.3)In this equation, ti is the number of seonds that pass between state transitions iand i + 1. The e�et of equations 4.2 and 4.3 is that the �tness value awarded toa hromosome is higher when the team AI it represents promotes bene�ial statetransitions (marked `+' in Figure 4.6), and lower when the team AI it representspromotes detrimental state transitions (marked `−' in Figure 4.6). The longer theresulting game states are maintained, the bigger the e�et is.



72 Evolutionary Game AIReombination operators (geneti operators that use geneti material from mul-tiple parents) often generate hildren that are radially di�erent from their parents(Davis, 1991), and thus often produe inferior results, whih should be avoided onaount of the requirement of e�etiveness. Therefore, it was deided that only ageneti mutation operator was to be used to generate new hromosomes.The geneti mutation operator was always applied to the best hromosome in thepopulation. Its e�et was saled in orrespondene to the �tness of the parent hro-mosome it mutated: a parent with a high �tness got a small mutation, while a parentwith a low �tness got a large mutation. The mutation was implemented as a biasedmutation on one or both genes in the hromosome, while ensuring that the resultinghromosome always represented a legal role division. Newly generated hild hro-mosomes either replaed the bottom-ranking hromosome in the population, or weredisarded, if their �tness did not exeed the bottom-ranking hromosome's �tness.With respet to �tness propagation, the �tness alulated for hild hromosomeswas also fatored into the �tness of the parent hromosome.Sine the population's only funtion is to support the �tness-propagation meh-anism, by o�ering a replaement for the population's top-ranking position in asethe urrent top was removed, a small population size su�es. In the experimentthe population size was set to 5. The population was initialised with �ve opies ofa hromosome representing the parameters used by the default Quake team AI, toensure e�etive behaviour even with the initial dynami team AI.4.2.4 Evolving Team AIThe experiment to evaluate the suitability of TEAM for implementing adaptiveteam AI onsisted of �fteen tests. In eah test a team using dynami team AIplayed Quake III Arena apture-the-�ag against a team using stati team AI.The game was played on an `open' map, i.e., a map without walls, allowing theagents an unrestrited view of their environment.Eah test ran for at least six real-time hours, in whih between 250 and 600points were sored. The points sored by eah team were traked, and omparedafter the tests. The following two measures were de�ned to rate the suess of thedynami team.Absolute turning point: The absolute turning point is the number of the lastpoint sored, after whih the dynami team's total sore exeeds the statiteam's total sore for the remainder of the test. Figure 4.7 illustrates theabsolute turning point with a graph displaying the dynami team's lead in oneof the tests. After point 52 is sored, the dynami team's sore exeeds thestati team's sore for the remainder of the test. Therefore, in this examplethe absolute turning point is 52.Relative turning point: The relative turning point is the number of the last pointin the �rst sliding window of twenty points, in whih the dynami team sored�fteen, and the stati team sored �ve points. At the relative turning point thedynami team's behaviour is more suessful than the stati team's behaviour
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Figure 4.7: A test run with an absolute turning point of 52.with a reliability > 97% (Cohen, 1995). Figure 4.8 illustrates the relativeturning point with a graph displaying the dynami team's number of wins ina sliding window of 20 points sored, in the same test used for Figure 4.7. Atthe soring of point 57, the dynami team's sore in the window of the lasttwenty points sored is �fteen for the �rst time. Therefore, in this examplethe relative turning point is 57. Note that, due to the window size of 20, thelowest possible value for the relative turning point is 20.Fifteen tests were performed. In all tests the dynami team managed to evolveteam AI whih allowed it to defeat the stati team onsistently. Table 4.5 provides an

Figure 4.8: A test run with a relative turning point of 57.



74 Evolutionary Game AIAverage St.dev. Median Highest LowestAbsolute turning point 108 62.0 99 263 38Relative turning point 71 44.8 50 158 20Table 4.5: Results for the team-AI experiment.overview of the results. From these results it an be onluded that TEAM is apableof suessfully adapting team behaviour in Quake apture-the-�ag. Analysing thebehaviour of the evolved team AI, it was observed that the dynami team used risky,but suessful, tatis against the stati team. The tatis an best be desribedas `rush' tatis, aimed at quikly obtaining o�ensive �eld supremay.8 The defaultQuake team AI only applies `moderate' tatis, leaving at least one agent in a`defensive' role, and is therefore unable to deal e�etively with rush tatis.4.2.5 Disussion of the Team-AI ExperimentIn the introdution of Setion 4.2, is was indiated that it is hard to reate onlineevolutionary game AI that meets the four omputational requirements for onlinelearning in games (detailed in 2.3.4). The four requirements are now disussed forthe team-AI experiment.
• Speed : The implementation of the dynami team AI, using a small hromosomeand a small population, needed relatively few proessing yles. During thetests, the game-play was never interrupted or slowed down beause of theevolutionary proess. Therefore, it an be onluded that the dynami teamAI meets the requirement of speed.
• E�etiveness: Table 4.5 shows that, on average, the absolute turning pointis signi�antly higher than the relative turning point. This means that, ingeneral, the dynami team has beome the dominant team on the map a on-siderable period of time before it atually gains the lead in the number ofpoints sored. The reason for the gap between the two turning points is thatinitially the dynami team tends to be weaker than the stati team. How-ever, it was observed during all �fteen tests that its sore never was more thanabout a dozen points behind the stati team's sore. In ontrast, as soon asthe absolute turning point was reahed, the dynami team's lead inreased tohundreds of points. Therefore, it an be onluded that the dynami team AImeets the requirement of e�etiveness.8The dynami team AI assigns all agents an `o�ensive' role in the state (Db, Sb). In translation,this means that in a situation where its own �ag is in no immediate danger, and the opponent's�ag is not aptured, the dynami team will launh an all-out attak to get the opponent's �ag asquikly as possible, whih is the �rst step that needs to be taken to sore a point. Rush tatis areoften applied in real-time strategy games, whih are disussed in Chapter 6.
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• Robustness: In almost all tests the dynami team AI did not su�er from theinherent randomness in the Quake environment. Only in one of the �fteentests, the dynami team AI, after having inreased its lead to about 375 points,suddenly seemed to `forget' the suessful tatis it had learned, and startedlosing again. After its lead had dropped to about 340 points, it reovered.The explanation for this phenomenon is that the dynami team AI had di�-ulties dealing with a long run of �tness values that, due to hane, were notrepresentative for the quality of the hromosome they were assigned to. It ispossible to protet the dynami team AI better against suh hane runs, bynot replaing the team AI after eah state transition. Instead, the time gainedis used to on�rm the assigned �tness values. The drawbak is that this willhurt the e�ieny of the proess. Moreover, statistially it is impossible torule out suh hane runs ompletely. Taking all these fats into aount, itan be onluded that the dynami team AI is fairly robust.
• E�ieny : When in a apture-the-�ag game the relative turning point isreahed, the dynami team's superiority is lear. Table 4.5 shows that theaverage relative turning point is 71, i.e., after the soring of only 71 points thedynami team signi�antly outperforms the stati team. A relative turningpoint of 71 is quite low, onsidering that, in general, evolutionary algorithmsneed thousands of trials (or more) to �nd an aeptable solution. Therefore,at �rst glane the dynami team AI seems to be e�ient. However, for threereasons we should be autious in regarding this result too optimistially. Thereasons are the following. (i) As the high standard deviation of 44.8 indiates,the relative turning point has a high variane, whih is in on�it with thefuntional requirement of onsisteny (2.3.4). (ii) With four states and ba-sially only �fteen di�erent allele ombinations per hromosome,9 the searhspae for team AI overing all four states only ontains 154 = 50625 di�erentsolutions, and thus is very small. (iii) The dynami team started with tatisequal to the already e�etive tatis used by the stati team. On average,the dynami team needed about two hours of real-time play to turn the ef-fetive initial tatis into superior tatis. In general, Quake apture-the-�agmathes do not last that long. Taking the three reasons into aount, it anbe onluded that the dynami team AI is moderately e�ient, provided thesearh spae is small.TEAM an be applied in pratial situations, beause it does not slow downgame-play, its tatis do not degrade, and it is fairly robust. While it is laking ine�ieny, in apture-the-�ag mathes that run for long periods of time, it may beexpeted that TEAM will disover suessful tatis, under the provision that thesearh spae is small.9Let No ∈ N be the number of agents that gets an `o�ensive' role, Nd ∈ N be the number ofagents that gets a `defensive' role, and N ∈ N be the total number of agents in a team. Then itholds that No + Nd ≤ N . With N = 4 agents in a team, as used in the team-AI experiment, only�fteen di�erent role divisions are possible.



76 Evolutionary Game AI4.3 Disussion of Evolutionary Game AIO�ine evolutionary game AI ahieved good results in exploiting weaknesses in gameAI, and in disovering new tatis, in the duelling-spaeships environment desribedin Setion 4.1. This is of no surprise, sine the only requirement for use of evolution-ary learning is that an adequate �tness funtion an be designed (Goldberg, 1989).A �tness funtion for the evolution of tatis in a game may be designed by takinginto aount the speed by whih an enounter is played out, and the e�etivenessby whih agents defend themselves and attak the human player. In general, gamesprovide suh information. Thus, it may be onluded that evolutionary learning anbe used to detet exploits in game AI, and to design new tatis for game AI.In the duelling-spaeships experiment, a neural network was used to implementthe game AI. It was argued that a neural network is not a suitable arhitetureto store game AI, beause it annot reate the equivalent of sripts onsisting ofprodution rules. In Chapter 6, where o�ine evolutionary game AI will be appliedto a di�erent problem, an alternative learning struture will be used, spei�allydesigned to evolve prodution rules. However, the same overall design as used inthe present hapter will be used, namely evolving strong tatis by pitting o�ineevolutionary game AI against strong stati game AI.In the Quake apture-the-�ag experiment desribed in Setion 4.2, online evo-lutionary game AI ahieved good results in improving tatis against a spei� op-ponent during Quake game-play. The opponent was the standard opponent im-plemented by the Quake developers, with the ability to swith between di�erenton�gurations in response to hanging irumstanes. Despite the good results, thelearning mehanism was shown to be only moderately e�ient.Laird (2000) is skeptial about the possibilities o�ered by online evolutionarygame AI. He states that, while neural networks and evolutionary algorithms may beapplied to tune parameters, they are �grossly inadequate when it omes to reatingsyntheti haraters with omplex behaviours automatially from srath�. In on-trast, the results ahieved with dynami team AI in Quake show that it is ertainlypossible to use online evolutionary algorithms for game AI design. A similar disov-ery, using online evolutionary learning to evolve agent AI, was made by Demasi andCruz (2002).However, the team AI designed for Quake apture-the-�ag, and the agent AIdesigned by Demasi and Cruz (2002), are both simple, ontrolled by just a fewparameters. Regarding the `omplex behaviours' referred to in Laird's sentiment,it is highly doubtful whether an evolutionary approah an generate those in ane�ient manner. It is likely that the searh for omplex behaviour takes plae ina large searh spae. In general, the larger the searh spae, the less e�ient anevolutionary algorithm (or, indeed, any other searh algorithm) will be (Russell andNorvig, 2003). When online evolutionary game AI is no longer e�ient, its pratialuse is negligible.It may be onluded that evolutionary game AI is suitable for the o�ine adap-tation of game AI, and for the online adaptation of game AI for simple behaviour.However, for lak of e�ieny it is not the right approah for the online adaptation



4.4 � Chapter Summary 77of game AI for omplex behaviour. A di�erent approah to online adaptation ofgame AI, targeted at the adaptation of omplex behaviour, will be introdued inChapter 5.4.4 Chapter SummaryIn this hapter both o�ine and online evolutionary game AI were investigated. O�-line evolutionary game AI was shown to be able to exploit weaknesses in game AI,and to disover new tatis, when pitted against strong stati game AI. Online evolu-tionary game AI was shown to be able to improve tatis against a spei� opponentduring game-play. However, the suess of online evolutionary game AI dependedon the potential solutions residing in a small searh spae. In general, when evolvinggame AI that is omplex, online evolutionary game AI will not be su�iently e�-ient. E�ieny is a requirement to apply online adaptation of game AI in pratie.Therefore, to adapt omplex game AI, a di�erent approah needs to be used.





Chapter 5Dynami SriptingWhen error is orreted whenever it is reognised as suh,the path of error is the path of truth.� Hans Reihenbah (1891�1953).In Chapter 4 it was shown that online evolutionary game AI fails to meet one of theomputational requirements for online-learning, namely the requirement of e�ieny(2.3.4). The present hapter1 disusses online learning of game AI using a noveltehnique alled `dynami sripting'. Dynami sripting has been designed to meetall four omputational online-learning requirements. With a few enhanements, itis also able to meet all four funtional requirements. Setion 5.1 introdues thedynami-sripting tehnique. Experiments performed for evaluating the adaptiveperformane of dynami sripting are desribed in Setions 5.2 to 5.5. Setion 5.2desribes the experimental proedure, and investigates the performane of dynamisripting in a simulated CRPG. Setion 5.3 investigates enhanements to dynamisripting to redue the number of exeptionally long adaptation runs. Setion 5.4investigates enhanements to dynami sripting to allow saling of the di�ulty levelof the game AI to the experiene level of the human player. In Setion 5.5, the resultsahieved in the simulated CRPG are validated in an atual state-of-the-art CRPG.A summary of the hapter is provided in Setion 5.6.5.1 Dynami-Sripting TehniqueThis setion desribes the dynami-sripting tehnique (5.1.1), provides pseudo-odefor two of its main proess (5.1.2), and explains to what extent it meets the ompu-tational and funtional requirements for online learning of game AI (5.1.3).1This hapter is based on three papers by Spronk, Sprinkhuizen-Kuyper, and Postma (2004a;2004b; 2004).



80 Dynami Sripting

Figure 5.1: Dynami sripting.5.1.1 Desription of Dynami SriptingDynami sripting is an online mahine-learning tehnique for game AI, that an beharaterised as a stohasti optimisation tehnique. Dynami sripting maintainsseveral rulebases, one for eah agent lass in the game. Every time a new instane ofan agent is generated, the rulebases are used to reate a new sript that ontrols theagent's behaviour. The rules that omprise a sript ontrolling a partiular agentare extrated from the rulebase assoiated with the agent's lass. The probabilitythat a rule is seleted for a sript is in�uened by a weight value that is attahedto eah rule. Adaptation of the rulebase proeeds by hanging the weight values tore�et the suess or failure rate of the orresponding rules in sripts. The weighthanges are determined by a weight-update funtion.The dynami-sripting tehnique is illustrated in Figure 5.1 in the ontext of aommerial game. In the �gure, the team dressed in grey is ontrolled by a humanplayer, while the omputer ontrols the team dressed in blak. The rulebase assoi-ated with eah omputer-ontrolled agent (named `A' and `B' in Figure 5.1) ontainsmanually-designed rules derived from domain-spei� knowledge. It is imperativethat the majority of the rules in the rulebase de�ne e�etive, or at least sensible,agent behaviour.At the start of an enounter (i.e., a �ght between two opposing teams), a newsript is generated for eah omputer-ontrolled agent, by randomly seleting a spe-i� number of rules from its assoiated rulebase. There is a linear relationshipbetween the probability that a rule is seleted and its assoiated weight. The orderin whih the rules are plaed in the sript depends on the appliation domain. A



5.1 � Dynami-Sripting Tehnique 81priority mehanism an be used to let ertain rules take preedene over other rules.Suh a priority mehanism is only required if a general ordering of rules and ationsis presribed by the domain knowledge. More spei� ation groupings, suh as twoations whih must always be exeuted in a spei� order, should be ombined inone rule.The learning mehanism in the dynami-sripting tehnique is inspired by rein-forement learning tehniques (Sutton and Barto, 1998; Russell and Norvig, 2003).`Regular' reinforement learning tehniques, suh as TD-learning, in general needlarge amounts of trials, and thus do not meet the requirement of e�ieny (Manslow,2002; Madeira et al., 2004). Reinforement learning may be suitable for online learn-ing of game AI when the trials our in a short time-span. Suh may be the aseon an operational level of intelligene, as in, for instane, the work by Graepel et al.(2004), where �ght movements in a �ghting game are learned. However, for thelearning on a tatial or strategi level of intelligene, a trial onsists of observingthe performane of a tati over a fairly long period of time. Therefore, for theonline learning of tatis in a game, reinforement learning will take too long to bepartiularly suitable. In ontrast, dynami sripting has been designed to learn froma few trails only.In the dynami-sripting approah, learning proeeds as follows. Upon om-pletion of an enounter (ombat), the weights of the rules employed during theenounter are adapted depending on their ontribution to the outome. Rules thatlead to suess are rewarded with a weight inrease, whereas rules that lead to failureare punished with a weight derease. The inrement or derement of eah weightis ompensated for by dereasing or inreasing all remaining weights as to keep theweight total onstant.Dynami sripting an be applied to any form of game AI that meets threerequirements: (i) the game AI an be sripted, (ii) domain knowledge on the har-ateristis of a suessful sript an be olleted, and (iii) an evaluation funtionan be designed to assess the suess of the sript. Note that the maximum playingstrength game AI an ahieve using dynami sripting depends on the quality of thedomain knowledge used to reate the rules in the rulebase. In the present hapter,it is assumed that the game developer provides high-quality domain knowledge. InChapter 6, I disuss the automati generation of high-quality domain knowledge.5.1.2 Dynami Sripting CodeThe two entral proesses of the dynami-sripting tehnique are sript generationand weight adjustment, whih are spei�ed in pseudo-ode in this subsetion. Inthe ode, the rulebase is represented by an array of rule objets. Eah rule objethas three attributes, namely (i) weight, whih stores the rule's weight as an integervalue, (ii) line, whih stores the rule's atual text to add to the sript when the ruleis seleted, and (iii) ativated, whih is a boolean that indiates whether the rulewas ativated during sript exeution.Algorithm 1 presents the sript generation algorithm. In the algorithm, thefuntion `InsertInSript' add a line to the sript. If the line is already in the sript,



82 Dynami SriptingAlgorithm 1 Sript Generation1: ClearSript()2: sumweights = 03: for i = 0 to rulecount − 1 do4: sumweights = sumweights + rule[i].weight5: end for6: for i = 0 to scriptsize − 1 do7: try = 08: lineadded = false9: while try < maxtries and not lineadded do10: j = 011: sum = 012: selected = −113: fraction = random(sumweights)14: while selected < 0 do15: sum = sum + rule[j].weight16: if sum > fraction then17: selected = j18: else19: j = j + 120: end if21: end while22: lineadded = InsertInSript(rule[selected].line)23: try = try + 124: end while25: end for26: FinishSript()the funtion has no e�et and returns `false'. Otherwise, the line is inserted andthe funtion returns `true'. The algorithm aims to put scriptsize lines in the sript,but may end up with less lines if it needs more than maxtries trials to �nd a newline. The funtion `FinishSript' appends one or more lines to the sript, to ensurethat the sript will always �nd an ation to exeute. For omputational speed, allnumbers in the algorithm are integer values.Algorithm 2 presents the weight adjustment algorithm. The funtion `Calu-lateAdjustment' alulates the reward or penalty eah of the ativated rules reeives.The parameter Fitness is a measure of the performane of the sript during the en-ounter. For omputational speed, all numbers in the algorithm are integer values,exept for the value of Fitness, whih is a real value.Note that in Algorithm 1 the alulation of sumweights in lines 3 to 5 shouldalways lead to the same result, namely the sum of all the initial rule weights. How-ever, the short alulation that is used to determine the value of sumweights ensuresthat the algorithm will sueed even if Algorithm 2 does not divide the value ofremainder ompletely (to avoid using too many proessing yles).



5.1 � Dynami-Sripting Tehnique 83Algorithm 2 Weight Adjustment1: active = 02: for i = 0 to rulecount − 1 do3: if rule[i].activated then4: active = active + 15: end if6: end for7: if active <= 0 or active >= rulecount then8: return {No updates are needed.}9: end if10: nonactive = rulecount − active11: adjustment = CalulateAdjustment(Fitness)12: compensation = −round(active ∗ adjustment/nonactive)13: remainder = −active ∗ adjustment − nonactive ∗ compensation14: {Awarding rewards and penalties:}15: for i = 0 to rulecount − 1 do16: if rule[i].activated then17: rule[i].weight = rule[i].weight + adjustment18: else19: rule[i].weight = rule[i].weight + compensation20: end if21: if rule[i].weight < minweight then22: remainder = remainder + (rule[i].weight − minweight)23: rule[i].weight = minweight24: else if rule[i].weight > maxweight then25: remainder = remainder + (rule[i].weight − maxweight)26: rule[i].weight = maxweight27: end if28: end for29: {Division of remainder:}30: i = 031: while remainder > 0 do32: if rule[i].weight <= maxweight − 1 then33: rule[i].weight = rule[i].weight + 134: remainder = remainder − 135: end if36: i = (i + 1) mod rulecount37: end while38: while remainder < 0 do39: if rule[i].weight >= minweight + 1 then40: rule[i].weight = rule[i].weight − 141: remainder = remainder + 142: end if43: i = (i + 1) mod rulecount44: end while



84 Dynami Sripting5.1.3 Dynami Sripting and Learning RequirementsDynami sripting meets �ve of the eight omputational and funtional requirements(2.3.4) by design, as follows.
• Speed (omputational): Dynami sripting is omputationally fast, beauseit only requires the extration of rules from a rulebase and the updating ofweights one per enounter.
• E�etiveness (omputational): Dynami sripting is e�etive, beause all rulesin the rulebase are based on domain knowledge. Therefore, every ation whihan agent exeutes through a sript that ontains these rules, is an ation thatis at least reasonably e�etive (although it may be inappropriate for ertainsituations). Note that if the game developers make a mistake and inludean inferior rule in the rulebase, the dynami-sripting tehnique will quiklyassign this rule a low weight value. Therefore, the requirement of e�etivenessis met even if the rulebase ontains a few inferior rules.
• Robustness (omputational): Dynami sripting is robust, beause rules arenot removed immediately when punished. Instead, they get seleted less of-ten. Their seletion rate will automatially inrease again, either when theyare inluded in a sript that ahieves good results, or when other rules arepunished.
• Clarity (funtional): Dynami sripting generates sripts, whih an be easilyunderstood by game developers.
• Variety (funtional): Dynami sripting generates a new sript for every agent,and thus provides a high variety in behaviour.The remaining three requirements, namely the omputational requirement ofe�ieny and the funtional requirements of onsisteny and salability, are not metby design. The dynami-sripting tehnique is believed to meet the requirement ofe�ieny, beause with appropriate weight-updating parameters it an adapt aftera few trials only. This is investigated empirially in Setion 5.2. Enhanements tothe dynami-sripting tehnique that make it meet the requirements of onsistenyand salability are investigated in Setions 5.3 and 5.4, respetively.5.2 E�ieny ValidationSine the dynami-sripting tehnique is designed to be used against human players,ideally an empirial evaluation of the tehnique is derived from an analysis of gamesit plays against humans. However, due to the huge number of tests that mustbe performed, suh an evaluation is not feasible within a reasonable amount oftime (Madeira et al., 2004). Therefore, I deided to evaluate the dynami-sriptingtehnique by its ability to disover sripts apable of defeating strong, but stati,tatis. Translated to a game played against human players, the evaluation tests
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Figure 5.2: The CRPG simulation.the ability of the dynami-sripting tehnique to fore the human player to seekontinuously new tatis, beause the game AI will automatially adapt to deal withtatis that are used often. The evaluation was performed in a simulated CRPG.This setion desribes the simulation environment (5.2.1), the sripts and rulebases(5.2.2), the weight-update funtion (5.2.3), the tatis against whih the dynami-sripting tehnique is tested (5.2.4), the measures used to evaluate the results (5.2.5),and the ahieved experimental results (5.2.6).5.2.1 Simulation EnvironmentThe CRPG simulation used to evaluate dynami sripting is illustrated in Figure 5.2.It is modelled after the popular Baldur's Gate games. These games (along witha few others) ontain the most omplex and extensive game-play system found inmodern CRPGs, losely resembling lassi non-omputer roleplaying games (Cook,Tweet, and Williams, 2000). The simulation entails an enounter between two teamsof similar omposition. The `dynami team' is ontrolled by dynami sripting.The `stati team' is ontrolled by unhanging sripts, that represent strong tatis.Eah team onsists of four agents, namely two `�ghters' and two `wizards' of equal



86 Dynami Sripting`experiene level'. The armament and weaponry of the teams is stati, and eahagent is allowed to selet two (out of three possible) magi potions. In addition, thewizards are allowed to memorise seven (out of 21 possible) magi spells. The spellsinorporated in the simulation are of varying types, amongst whih damaging spells,blessings, urses, harms, area-e�et spells, and summoning spells.The simulation is implemented with hard onstraints and soft onstraints. Hardonstraints are onstraints that are submitted by the games rules, e.g., a hard on-straint on spells is that they an only be used when they are memorised, and ahard onstraint on agents is that they an only exeute an ation when they are notinapaitated. Soft onstraints are onstraints that follow as logial onsequenesfrom the rules, e.g., a soft onstraint on a healing potion is that only an agent thathas been damaged should drink it. Both hard and soft onstraints are taken intoaount when a sript is exeuted, e.g., agents will not drink a healing potion whenthey are inapaitated or undamaged.In the simulation, the pratial issue of hoosing spells and potions for agents issolved by making the hoie depend on the (generated) sripts, as follows. Beforethe enounter starts, the sripts are sanned to �nd rules ontaining ations thatrefer to drinking potions or asting spells. When suh a rule is found, a potion orspell that an be used in that ation is seleted. If the agent ontrolled by the sriptis allowed to possess the potion or spell, it is added to the agent's inventory.More details on the CRPG simulation environment an be found in AppendixA, Setion A.1.5.2.2 Sripts and RulebasesThe sripting language was designed to emulate the power and versatility of thesripts used in the Baldur's Gate games. The sripting language is explained indetail in Appendix A, Setion A.2.Rules in the sripts are exeuted in sequential order. For eah rule the ondition(if present) is heked. If the ondition is ful�lled (or absent), the ation is exeutedif it obeys all relevant hard and soft onstraints. If no ation is seleted when the�nal rule is heked, the default ation `pass' is used.When dynami sripting generates a new sript, the rule order in the sript isdetermined by a manually-assigned priority value. Rules with a higher priority takepreedene over rules with a lower priority. In ase of equal priority, the rules withhigher weights take preedene. For rules with equal priorities and equal weights,the order is determined randomly.The seletion of sript sizes was motivated by the following two onsiderations,namely that (i) a �ghter has less ation hoies than a wizard, thus a �ghter's sriptan be shorter than a wizard's sript, and (ii) a typial �ght will last �ve to tenrounds, thus a maximum of ten rules in a sript seems su�ient. Therefore, the sizeof the sript for a �ghter was set to �ve rules, whih were seleted out of a rulebaseontaining twenty rules. For a wizard, the sript size was set to ten rules, whihwere seleted out of a rulebase ontaining �fty rules. At the end of eah sript,default rules were attahed, to ensure the exeution of an ation in ase none of the



5.2 � E�ieny Validation 87rules extrated from the rulebase ould be ativated. The rulebases used are listedin Appendix A, Setion A.3.5.2.3 Weight-Update FuntionThe weight-update funtion is based on two so-alled `�tness funtions', namely (i)a team-�tness funtion F (g) (where g refers to the team), and (ii) an agent-�tnessfuntion F (a, g) (where a refers to the agent, and g refers to the team to whih theagent belongs). The �tness funtions have been designed with the aim to assignhigh �tness to behaviour that manages to defeat the opposing team, or that at leastmanages to put up a good �ght.Both �tness funtions yield a value in the range [0, 1]. The �tness values arealulated at time t = T , where T is the time step at whih all agents in one ofthe teams are `defeated', i.e., have their health redued to zero or less. A team ofwhih all agents are defeated, has lost the �ght. A team that has at least one agent`surviving', has won the �ght. At rare oasions both teams may lose at the sametime.The team-�tness funtion is de�ned as follows.
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) {g won} (5.1)In this equation, g refers to a team, c refers to an agent, Ng ∈ N is the total numberof agents in team g, and ht(c) ∈ N is the health of agent c at time t. Aording theequation, a `losing' team has a �tness of zero, while the `winning' team has a �tnessexeeding 0.5.The agent-�tness funtion is de�ned as follows.
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) (5.2)In this equation, a refers to the agent whose �tness is alulated, and g refers to theteam to whih agent a belongs. The equation ontains four omponents, namely (i)

F (g), the �tness of team g, derived from equation 5.1, (ii) A(a) ∈ [0, 1], whih is arating of the survival apability of agent a, (iii) B(g) ∈ [0, 1], whih is a measure ofhealth of all agents in team g, and (iv) C(g) ∈ [0, 1], whih is a measure of damagedone to all agents in the team opposing g. The weight of the ontribution of eahof the four omponents to the �nal outome was determined arbitrarily, taking intoaount the onsideration that agents should give high rewards to a team vitory, andto their own survival (expressed by the omponents F (g) and A(a), respetively).The funtion assigns smaller rewards to the survival of the agent's omrades, and tothe damage in�ited upon the opposing team (expressed by the omponents B(g)and C(g), respetively). As suh the agent-�tness funtion is a good measure of thesuess rate of the sript that ontrols the agent.



88 Dynami SriptingThe omponents A(a), B(g), and C(g) are de�ned as follows.
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{hT (c) > 0} (5.5)In equations 5.3 to 5.5, a and g are as in equation 5.2, c, Ng and ht(c) are as inequation 5.1, N¬g ∈ N is the total number of agents in the team that opposes g,

D(a) ∈ N is the time of `death' of agent a, and Dmax is a onstant (Dmax was set to100 in the experiments, whih equals ten ombat rounds, whih is longer than most�ghts last).The agent �tness is translated into weight adaptations for the rules in the sript.Weight values are bounded by a range [Wmin,Wmax], with exess rewards beingredistributed over all weights. Only the rules in the sript that are atually exeutedduring an enounter are rewarded or penalised. A new weight value is alulated as
W + △W , where W is the original weight value, and the weight adjustment △W isexpressed by the following formula.
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⌋ {F ≥ b} (5.6)In this equation, Rmax ∈ N and Pmax ∈ N are the maximum reward and maximumpenalty respetively, F is the agent �tness, and b ∈ 〈0, 1〉 is the break-even value. Atthe break-even point the weights remain unhanged. To keep the sum of all weightvalues in a rulebase onstant, weight hanges are exeuted through a redistributionof all weights in the rulebase. The weight-adjustment formula is visualised later inthis hapter, in �gure 5.6 (left).In the e�ieny-validation experiment, values for the onstants were set as fol-lows. The break-even value b was set to 0.3, sine in the simulation this value isbetween the �tness value that the `best losing agent' ahieves and the �tness valuethat the `worst winning agent' ahieves (about 0.2 and 0.4, respetively). The ini-tialisation of the rulebase assigned all weights the same weight value, Winit = 100.
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Wmin was set to zero to allow rules that are punished a lot to be e�etively removedfrom the sript-generation proess. Wmax was set to 2000, whih is suh a highvalue that it allows weights to grow more or less unrestrited. Rmax was set to 100to inrease the e�ieny of dynami sripting by allowing large weight inreases foragents with a high �tness. Pmax was set to 30, whih is relatively small omparedto Rmax, to protet the rulebase from degradation as soon as a loal optimum isfound. Intuitively, the argument for the low value of Pmax seems to be orret, sinethe penalty is similar to the mutation rate in evolutionary algorithms, whih shouldbe small in the neighbourhood of an optimum (Bäk, 1996). However, in Setion5.3 it will be shown that a higher value for the maximum penalty gives a betterperformane for dynami sripting.5.2.4 TatisFour di�erent basi tatis and three omposite tatis were de�ned for the statiteam. The four basi tatis, implemented as a stati sript for eah agent of thestati team, are as follows (in these desription, an `enemy' is a member of thedynami team).O�ensive: The �ghters always attak the nearest enemy with a melee weapon,while the wizards use the most damaging o�ensive spells at the (aording todomain knowledge) most suseptible enemies.Disabling: The �ghters start by drinking a potion that protets them from anydisabling e�et, then attak the nearest enemy with a melee weapon. Thewizards use all kinds of spells that inapaitate enemies for several rounds.Cursing: The �ghters always attak the nearest enemy with a melee weapon, whilethe wizards use all kinds of spells that redue the enemies' e�etiveness, e.g.,they try to harm enemies (i.e., turn them into allies), physially weaken enemy�ghters, deafen enemy wizards (whih auses many of the spells they ast tofail), and summon minions in the middle of the enemy team.Defensive: The �ghters start by drinking a potion that redues �re damage, afterwhih they attak the losest enemy with a melee weapon. The wizards useall kinds of defensive spells, to de�et harm from themselves and from theiromrades, inluding the summoning of minions.Details of the basi tatis are listed in Appendix A, Setion A.4.To assess the ability of the dynami-sripting tehnique to ope with suddenhanges in tatis, the following three omposite tatis were de�ned.Random team: For eah enounter, one of the four basi tatis is seleted ran-domly.Random agent: For eah enounter, eah agent randomly selets one of the fourbasi tatis, independent from the hoies of his omrades.
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Figure 5.3: Average �tness in size-10 window progression.Conseutive: The stati team starts by using one of the four basi tatis. Foreah enounter, the team will ontinue to employ the tati used during theprevious enounter if that enounter was won, but will swith to the next tatiif that enounter was lost. This strategy is losest to what human players do:they stik with a tati as long as it works, and swith when it fails. Thisdesign makes the onseutive tati the most di�ult tati to defeat.5.2.5 Measuring PerformaneIn order to identify reliable hanges in strength between teams, the notion of the`turning point' is de�ned as follows. After eah enounter the average �tness foreah of the teams over the last ten enounters is alulated. The dynami team issaid to `outperform' the stati team at an enounter if the average �tness over thelast ten enounters is higher for the dynami team than for the stati team. Theturning point is the number of the �rst enounter after whih the dynami teamoutperforms the stati team for at least ten onseutive enounters.Figure 5.3 illustrates the turning point with a graph displaying the progressionof the average team-�tness in a size-10 window (i.e., the values for the average team�tness for ten onseutive enounters) for both teams, in a typial test. The hori-zontal axis represents the enounters. Beause of the size-10 window, the �rst valuesare displayed for enounter number 10. In this example at enounter number 29 thedynami team outperforms the stati team, and maintains its superior performanefor ten enounters. Therefore, the turning point is 29. The absolute �tness valuesfor the same typial test are displayed in Figure 5.4. Sine after eah enounterthe �tness for one of the teams is zero, only the �tness for the winning team isdisplayed per enounter (the olour of the bar indiates whih is the winning team).
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Figure 5.4: Absolute �tness F (g) as a funtion of the enounter number.Evidently, after enounter 25, the dynami team wins more often than the statiteam. Note that, regardless how long training lasts, the dynami team will neverreah a point where it is able to win always, due to (i) the randomness inherent inthe simulation, (ii) the variety of the sripts generated by dynami sripting, and(iii) the e�etiveness of the stati tatis.A low value for the turning point indiates good e�ieny of dynami sripting,sine it indiates that the dynami team onsistently outperforms the stati teamwithin a few enounters only.5.2.6 E�ieny-Validation ResultsFor eah of the tatis I ran 100 tests to determine the average turning point. Theresults of these tests are presented in Table 5.1. The olumns of the table represent,from left to right, (i) the name of the tati, (ii) the average turning point, (iii) thestandard deviation, (iv) the median, (v) the highest value for a turning point found,and (vi) the average of the �ve highest values.The aim of the �rst experiment was to test the viability and e�ieny of dynamisripting. The ahieved results show that dynami sripting is both a viable, and ahighly e�ient tehnique (at least in the present domain of ombat in CRPGs). Forall tatis, dynami sripting yields low turning points. In addition to this generalobservation, I give three more spei� observations.First, the `disabling' tati is easily defeated by the dynami team. Apparentlyit is not a good tati, beause dealing with it requires little or no adaptation of therulebase.Seond, the `onseutive' tati, whih was argued to be losest to human-player



92 Dynami SriptingTati Average St.dev. Median Highest Top 5O�ensive 58 35.0 53 314 155Disabling 12 5.2 10 51 31Cursing 137 333.6 35 1767 1461Defensive 31 18.8 27 93 77Random team 56 74.4 34 595 310Random agent 53 67.0 27 398 289Conseutive 72 100.3 47 716 424Table 5.1: Turning-point values for dynami sripting pitted against seven di�erenttatis, averaged over 100 tests.behaviour, is overall the most di�ult to defeat with dynami sripting.2 Never-theless, the dynami-sripting tehnique is apable of defeating this tati ratherquikly, espeially onsidering the fat that the rulebase started out with all weightsbeing equal, while in an atual game the weights would be biased from the start togive the objetively better rules a higher seletion probability.Third, it is striking that for all tatis the average turning point is signi�antlyhigher than the median. The explanation is the rare ourrene of extremely highturning points. These so-alled `outliers' are explained by the high degree of ran-domness that is inherent to the simulated CRPG, and to games in general. A longrun of enounters where pure hane drives the learning proess away from an opti-mum (e.g., a run of enounters wherein the dynami team is luky and wins despiteemploying inferior tatis, or wherein the dynami team is unluky and loses de-spite employing good tatis) may plae the rulebase in a state from whih it hasdi�ulty to reover. Due to the randomness inherent in games, suh oasionallong runs are unavoidable, but their probability of ourrene may be redued. Twoountermeasures against outliers are disussed in Setion 5.3.5.3 Outlier RedutionThe oasional ourrene of outliers withholds dynami sripting from meetingthe requirement of onsisteny. To redue the number of outliers ourring withthe appliation of dynami sripting, I propose two ountermeasures, namely (i)penalty balaning, and (ii) history fallbak. The two ountermeasures are explainedin Subsetions 5.3.1 and 5.3.2, respetively. The ountermeasures are evaluated inan experiment, of whih the results are presented in Subsetion 5.3.3, and disussedin Subsetion 5.3.4.2At �rst glane the `ursing' tati might seem harder to defeat, but the median value showsthat this is not the ase; the `ursing' tati's high average is aused by its high suseptibility tooutliers, whih are disussed in Setion 5.3



5.3 � Outlier Redution 935.3.1 Penalty BalaningThe magnitude of the weight adaptation in a rulebase depends on a measure of thesuess (or failure) of the agent whose sript is extrated from the rulebase. It isalulated aording to equation 5.6. `Penalty balaning' is balaning the magnitudeof the maximum penalty Pmax against the maximum rewardRmax, to optimise speedand e�etiveness of the adaptation proess. The experimental results presented inSetion 5.2 relied on a maximum penalty that was substantially smaller than themaximum reward (namely, Pmax = 30 and Rmax = 100). As stated in Subsetion5.2.3, the argument for the relatively small maximum penalty is that, as soon asa loal optimum is found, the rulebase should be proteted against degradation.However, when a sequene of undeserved rewards leads to wrong settings of theweights, reovering the appropriate weight values is hampered by a relatively lowmaximum penalty. Penalty balaning attempts to take this into aount by balaningthe need to reover from erroneous weight values against the risk of moving awayfrom an optimum.5.3.2 History FallbakIn the formulation of dynami sripting in Setion 5.1, the old weights of the rules inthe rulebase are erased when the rulebase adapts. With history fallbak all previousweights are retained in so-alled `histori rulebases'. When learning seems to bestuk in a sequene of rulebases that have inferior performane, it an `fall bak' toone of the histori rulebases that seemed to perform better.Caution should be taken not to be too eager to fall bak to earlier rulebases.The dynami-sripting tehnique is quite robust, and learns from both suesses andfailures. Returning to an earlier rulebase means losing everything that was learnedafter that rulebase was generated. Furthermore, an earlier rulebase may have a high�tness due to hane, and returning to it might therefore have an adverse e�et.It was empirially on�rmend that the performane of dynami sripting worsenedwhen extended with a history-fallbak mehanism that was eager to return to aprevious rulebase. Therefore, history fallbak should only be ativated when thereis a high probability that a truly inferior rulebase is replaed by a truly superior one.The implementation of history fallbak is as follows. The urrent rulebase R isused to generate sripts that ontrol the behaviour of an agent during an enounter.After eah enounter i, before the weight updates, all weight values from rulebase
R are opied to histori rulebase Ri. With Ri are also stored: the team-�tnessvalue F (g), the agent-�tness value F (a, g), and a number representing the so-alled`parent' of Ri. The parent of Ri is the histori rulebase whose weights were updatedto generate Ri (usually the parent of Ri is Ri−1). A rulebase is onsidered `inferior'when both its own �tness values and the �tness values of its N immediate anestors,are low (i.e., below a threshold value T ). A rulebase is onsidered `superior' whenboth its own �tness values and the �tness values of its N immediate anestors, arehigh (i.e., above T ). If at enounter i we �nd that Ri is inferior, and in Ri's anestrywe �nd a histori rulebase Rj that is superior, the next parent used to generate the



94 Dynami Sriptingurrent rulebase R will not be Ri but Rj . Beause it is useless to return to a historirulebase that has not yet learned, the mehanism only falls bak to a rulebase Rjfor j > J . In the experiments N = 3, T = 0.4, and J = 10 were used.Though unlikely, with this mehanism it is still possible to fall bak to a historirulebase that does not perform well in the urrent situation, although it seemedto perform well in the past. While this will be disovered by the learning proesssoon enough, the risk of returning to suh a rulebase over and over again should beminimised. I propose two di�erent ways of avoiding this risk. The �rst is by simplynot allowing the mehanism to fall bak to a histori rulebase that is `too old', butonly allow it to fall bak to the last M anestors (in the experiment M = 15 wasused). This is alled `limited-distane fallbak' (LDF). The seond is aknowledgingthat the agent-�tness value of a rulebase should not be too di�erent from that ofits diret anestors. This is realised by propagating a newly alulated �tness valuebak through the anestry of a rulebase, and fatoring it into the �tness values forthose anestors. As a onsequene, a rulebase that has hildren with low agent-�tness values will be assigned an agent-�tness value that is also small. This is alled`�tness-propagation fallbak' (FPF). Both versions of history fallbak allow dynamisripting to reover earlier rulebases, that are truly better than the urrent one.5.3.3 Outlier-Redution ResultsTo test the e�etiveness of penalty balaning and history fallbak, I ran an ex-periment in the simulated CRPG. The experiment onsisted of a series of tests,exeuted in a manner equal to the e�ieny-validation experiment (5.2). I deidedto use the `onseutive' tati for the stati team, sine this tati is the most hal-lenging for dynami sripting. I ompared nine di�erent on�gurations, namelylearning runs using maximum penalties Pmax = 30, Pmax = 70 and Pmax = 100,ombined with the use of no fallbak (NoF), limited-distane fallbak (LDF), and�tness-propagation fallbak (FPF). All other parameters were set equal to the valuesused in the e�ieny-validation experiment.Table 5.2 gives an overview of the experimental results. The olumns of thetable represent, from left to right, (i) the value for Pmax, (ii) the history-fallbakmehanism used, (iii) the average turning point, (iv) the standard deviation, (v) themedian, (vi) the highest value for the turning point, and (vii) the average of the �vehighest values.Figure 5.5 shows histograms of the turning points for eah of the series of tests.The turning points have been grouped in ranges of 25 di�erent values. Eah barindiates the number of turning points falling within a range. Eah graph starts withthe leftmost bar representing the range [0, 24]. The rightmost bars in the topmostthree graphs represent all turning points of 500 or greater (the other graphs do nothave turning points in this range).From Table 5.2 and Figure 5.5 I derive the following four observations. (i) Penaltybalaning is a neessary requirement to redue the number of outliers. All experi-ments that have a higher maximum penalty than the original Pmax = 30 redue the
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Pmax Fallbak Average St.dev. Median Highest Top 530 NoF 72 100.3 47 716 42430 LDF 99 229.3 49 2064 83730 FPF 80 145.0 54 971 60570 NoF 62 69.4 44 336 30170 LDF 52 56.2 37 393 23870 FPF 60 57.3 32 391 245100 NoF 66 59.5 59 322 246100 LDF 68 56.7 60 271 225100 FPF 57 50.6 53 331 202Table 5.2: Turning-point values for dynami sripting pitted against the onseutivetati, averaged over 100 tests.number and magnitude of outliers.3 (ii) There is no disernable di�erene in thee�et of limited-distane fallbak and the e�et of �tness-propagation fallbak. (iii)If penalty balaning is not applied, history fallbak seems to have no e�et or evenan adverse e�et. (iv) If penalty balaning is applied, history fallbak has no ad-verse e�et and may atually have a positive e�et. One of the reasons why historyfallbak is so e�etive in ombination with penalty balaning may be the following.In Subsetion 5.3.1 it was stated that penalty balaning runs the risk of losing adisovered optimum due to hane. History fallbak ounterats this risk.As a �nal test, a ombination of penalty balaning with Pmax = 70 and limited-distane fallbak was applied to all the di�erent tatis available in the simulationenvironment. The results are summarised in Table 5.3. A omparison of Table 5.3and Table 5.1 shows a signi�ant, often very large redution of the both the highestturning point and the average of the highest �ve turning points, for all tatis exeptfor the `disabling' tati (note, however, that the inreased turning points for the`disabling' tati are inonsequential, sine the `disabling' tati already has thelowest turning points in both tables). Therefore, the results of the �nal test learlysupport the positive e�et of the two ountermeasures against outliers.5.3.4 Disussion of Outlier-Redution ResultsIt is lear from the results in Table 5.2 that the number of outliers has been sig-ni�antly redued with the proposed ountermeasures. However, exeptionally longlearning runs still our in the simulation experiments, even though they are rare,and less extreme than without the ountermeasures. Does this mean that dynami3After the �rst publiation of dynami sripting by Spronk, Sprinkhuizen-Kuyper, and Postma(2003b), I was ontated by Dahlbom on the question how to apply dynami sripting to real-time strategy games. Independently of the results reported by Spronk, Sprinkhuizen-Kuyper,and Postma (2004b), Dahlbom (2004) later arrived at a similar onlusion regarding the e�et ofpenalty balaning on the redution of outliers.
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Figure 5.5: Histograms for the turning points in 100 tests, for the outlier-redutionexperiment.sripting, enhaned with the ountermeasures, still does not meet the requirementof onsisteny?I argue that the ountermeasures do make dynami sripting meet the require-ment of onsisteny. The argument is twofold: (i) Beause dynami sripting is anon-deterministi tehnique, outliers an never be prevented ompletely. However,entertainment value of a game is guaranteed even if an outlier ours, beause dy-nami sripting meets the requirement of e�etiveness by design. (ii) Exeptionallylong learning runs mainly our beause early in the proess hane inreases thewrong weights. This is not likely to happen in a rulebase with pre-initialised weights.When dynami sripting is implemented in an atual game, the weights in the rule-base will not all start out with equal values, but they will be initialised to values thatare already trained against ommonly used tatis. This will not only prevent theourrene of outliers, but also inrease the speed of the dynami sripting proess,and provide history fallbak with a likely andidate for a superior rulebase.It should be noted that, besides as a target for the history-fallbak mehanism,histori rulebases an also be used to store tatis that work well against a spei�tati employed by a human player. If human-player tatis an be identi�ed, theserulebases an simply be reloaded when the player starts to use a partiular tatiagain after having employed a ompletely di�erent tati for a while.



5.4 � Di�ulty Saling 97Tati Average St.dev. Median Highest Top 5O�ensive 53 24.8 52 120 107Disabling 13 8.4 10 79 39Cursing 44 50.4 26 304 222Defensive 24 15.3 17 79 67Random team 51 64.5 29 480 271Random agent 41 40.7 25 251 178Conseutive 52 56.2 37 393 238Table 5.3: Turning-point values for dynami sripting pitted against di�erent tatis,using Pmax = 70 and limited-distane fallbak, averaged over 100 tests.5.4 Di�ulty SalingFor non-expert players, a game is most entertaining when it is hallenging but beat-able (Sott, 2002). To ensure that the game remains interesting, the issue is not forthe omputer to produe oasionally a weak move so that the human player anwin, but rather to produe not-so-strong moves under the proviso that, on a balaneof probabilities, they should go unnotied (Iida, Handa, and Uiterwijk, 1995). `Dif-�ulty saling' is the automati adaptation of a game, to set the hallenge that thegame poses to a human player. When applied to game AI, di�ulty saling aims atahieving an `even game', i.e., a game wherein the playing strength of the omputerand the human player math.Many games provide a `di�ulty setting', i.e., a disrete value that determineshow di�ult the game will be. The purpose of a di�ulty setting is to allow bothnovie and experiened players to enjoy the appropriate hallenge the game o�ers(Charles and Blak, 2004). The di�ulty setting ommonly has some problematiissues, of whih I indiate three. First, the setting is oarse, with the player havinga hoie between only a limited number of di�ulty levels (usually three or four).Seond, the setting is player-seleted, with the player unable to assess whih di�-ulty level is appropriate for his skills. Third, the setting has a limited sope, (ingeneral) only a�eting the omputer-ontrolled agents' strength, and not their ta-tis. Consequently, even on a `high' di�ulty setting, the opponents exhibit similarbehaviour as on a `low' di�ulty setting, despite their greater strength.The three issues mentioned may be alleviated by applying dynami sriptingenhaned with an adequate di�ulty-saling mehanism. Dynami sripting hangesthe omputer's tatis to the way a game is played. As suh, (i) it makes hangesin small steps (i.e., it is not oarse), (ii) it makes hanges automatially (i.e., it isnot player-seleted), and (iii) it a�ets the omputer's tatis (i.e., it does not havea limited sope).This setion desribes three di�erent enhanements to the dynami-sriptingtehnique that let agents learn how to play an even game, namely (i) high-�tnesspenalising, (ii) weight lipping, and (iii) top ulling. The three enhanements are
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Figure 5.6: Comparison of the original weight-adjustment formula (left) and thehigh-�tness-penalising weight-adjustment formula (right), by plotting the weightadjustments as a funtion of the �tness value F . The middle graph displays therelation between F and F ′.explained in Subsetions 5.4.1, 5.4.2, and 5.4.3, respetively. The enhanements areevaluated in an experiment, of whih the results are presented in Subsetion 5.4.4,and disussed in Subsetion 5.4.5.5.4.1 High-Fitness PenalisingThe weight adjustment expressed in equation 5.6 gives rewards proportional to the�tness value: the higher the �tness, the higher the reward. To eliit mediore insteadof good behaviour, the weight adjustment an be hanged to give highest rewards tomediore �tness values, and lower rewards or even penalties to high �tness values.With high-�tness penalising the weight adjustment is expressed by formula 5.6,where F is replaed by F ′ de�ned as follows.
F ′ =
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{F > p} (5.7)In this equation, F is the alulated �tness value, and p ∈ [0.5, 1], p > b, is thereward-peak value, i.e., the �tness value that should get the highest reward. Thehigher the value of p, the more e�etive agent behaviour will be. Figure 5.6 illustratesthe weight adjustment as a funtion of the original �tness (left), the mapping of F to

F ′ (middle), and the weight adjustment as a funtion of the high-�tness-penalising�tness (right). Angles α and β are equal.Sine the optimal value for p depends on the tati that the human player uses,it was deided to let the value of p adapt to the pereived di�ulty level of a game,



5.4 � Di�ulty Saling 99as follows. Initially p starts at a value pinit. After every �ght that is lost by theomputer, p is inreased by a small amount pinc, up to a prede�ned maximum pmax.After every �ght that is won by the omputer, p is dereased by a small amount
pdec, down to a prede�ned minimum pmin. By running a series of tests with stativalues for p, I found that good values for p are found lose to 0.7. Therefore, in theexperiment I used pinit = 0.7, pmin = 0.65, pmax = 0.75, and pinc = pdec = 0.01.5.4.2 Weight ClippingDuring the weight updates, the maximum weight value Wmax determines the maxi-mum level of optimisation a learned tati an ahieve. A high value for Wmax allowsthe weights to grow to large values, so that after a while the most e�etive rules willalmost always be seleted. This will result in sripts that are lose to optimal. Alow value for Wmax restrits weights in their growth. This enfores a high diversityin generated sripts, most of whih will be mediore.Weight lipping automatially hanges the value of Wmax, with the intent toenfore an even game. It aims at having a low value for Wmax when the omputerwins often, and a high value for Wmax when the omputer loses often. The imple-mentation is as follows. After the omputer wins a �ght, Wmax is dereased by Wdecper ent (but not lower than the initial weight value Winit). After the omputerloses a �ght, Wmax is inreased by Winc per ent.Figure 5.7 illustrates the weight-lipping proess and the assoiated parameters.The shaded bars represent weight values for four arbitrary rules on the horizontalaxis, numbered 1 to 4. After a �ght, before weight adjustment, Wmax is eitherinreased by Winc per ent, or dereased by Wdec per ent, depending on the outomeof the �ght. After the hange of Wmax, in the �gure the weight value for rule 4 is toolow, so it is inreased to Wmin (the arrow marked `a'). Similarly, the weight value forrule 2 is too high, so it is dereased to Wmax (the arrow marked `b'). As presribedby dynami sripting, after the weights are brought within the range [Wmin,Wmax],the exess weights are redistributed again over all weights.In the experiment I deided to use the same initial values as I used for thee�ieny-validation experiment, i.e., I used Winit = 100, Wmin = 0, and an initialvalue for Wmax of 2000. Winc and Wdec I both set to 10 per ent.5.4.3 Top CullingTop ulling is quite similar to weight lipping. It employs the same adaptationmehanism for the value of Wmax. The di�erene is that top ulling allows weights togrow beyond the value of Wmax. However, rules with a weight greater than Wmax willnot be seleted for a generated sript. Consequently, when the omputer-ontrolledagents win often, the most e�etive rules will have weights that exeed Wmax, andannot be seleted, and thus the agents will use weak tatis. Alternatively, whenthe omputer-ontrolled agents lose often, rules with high weights will be seletable,and the agents will use strong tatis. So, while weight lipping ahieves weak tatis
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Figure 5.7: Weight-lipping and top-ulling proess and parameters.by promoting diversity, top ulling ahieves weak tatis by removing aess to themost e�etive domain knowledge.In Figure 5.7, ontrary to weight lipping, top ulling will leave the value of rule2 unhanged (the ation represented by arrow `b' will not be performed). However,rule 2 will be unavailable for seletion, beause its value exeeds Wmax.5.4.4 Di�ulty-Saling ResultsTo test the e�etiveness of the three di�ulty-saling enhanements, I ran an ex-periment in the simulated CRPG. The experiment onsisted of a series of tests,exeuted in the same way as the e�ieny-validation experiment (Setion 5.2). Theexperiment aimed at assessing the performane of a team ontrolled by the dynami-sripting tehnique using a di�ulty-saling enhanement (with Pmax = 100, �tness-propagation fallbak, and all other parameters equal to the values used in thee�ieny-validation experiment), against a team ontrolled by stati sripts. If thedi�ulty-saling enhanements work as intended, dynami sripting will balane thegame so that the number of wins of the dynami team is roughly equal to the numberof losses.For the stati team, I added an eighth tati to the seven tatis desribed inSubsetion 5.2.4, alled the `novie' tati. The `novie' tati resembles the playingstyle of a novie CRPG player, who has learned the most obvious suessful tatis,but has not yet mastered the subtleties of the game. While normally the `novie'tati will not be defeated by arbitrarily hoosing rules from the rulebase, thereare many di�erent tatis that an be employed to defeat it, whih the dynamiteam will disover quikly. Against the `novie' tati, without a di�ulty-salingenhanement, the dynami team's number of wins in general will greatly exeed itslosses.



5.4 � Di�ulty Saling 101High-Fitness Weight TopPlain Penalising Clipping CullingTati Avg. Dev. Avg. Dev. Avg. Dev. Avg. Dev.O�ensive 61.2 16.4 46.0 15.1 50.6 9.4 46.3 7.5Disabling 86.3 10.4 56.6 8.8 67.8 4.5 52.2 3.9Cursing 56.2 11.7 42.8 9.9 48.4 6.9 46.4 5.6Defensive 66.1 11.9 39.7 8.2 52.7 4.2 49.2 3.6Novie 75.1 13.3 54.2 13.3 53.0 5.4 49.8 3.4Random team 55.8 11.3 37.7 6.5 50.0 6.9 47.4 5.1Random agent 58.8 9.7 44.0 8.6 51.8 5.9 48.8 4.1Conseutive 51.1 11.8 34.4 8.8 48.7 7.7 45.0 7.3Table 5.4: Experimental results of testing the di�ulty-saling enhanements todynami sripting on eight di�erent tatis, averaged over 100 tests.For eah of the tatis, I ran 100 tests in whih dynami sripting was enhanedwith eah of the three di�ulty-saling enhanements, and, for omparison, alsowithout di�ulty-saling enhanements (alled `plain'). Eah test onsisted of asequene of 150 enounters between the dynami team and the stati team. Beausein eah of the tests the dynami-sripting tehnique starts with a rulebase withall weights equal, the �rst 50 enounters were used for �nding a balane of well-performing weights. I reorded the number of wins of the dynami team over thelast 100 enounters.The results of these tests are displayed in Table 5.4. For eah ombination oftati and di�ulty-saling enhanement the table shows the average number of winsover 100 tests, and the assoiated standard deviation. To be reognised as an evengame, it was deided that the average number of wins over all tests must be loseto 50. To take into aount random �utuations, in this ontext `lose to 50' means`within the range [45,55℄'.4 In Table 5.4, all ell values indiating an even game aremarked in bold font. From the table the following four results an be derived.First, dynami sripting without a di�ulty-saling enhanement (`plain') resultsin wins signi�antly exeeding losses for all tatis exept for the `onseutive' tati(with a reliability > 99.9%; Cohen, 1995). This supports the viability of dynamisripting as a learning tehnique, and also supports the statement in Subsetion 5.2.4that the `onseutive' tati is the most di�ult tati to defeat. Note that the fatthat, on average, dynami sripting plays an even game against the `onseutive'tati is not beause it is unable to defeat this tati onsistently, but beause4Deiding when a game an be alled an `even game' by observing the number of wins, seems tobe omparable to deiding whether a oin is fair by observing a series of oin tosses, and thus besubjet to a standard statistial evaluation to determine the range of the number of wins. However,the omparison is not apt. While oin tosses are random, the di�ulty-saling enhanementsatively fore a game to equal wins and losses. Imagine a oin that moves the entre-point of itsweight after every toss.



102 Dynami Sriptingdynami sripting ontinues learning after it has reahed a loal optimum. Therefore,it an `forget' what it previously learned, espeially against an superior tati likethe `onseutive' tati.Seond, high-�tness penalising performs onsiderably worse than the other twoenhanements. It annot ahieve an even game against six out of the eight tatis.Third, weight lipping is suessful in enforing an even game in seven out ofeight tatis. It does not sueed against the `disabling' tati. This is aused bythe fat that the `disabling' tati is so easy to defeat, that even a rulebase withall weights equal will, on average, generate a sript that defeats this tati. Weightlipping an never generate a rulebase worse than `all weights equal'.Fourth, top ulling is suessful in enforing an even game against all eight tatis.Histograms for the tests with the `novie' tati are displayed in Figure 5.8.On the horizontal axis the number of wins for the dynami team out of 100 �ghtsis displayed. The bar length indiates the number of tests that resulted in theassoiated number of wins.From the histograms the following result is derived. While, on average, all threedi�ulty-saling enhanements manage to enfore an even game against the `novie'tati, the number of wins in eah of the tests is muh more `spread out' for thehigh-�tness-penalising enhanement than for the other two enhanements. Thisindiates that the high-�tness penalising enhanement results in a higher varianeof the distribution of won games than the other two enhanements. The top-ullingenhanement seems to yield the lowest variane. This is on�rmed by an approximaterandomisation test (Cohen, 1995), whih shows that against the `novie' tati, thevariane ahieved with top ulling is signi�antly lower than with the other twoenhanements (reliability > 99.9%). I observed similar distributions of won gamesagainst the other tatis, exept that against some of the stronger tatis, a fewexeptional outliers ourred with a signi�antly lower number of won games. Therare outliers were aused by the fat that, oasionally, dynami sripting requiresmore than 50 enounters to �nd a well-performing set of weights when playing againsta strong stati tati.In onlusion, the results show that, when dynami sripting is enhaned withthe top-ulling di�ulty-saling mehanism, it meets the funtional requirement ofsalability.5.4.5 Disussion of Di�ulty-Saling ResultsOf the three di�erent di�ulty-saling enhanements the top-ulling enhanement isthe best hoie. It has the following three advantages: (i) it gives the most reliableresults, (ii) it is easily implemented, and (iii) of the three enhanements, it is theonly one that manages to fore an even game against inferior tatis.Obviously, the worst hoie is the high-�tness-penalising enhanement. In anattempt to improve high-�tness penalising, some tests were performed with di�erentranges and adaptation values for the reward-peak value p, but these worsened theresults. However, the possibility annot be ruled out that with a di�erent �tness
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Figure 5.8: Histograms of 100 tests of the ahieved number of wins in 100 �ghts,against the `novie' tati.funtion high-�tness penalising will give better results.5An additional possibility with the weight-lipping and top-ulling enhanementsis that they an also be used to set a di�erent desired win-loss ratio, by hangingthe rates with whih the value of Wmax �utuates. For instane, by using topulling with Wdec = 30 per ent instead of 10 per ent, leaving all other parametersunhanged, after 100 tests against the `novie' tati I derived an average numberof wins of 35.0 with a standard deviation of 5.6. The histogram of this experimentis given in Figure 5.9.Notwithstanding the suessful results, a di�ulty-saling enhanement shouldbe an optional feature in a game, that an be turned o� by the player, for thefollowing two reasons: (i) when onfronted with an experiened player, the learningproess should aim for superior tatis without interferene from a di�ulty-salingenhanement, and (ii) some players will feel that attempts by the omputer to forean even game diminishes their aomplishment of defeating the game, so they mayprefer not to use it.5In independent researh (see footnote 3) Dahlbom (2004) applied dynami sripting to a simu-lated real-time strategy game. He used a tehnique whih he alled `�tness mapping' for di�ultysaling, for whih he reported good results. Fitness mapping is similar to what I all `high-�tnesspenalising' (Spronk, Sprinkhuizen-Kuyper, and Postma, 2004a), without dynamially hangingthe reward-peak value p.
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Figure 5.9: Histogram of the ahieved number of wins over 100 tests against the`novie' tati, using dynami sripting with the top-ulling enhanement, with
Wdec = 30 per ent.5.5 Validation in PratieTo investigate whether the suessful results ahieved with dynami sripting ina simulated CRPG hold in a pratial setting, I deided to test the tehnique inan atual state-of-the-art ommerial game. For this purpose, I hose the gameNeverwinter Nights (2002), developed by BioWare Corp. In this setion I presentthe Neverwinter Nights environment (5.5.1), the sripts and rulebases (5.5.2),the weight-update funtion (5.5.3), the tatis used by the stati team (5.5.4), theresults of an evaluation of dynami sripting in Neverwinter Nights (5.5.5), anda disussion of the results (5.5.6).5.5.1 Neverwinter NightsNeverwinter Nights is a CRPG of a omplexity similar to the Baldur's Gategames. A major reason for seleting Neverwinter Nights for evaluating dynamisripting is that the game is easy to modify and extend. It is delivered with a toolsetthat allows the user to develop ompletely new game modules. The toolset providesaess to the sripting language and all the sripted game resoures, inluding thegame AI. While the sripting language is not as powerful as modern programminglanguages, I found it to be su�iently powerful to implement dynami sripting.I implemented a small module inNeverwinter Nights, similar to the simulatedCRPG used previously. The module ontains an enounter between a dynami teamand a stati team of similar omposition. As a result, the Neverwinter Nightsexperiment is very similar to the CRPG simulation experiments desribed earlier.This is on purpose, beause the present experiment is meant to demonstrate that thesimulation results an be repeated in a ommerially available game. In ontrast,Chapter 6 will demonstrate the general appliability of dynami sripting.The testing environment is illustrated in Figure 5.10. Eah team onsists of a
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Figure 5.10: A �ght between two teams in Neverwinter Nights.�ghter, a rogue, a priest, and a wizard of equal experiene level. In ontrast to theagents in the simulated CRPG, the inventory and spell seletions in the Never-winter Nights module annot be hanged, due to the toolset laking funtions toahieve suh modi�ations. This has a restritive impat on the tatis. Details ofthe module are found in Appendix B, Setion B.1.5.5.2 Sripts and RulebasesTo failitate the development of new game modules, the default game AI in Nev-erwinter Nights is implemented in a very general way, suitable for agents of alllasses and levels (e.g., it does not refer to asting of a spei� magi spell, butto asting of spells from a spei� lass). It distinguishes between about a dozenagent lasses. For eah agent lass it sequentially heks a number of environmentalvariables and attempts to generate an appropriate response. The behaviour gener-ated is not ompletely preditable, beause it is partly probabilisti. Details of theNeverwinter Nights game AI are found in Appendix B, Setion B.2.For the implementation of the dynami-sripting tehnique, �rst the rules em-ployed by the default game AI were extrated, and then entered in every appropriaterulebase. To these standard rules several new rules were added. The new rules weresimilar to the standard rules, but slightly more spei�, e.g., referring to spei�enemies instead of referring to a random enemy. Additionally, a few `empty' ruleswere added, whih, if seleted, allow the game AI to derease the number of e�e-tive rules. Priorities were set similar to the priorities used in the simulated CRPG.



106 Dynami SriptingNote that sine the rules extrated from the default game AI are generalised, therules used by dynami sripting are generalised too. The use of generalised rules inthe rulebase has the advantage that the rulebase gets trained for generating AI foragents of any experiene level.The size of the sripts for both a �ghter and a rogue was set to �ve rules (thesame as the number of rules of the �ghter in the simulated CRPG), whih wereseleted out of rulebases ontaining 21 rules. The size of the sripts for both a priestand a wizard was set to ten rules (the same as the number of rules of the wizardin the simulated CRPG), ontaining 55 rules and 49 rules, respetively. To the endof eah sript a all to the default game AI was added, in ase no rule ould beativated. Details of the rulebases are found in Appendix B, Setion B.3.5.5.3 Weight-Update FuntionThe weight adjustment mehanism used in Neverwinter Nights was similar tothe mehanism used in the simulated CRPG (5.2.3). I deided to di�er slightly fromthe implementation of these funtions in the simulation, mainly to avoid problemswith the Neverwinter Nights sripting language, and to allow varying team sizes.These hanges are not ritial for the performane of dynami sripting, sine the�tness funtions only need to provide a general indiation of the measure of suessof a team and its agents.The team-�tness F (g), whih yields a value in the range [0,1℄, was de�ned asfollows.
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{hT (a) > 0} (5.9)All variables in this equation were de�ned as those in equations 5.2 to 5.5.Weight adjustment was implemented aording to equation 5.6, with all para-meter values as in the e�ieny-validation experiment, exept for the maximumpenalty Pmax, whih was set to 50. Furthermore, rules in the sript that were notexeuted during the enounter, instead of being treated as not being in the sriptat all, were assigned half the reward or penalty reeived by the rules that were ex-euted. The main reason for this is that if there were no rewards and penalties forthe non-exeuted rules, the empty rules would never get rewards or penalties.



5.5 � Validation in Pratie 1075.5.4 TatisIn our experiment three di�erent tatis were used for the stati team, all based onthe default game AI, implemented by the Neverwinter Nights developers. Thethree tatis are the following.AI 1.29: AI 1.29 is the default game AI used in Neverwinter Nights version1.29. This version of Neverwinter Nights was used for the earliest tests.AI 1.61: AI 1.61 is the default game AI used in Neverwinter Nights version1.61. This version of Neverwinter Nights was used for the later tests.Between version 1.29 and 1.61 the game AI was signi�antly improved by thegame developers.Cursed AI: A `ursed' version of AI 1.61 was reated. With ursed AI in 20 perent of the enounters the game AI deliberately misleads dynami sriptinginto awarding high �tness to purely random tatis, and low �tness to tatisthat have shown good performane during earlier enounters.5.5.5 Neverwinter Nights ResultsTable 5.5 summarises the results from the repetition of (parts of) the e�ieny-validation experiment and the outlier-redution experiment in the NeverwinterNights environment. The olumns of the table represent, from left to right, (i) thetati used, (ii) the fallbak mehanism used, (iii) the number of tests exeuted,6(iv) the average turning point, (v) the standard deviation, (vi) the median, (vii)the highest value for the turning point, and (viii) the average of the �ve highestvalues. No tests were performed with penalty balaning, sine already in the earliestexperiments with Neverwinter Nights higher maximum penalties were used thanin the simulated CRPG. From the results in Table 5.5 the following two onlusionsare derived.First, sine the ahieved turning points in all tests are (very) low, dynami sript-ing meets the requirement of e�ieny easily.Seond, history fallbak has little or no e�et on the results. However, sineeven `ursed AI' does not ause signi�antly inreased turning points, it seems thatdynami sripting in Neverwinter Nights is so robust that remote outliers donot our. Therefore, ountermeasures against outliers are not needed, and dynamisripting in Neverwinter Nights meets the requirement of onsisteny withoutspeial measures.The results ahieved with the top-ulling enhanement were also validated inNeverwinter Nights. Without top ulling, in ten tests dynami sripting ahieved6The number of tests for the Neverwinter Nights experiment is lower than for the simulationexperiment, where I performed 100 tests for eah on�guration. Sine the Neverwinter Nightsdevelopers stated that it was not possible to inrease the speed of the game exeution, a test lasted8 hours on average (for the �tness-saling tests even 24 hours on average). To limit the time neededto do the tests, I deided to be satis�ed with a number of tests su�ient to obtain statistiallysound results.



108 Dynami SriptingTati Fallbak Tests Avg. St.dev. Median Highest Top 5AI 1.29 NoF 50 21 8.8 16 101 58AI 1.61 NoF 31 35 18.8 32 75 65AI 1.61 FPF 30 32 21.8 24 104 71Cursed AI NoF 21 33 21.8 24 92 64Cursed AI FPF 21 32 28.1 18 115 69Table 5.5: Turning-point values for dynami sripting in Neverwinter Nights.an average number of 79.4 wins out of 100 �ghts, with a standard deviation of 12.7.With top ulling, in ten tests dynami sripting ahieved an average number of49.8 wins out of 100 �ghts, with a standard deviation of 3.4. The results learlysupport that dynami sripting, enhaned with top ulling, meets the requirementof salability.5.5.6 DisussionThe Neverwinter Nights experiment supports the results ahieved with dynamisripting in a simulated CRPG. Comparison of all results even seems to indiate thatdynami sripting performs better in Neverwinter Nights than in the simulatedCRPG. This is aused by the fat that the default game AI inNeverwinter Nightsis designed to be e�etive for all agents that an be designed in the toolset. Sineit is not speialised, for most agents it is not optimal. Therefore, there is a greatvariety of tatis that an be used to deal with it, whih makes it fairly easy fordynami sripting to disover a suessful ounter-tati.In general, the more e�etive the tati against whih dynami sripting is tested,the longer it will take for dynami sripting to gain the upper hand. Moreover, be-ause dynami sripting is designed to generate a wide variety of tatis (in ompli-ane with the requirement of variety), it will never gain the upper hand if the tatiagainst whih it is pitted is so strong that there are very few viable ounter-tatis.Against human players, this means that dynami sripting will ahieve the mostsatisfying results against non-expert players.In a game that allows the design of `super-tatis', whih are almost impossibleto defeat, dynami sripting may not give satisfying results when used against ex-pert players who know and use these super-tatis. However, every mahine-learningtehnique will require more omputational resoures �nding rare solutions than �nd-ing ubiquitous solutions. Therefore, against super-tatis, instead of using an onlinemahine-learning tehnique, in general it will be more e�etive to use ounter-tatisthat have been trained against these super-tatis in an o�ine-learning proess. Itshould be noted that the existene of super-tatis in a game is atually an indiationof bad game-design, beause they make the game too hard when employed by theomputer, and they make the game too easy when employed by the human player.



5.6 � Chapter Summary 1095.6 Chapter SummaryBy design, dynami sripting meets the requirements of speed, e�etiveness, robust-ness, larity, and variety. In Setion 5.2 it was shown that it meets the requirement ofe�ieny. In Setion 5.3 it was shown that by applying penalty balaning, possiblyombined with history fallbak, dynami sripting meets the requirement of onsis-teny. In Setion 5.4 it was shown that by applying top ulling, dynami sriptingmeets the requirement of salability. The results ahieved in a simulated CRPGwere on�rmed in the state-of-the-art CRPG Neverwinter Nights. Thereforeit may be onluded that dynami sripting meets all eight requirements spei�edin Subsetion 2.3.4, and thus an be applied in atual ommerial games for theimplementation of online adaptive game AI.





Chapter 6Professional Adaptive Game AIIn the sale of destinies, brawn will never weigh as muh as brain.� James Russell Lowell (1819�1891).This hapter1 disusses how adaptive game AI is to be applied by professional gamedevelopers. Setion 6.1 desribes the game-development proess, and indiates atwhih stages of the proess adaptive game AI must be taken into aount. While theo�ine appliation of adaptive game AI is relatively risk-free, game developers willonly onsider applying it online if it is of high reliability. A proedure is proposedto inrease the reliability of online adaptive game AI by using o�ine adaptive gameAI. The proedure is illustrated in Setions 6.2 to 6.4. Setion 6.2 disusses adaptivegame AI in a Real-Time Strategy (RTS) game. In Setion 6.3 improved tatis forthe game are generated with o�ine evolutionary game AI. In Setion 6.4 the derivedresults are used to improve the reliability of the adaptive game AI introdued inSetion 6.2. Setion 6.5 disusses to what extent the investigated tehniques an beaepted by game developers. A summary of the hapter is provided in Setion 6.6.6.1 Game Development and Adaptive Game AIThis setion desribes how adaptive game AI an be integrated in the game-development proess. It disusses the game-development proess (6.1.1), the stagesof the proess that are a�eted by adaptive game AI (6.1.2), and how o�ine adaptivegame AI an be used to inrease the reliability of online adaptive game AI (6.1.3).6.1.1 The Game-Development ProessCrawford (1984) desribes the game-development proess as onsisting of the follow-ing seven phases.21Setions 6.2 to 6.4 of this hapter are based on a paper by Ponsen and Spronk (2004).2I replaed some of the terms used by Crawford (1984) with terms that are more ommonnowadays.



112 Professional Adaptive Game AIConept: The `onept' phase onsists of setting a topi and a goal for a game. Eahgame must have a goal, that is expressed in terms of the e�et the game hason human players. Setting a lear goal at the start of the game-developmentproess supports game designers in taking deisions, espeially when trade-o�sbetween features must be onsidered.Pre-prodution: After hoosing a goal and a topi for a game, researh must bedone into the game's bakground, to give designers a feeling for the game'ssope. This is an exploratory phase, in whih little is put on paper.Design: In the `design' phase, designers reate douments outlining three interde-pendent strutures: (i) the I/O struture, (ii) the game struture, and (iii)the program struture. The I/O struture desribes the game's interfae, withrespet to both input and output. The game struture desribes how thegame's goal and topi translate into game elements, to be experiened andmanipulated by human players. The program struture desribes how the I/Ostruture and game struture are translated into a real produt.Pre-development: In the `pre-development' phase, the design douments aretranslated into a detailed tehnial design of the game.Development: In the `development' phase the game is implemented (whih in-ludes game debugging). Crawford (1984) alls this �the easiest of all phases�.His argument is that �[p℄rogramming itself is straightforward and tedious work,requiring attention to detail more than anything else.� At the time he wrotethis, it was ertainly true, sine games were muh simpler then than they aretoday. Whether his statement is true for a modern game depends on howinnovative and ompetitive the game intends to be.Quality Assurane: `Quality assurane', also referred to as `playtesting', is meantto polish and re�ne the game design. Often during this phase fundamental�aws are disovered, that require major hanges to the design or implementa-tion.Post-mortem: After the game has been deployed, the `post-mortem' phase starts.Reations of reviewers and the gaming publi are measured. Nowadays, formost games during the `post-mortem' phase one or more `pathes' are released,to resolve design and programming mistakes disovered only after a game'spubliation.6.1.2 Integrating Adaptive Game AIBefore the late 1990s, game AI only beame an issue late in the `development'phase. However, sine game AI has beome an element of ompetition betweengame developers, as early as in the `design' phase attention is given to game AI(Champandard, 2004). When adaptive game AI is introdued in a game, it a�etsthe game-development proess in even earlier phases, as explained below.



6.1 � Game Development and Adaptive Game AI 113Sine adaptive game AI is still new for published games, its introdution in agame will not be taken lightly. In partiular online adaptive game AI has a majorimpat on the game-play experiene of the human players. Sine online adaptivegame AI will be a unique selling point of a game, it beomes one of the game's goals.Therefore, the deision to inlude online adaptive game AI is taken in the `onept'phase. This will remain the ase until adaptive game AI beomes a proven tehniquethat most games developers inlude by default.For both o�ine and online adaptive game AI, the `design' phase will be used todetermine exatly what an be learned, and how the learning proess is integratedinto the game engine. In the `pre-development' phase, detailed data strutures aredesigned that store parameters used by the adaptive game AI. During the `develop-ment' phase, the adaptive game AI is implemented.With o�ine adaptive game AI, during the `quality assurane' phase the gameAI an be �ne-tuned, in two ways. The �rst way is to let the manually-designedgame AI play the game against o�ine adaptive game AI, to detet shortomingsand alternative tatis, as was disussed in Setion 4.1. The seond way is to storethe tatis that are used by the playtesters, after whih o�ine adaptive game AI isused to play against the stored tatis that playtesters seem to use often, to detetways of defeating them.For online adaptive game AI, speial are must be taken during the `qualityassurane' phase to test the e�et the adaptive mehanism has on the behaviour ofthe omputer-ontrolled agents. Sine the agents adapt to the human player, thehuman player has plenty opportunities to `mess' with the game AI while playingthe game. During the `quality assurane' phase, it must be asertained that theadaptive game AI meets the four omputational and four funtional requirementsspei�ed in Subsetion 2.3.4. Adaptive game AI that meets all eight requirementsis alled `reliable'. Game publishers an rest assured that the quality of reliableadaptive game AI is guaranteed, even against human players that deliberately try toexploit the adaptation proess to eliit inferior game AI. However, beause adaptivegame AI is not stati, the game developers must take into aount that the `qualityassurane' phase for a game will take longer with than without adaptive game AI.6.1.3 Combining O�ine and Online Adaptive Game AITo ensure the reliability of online adaptive game AI, it must inorporate a su�ientamount of orret prior domain knowledge (Manslow, 2002). However, if the in-orporated domain knowledge is inorret or insu�ient, online adaptive game AIwill not be reliable, and unable to generate satisfying results. If a ombination ofo�ine and online game AI is available during the `quality assurane' phase, o�ineadaptive game AI an be used to inrease the reliability of online adaptive game AIby improving the domain knowledge. To this end, I propose a proedure onsistingof the following three steps.1. Online adaptation: During the `quality assurane' phase, online adaptive gameAI is used against the playtesters and against manually-designed game AI, as



114 Professional Adaptive Game AIwas shown in Chapter 5. The adaptive game AI will improve itself to generatesuessful tatis, that are hard to defeat.2. O�ine adaptation: O�ine adaptive game AI is used to disover new tatisthat an deal with the best results found by online adaptive game AI, andwith the manually-designed tatis that online adaptive game AI was unableto deal with, as was shown in Setion 4.1.3. Improving : The tatis disovered with o�ine adaptive game AI are analysed,and the results of the analysis are used to improve the domain knowledgeemployed by online adaptive game AI. The improved online adaptive game AIshould be better able to deal with strong human player tatis, and shouldbe more e�ient in �nding tatis of a desired e�etiveness. Step 1 an berepeated to validate the improvements. If neessary all three steps an berepeated to further improve the domain knowledge.In the following three setions, the e�etiveness of the proedure is demon-strated.36.2 Dynami Sripting in an RTS GameThe �rst step in ombining online and o�ine adaptive game AI is the implementa-tion and use of online adaptive game AI. The most omplex game AI is enounteredin CRPGs and in strategy games (2.2.2). Chapter 5 already showed that dynamisripting an be suessfully applied to a CRPG. To demonstrate the general ap-pliability of dynami sripting, for the experiment desribed in the present hapterit was deided to apply dynami sripting to a Real-Time Strategy (RTS) game.In the experiment, dynami sripting is evaluated against several stati tatis, todetermine to what extent it is able to defeat the stati tatis.Subsetion 6.2.1 introdues RTS games and the Wargus environment used forthe experiment. Subsetion 6.2.2 desribes the implementation of dynami sript-ing in Wargus. Subsetion 6.2.3 disusses the evaluation of dynami sripting inWargus. Subsetion 6.2.4 presents the ahieved results.6.2.1 RTS GamesRTS games are simple military simulations (often alled `war games') that allow thehuman player to ontrol a `ivilisation' on a map. Typially, a ivilisation onsistsof buildings, tehnology, and armies. Armies onsist of `units' of several di�erenttypes. A unit is an objet that separately moves on a game's map, under the ontrolof either a human player or the omputer. A unit is di�erent from an agent, in thata unit does not take autonomous deisions. All deisions are taken by the humanplayer, or the entralised game AI used by the omputer.3This demonstration is based on the work by Ponsen (2004), whih was performed in ollabo-ration with and under supervision of the author.



6.2 � Dynami Sripting in an RTS Game 115The goal that an RTS game assigns to a human player is to defeat all opposingivilisations. Usually, defeating a ivilisation equates eliminating all armies of theivilisation. In most RTS games, the key to winning lies in e�iently olleting andmanaging resoures, and appropriately distributing the resoures over the variousgame elements. Typial game elements in RTS games inlude the onstrution ofbuildings, the researh of new tehnologies, and ombat.Game AI is of ritial importane to RTS games. It determines the tatis ofthe ivilisations ontrolled by the omputer, inluding the management of resoures.Designing game AI for RTS games is partiularly hallenging for game developers,beause of two reasons: (i) RTS games are omplex, i.e., a wide variety of tatisan be employed, and (ii) deisions have to be made under severe time onstraints.Buro (2003b) alls RTS games �an ideal test-bed for real-time AI researh�.Game AI in RTS games is global, i.e., it determines all deisions for a ivilisationover the ourse of the whole game.4 For RTS games, Ramsey (2004) desribes amulti-tiered game-AI framework, whih onsists of di�erent managers for di�erenttasks. Five examples of managers are (i) a `build manager' that is responsible forplaement of strutures and towns, (ii) a `resoure manager' that is responsible forgathering resoures, (iii) a `researh manager' that selets new tehnologies based ontheir usefulness and ost, (iv) a `ombat manager' that is responsible for onsript-ing and deploying military units, and (v) a `ivilisation manager', that oordinatesthe interation between the other managers. In pratie, the managers are oftenombined in one game-AI sript, whih de�nes a strategy.Beause of the high omplexity of the game AI of RTS games, usually the gameAI employs a goal-direted approah (Harmon, 2002). The �nal goal for the game AIis to win the game, but this goal is too ompliated to address diretly. Therefore,the game AI aims at ahieving subgoals, that an be onsidered suessful steps onthe road to ahieving the �nal goal. Examples of subgoals are `expanding the terrainunder ontrol' and `disabling the opponent's resoure gathering'. Usually, the gameAI is enhaned with a variety of domain-spei� tatis, whih may inrease theentertainment experiened by human players (Kent, 2004).Contrary to publishers of CRPGs, publishers of RTS games have not yet releasedgame engines that allow replaement of the game AI by an adaptive mehanism(Buro, 2004). Therefore, in the present ontext, an open-soure game was seletedto experiment with online and o�ine adaptive game AI in RTS games.The game seleted is Wargus, illustrated in Figure 6.1. Wargus is a faithfulopen-soure lone of the game Warraft II, developed by Blizzard. WarraftII was �rst released in 1995, and re-released in 1999. While its graphis are not toup to today's standards, its game-play an still be onsidered state of the art. WhileWarraft II andWargus allow on�its between more than two ivilisations, forthe experiments desribed here, the number of ivilisations on a map was limitedto two. A game-AI sript for Wargus determines a omplete strategy for a wholegame. Details of the Wargus game AI are found in Appendix C.4Depending on the level of detail of an RTS game, it may also inlude loal game AI, whihontrols unit behaviour. However, in strategy games the loal game AI is trivial ompared to theglobal game AI.
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Figure 6.1: Wargus.6.2.2 Dynami Sripting in WargusThe design of dynami sripting for RTS games has a major di�erene with dynamisripting for CRPGs, as disussed in Chapter 5. While dynami sripting for CRPGsemploys di�erent rulebases for di�erent agent lasses in the game, the RTS imple-mentation of dynami sripting employs di�erent rulebases for di�erent `states' ofthe game. A `state' of an RTS game is a game situation that the game-AI designertypi�es as fundamentally di�erent from other game situations. The reason for thedeviation from the CRPG implementation of dynami sripting is that the tatisthat a ivilisation an use in an RTS game depend on the urrent military, tehno-logial, and eonomial situation of the ivilisation. Thus, rules that deserve highweights in one state, may not deserve high weights in another state. For instane,attaking with weak units might be the only viable hoie in early game states, whilein later game states, when strong units are available, usually weak units will havebeome useless.In Wargus the availability of di�erent unit types and researh options deter-mines mainly what tatis are possible. The available buildings determine the unittypes that an be trained, and the possibilities for researh. Therefore, an obvioushoie for de�ning di�erent game states is by the buildings that have been on-



6.2 � Dynami Sripting in an RTS Game 117struted. Consequently, the onstrution of a building that allows the training ofunit types that were previously unavailable, or that allows new researh, spawns astate transition.The twenty states forWargus, and the possible state transitions, are illustratedin Figure 6.2. In the �gure, eah box represents a state. Inside a box the buildingsthat are available are listed. The arrows between boxes, labelled with a buildingthat is onstruted, represent state transitions. Note that a ivilisation starts outwith a `town hall' and with `barraks' already available. Note also that buildingsthat do not allow the training of new unit types, new researh, or the onstrutionof new buildings, are left out of the �gure.ForWargus, dynami sripting was implemented as follows. To generate a newgame-AI sript, dynami sripting starts by randomly seleting rules for the �rststate, from the rulebase orresponding to the �rst state. When a rule is seletedthat spawns a state transition, from that point on rules will be seleted for thenew state, using the rulebase orresponding to the new state. To avoid monotonebehaviour, eah rule is restrited to be seleted only one per state. Rule seletionontinues, until either a total of N rules has been seleted, or until a �nal state isreahed from whih no state transition is possible. For the �nal state (whih, as anbe observed in Figure 6.2, is state number 20), a maximum of Nend rules is seleted.At the end of a sript, a manually-designed group of ommands is attahed thatinitiate ontinuous attaks against the opposing ivilisation.In the experiment the values N = 100 and Nend = 20 were used. The value for
N is similar to the size of the sripts reated by the Wargus developers. The valuefor Nend is largely irrelevant, sine only in rare ases a game lasts until the �nalstate.To design rules for the rulebases, domain knowledge was aquired from strategyguides for Warraft II. Fifty rules were de�ned this way, divided into four basiategories, namely (i) build rules (12 rules, for onstruting buildings), (ii) researhrules (9 rules, for aquiring new tehnologies), (iii) eonomy rules (4 rules, for gath-ering resoures), and (iv) ombat rules (25 rules, for military ativities). To reaterulebases for the twenty states, eah rule was opied to all rulebases for states inwhih the rule an be exeuted.5 This resulted in eah of the rulebases ontain-ing between 21 and 42 rules. Details of the rulebases are supplied in Appendix C,Subsetion C.5.1.Beause there are separate rulebases for eah state, the size of weight updates isdetermined mainly by a so-alled `state �tness', i.e., an evaluation of performaneof the game AI for eah separate state. To reognise the importane of winning orlosing the game, weight updates also take into aount a so-alled `overall �tness',i.e., an evaluation of the performane of the game AI for the game as a whole. Theuse of both �tness funtions for the weight updates inreases the e�ieny of thelearning mehanism (Manslow, 2004).A ivilisation that uses dynami sripting is alled a `dynami ivilisation'. The5For instane, sine in Wargus a `astle' is a prerequisite for building an `airport', and sine aivilisation only needs one `airport', the rule `build airport' is only inluded in rulebases for statesin whih a `astle' is available, and in whih an `airport' has not been built yet.
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Figure 6.2: Game states in Wargus.



6.2 � Dynami Sripting in an RTS Game 119state-�tness funtion Fi for state i, i ∈ N/{0}, for dynami ivilisation d is de�nedas follows.
Fi =

Sd,i

Sd,i + Sc,i
− Sd,i−1

Sd,i−1 + Sc,i−1
(6.1)In this equation, Sd,x represents the sore of the dynami ivilisation after state x,

Sc,x represents the sore of the ivilisation opposing d after state x, Sd,0 = 0, and
Sc,0 = 1. The sore is a value that measures the suess of a ivilisation up to themoment the sore is alulated.The overall-�tness funtion F∞ for dynami ivilisation d yields a value in therange [0, 1]. It is de�ned as follows.

F∞ =



























min( Sd,L

Sd,L + Sc,L
, b

) {d lost}max( Sd,L

Sd,L + Sc,L
, b

) {d won} (6.2)In this equation, Sd,x and Sc,x are as in equation 6.1, L is the number of the statein whih the game ended, and b ∈ 〈0, 1〉 is the break-even value. At the break-evenpoint, weights remain unhanged.The sore funtion is domain dependent, and should suessfully re�et the rela-tive strength of the two opposing ivilisations in the game. For Wargus, the sore
Sx,y for ivilisation x after state y is de�ned as follows.

Sx = Cm Mx,y + (1 − Cm)Bx,y (6.3)In this equation, for player x after state y, Mx,y represents the `military points'sored, i.e., the number of points awarded for killing units and destroying buildings,and Bx,y represents the `building points' sored, i.e., the number of points awardedfor onsripting units and onstruting buildings. Cm ∈ [0, 1] represents the weightgiven to the military points in the �tness. Sine experiene indiates that militarypoints are a better indiation for the suess of a tati than building points, Cmwas set to 0.7.After eah game, the weights of all rules employed are updated. Weight valuesare bounded by a range [Wmin,Wmax]. A new weight value is alulated as W +△W ,where W is the original weight value, and the weight adjustment △W is expressedby the following formula.
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120 Professional Adaptive Game AIorresponding to the rulebase ontaining the weight, and b is the break-even point.
Cend ∈ [0, 1] represents the fration of the weight adjustment that is determinedby the overall �tness. Sine it an be expeted that rulebases for di�erent stateswill beome suessful at di�erent times, the ontribution of the state �tness Fi tothe weight adjustment should be larger than the ontribution of the overall �tness
F∞. Moreover, it is desirable that, even if a game is lost, rulebases for states whereperformane was suessful are not punished (too muh). Therefore, Cend was setto 0.3.To keep the sum of all weight values in a rulebase onstant, weight hanges areexeuted through a redistribution of all weights in the rulebase. In the experiment,the values Wmin = 25, Wmax = 1250, Rmax = 200, Pmax = 175, and b = 0.5 wereused. These values were determined to give good results during preliminary tests.The value of 0.5 for b is the only logial hoie, sine at this value the sores for thetwo ivilisations are equal, indiating equal performane for both of them.Note that it an be argued that, sine the dynami-sripting implementation inWargus exeutes weight updates only after a game has been played, the desribedadaptive game AI is atually an o�ine mehanism. However, an RTS game typiallyonsists of a series of so-alled `levels', where eah level is equivalent to a game asdisussed above, i.e, ivilisations start with little, and have to expand their territo-ries and defeat all opposing armies, before moving on to the next level. Therefore,the desribed adaptive game AI learns during the playing of a full RTS game. Fur-thermore, with a �tness funtion that only uses state �tness, and with game AIgenerated for eah state on the �y, learning an even take plae during the playingof a level, if states an be revisited, or if the human player is pitted against multipleomputer-ontrolled ivilisations.6.2.3 Evaluating of Dynami Sripting in WargusSimilar to the experiments reported in Chapter 5, the performane of dynami sript-ing inWargus was evaluated by testing a dynami ivilisation against a ivilisationusing manually-designed game AI, alled a `stati ivilisation'. Eah test onsistedof a sequene of 100 games played.For the �rst game in eah test, the dynami ivilisation started with rulebaseswith all weights equal. The dynami ivilisation was allowed to update the rulebasesafter eah game. A game lasted until one of the ivilisations was defeated, or untila ertain period of time had elapsed. If a game ended due to the time restrition(whih was rarely the ase), the ivilisation with the highest sore was onsideredthe winner of the game.Games were played on two di�erent maps, a small map and a large map. Gameson a small map are usually deided swiftly, with �ere battles between weak armies.A large map allows for a slower-paed game, with long-lasting battles between strongarmies. The two maps are disussed in detail in Appendix C, Setion C.1.Four di�erent manually-designed game-AI variations, or `tatis', were used forthe stati ivilisation, namely the following.



6.2 � Dynami Sripting in an RTS Game 121Small Balaned Tati: A `balaned' tati keeps a balane between o�ensiveations, defensive ations, and researh. It is e�etive against many di�erentplaying styles employed by humans. The `small balaned tati' is employedon the small map.Large Balaned Tati: The `large balaned tati' is similar to the `small bal-aned tati', but is employed on the large map.Soldier Rush: The `soldier rush' aims at overwhelming the opponent with heapo�ensive units in an early state of the game. Sine the `soldier rush' is moste�etive in fast games, it is employed on the small map.Knight Rush: The `knight rush' aims at quik tehnologial advanement, launh-ing large o�enes as soon as strong units are available. Sine the `knight rush'works best in slower-paed games, it is employed on the large map.Details of the tatis are listed in Appendix C, Setion C.3.To quantify the relative performane of the dynami ivilisation against the statiivilisation, the notion of the `turning point' is de�ned as follows. After eah game,an approximate randomisation test (Cohen, 1995) is performed using the overall�tness values over the most reent ten games, with the null hypothesis that bothivilisations are equally strong. The dynami ivilisation is said to outperform thestati ivilisation if the randomisation test onludes that the null hypothesis anbe rejeted with a probability of 90%, in favour of the dynami ivilisation beingstronger. The `turning point' is the number of the �rst game in whih the dynamiivilisation outperforms the stati ivilisation. Low values for the turning pointsindiate good e�ieny of dynami sripting.6.2.4 Evaluation ResultsThe results of the evaluation of dynami sripting inWargus are displayed in Table6.1. From left to right, the table olumns represent (i) the tati used by the statiivilisation, (ii) the number of tests, (iii) the average turning point, (iv) the medianturning point, (v) the lowest turning point, (vi) the highest turning point, (vii) thenumber of tests that did not �nd a turning point within 100 games played, and (viii)the average number of games won during the test.From the low values for the turning points for the two `balaned' tatis, itmay be onluded that the dynami ivilisation adapts e�etively and e�iently.Therefore, dynami sripting an be applied suessfully to RTS games. However,the dynami ivilisation was unable to adapt to the two `rush' tatis within 100games. The reason for the inferior performane of the dynami ivilisation againstthe two `rush' tatis is twofold, namely (i) the `rush' tatis are optimised, in thesense that it is quite hard to design game AI that is able to deal with them, and (ii)the rulebase does not ontain the appropriate knowledge to easily design game AIthat is able to deal with the `rush' tatis.Note that this does not mean that dynami sripting annot use the rulebases todesign an answer to the rush tatis. It an, and does so oasionally. However, the



122 Professional Adaptive Game AITati Tests Average Median Lowest Highest > 100 WonSmall balaned 31 50 39 18 99 0 59.3Large balaned 21 49 47 19 79 0 60.2Soldier rush 10 10 1.2Knight rush 10 10 2.3Table 6.1: Evaluation results of dynami sripting in Wargus.rulebases generate suh an answer only on rare oasions. Therefore, it takes quitea long time before the rules of whih suh an answer onsists have weights that aresu�iently high so that the answer ours regularly. The requirement of e�ienydisallows suh a long learning time.Perhaps not surprisingly, against the `balaned' tatis, in some of the testsdynami sripting enouraged the rulebases to reate sripts that were very similarto the `rush' tatis. Therefore, even if the `rush' tatis had not been implementedmanually, they would have been disovered automatially by dynami sripting.6.3 Evolutionary TatisThe seond step in ombining online and o�ine adaptive game AI, is to use o�ineadaptive game AI to disover new tatis that an deal with the best results foundby online adaptive game AI, and with the manually-designed tatis that onlineadaptive game AI was unable to deal with. In Setion 4.1, o�ine evolutionarylearning was used to design neural-network-based game AI for a strategy game. Itwas onluded that o�ine evolutionary learning is apable of evolving suessfulgame AI, but that a neural network is not a suitable struture to store game AI.In the present setion, a similar approah as in Setion 4.1 is used to evolve sript-based game AI. The goal is to design game AI for Wargus, that has the abilityto deal suessfully with the two `rush' tatis disussed in Setion 6.2, whih weredi�ult for dynami sripting to deal with. This setion disusses the experimentalproedure used (6.3.1), the hromosome enoding (6.3.2), the �tness funtion used bythe evolutionary algorithm (6.3.3), the geneti operators (6.3.4), the results ahievedagainst the two `rush' tatis (6.3.5), and a qualitative examination of the disoveredsolutions (6.3.6).6.3.1 Experimental ProedureAn evolutionary algorithm was designed to evolve new tatis to be used in theWar-gus environment against a stati ivilisation using either the `soldier rush' or the`knight rush' tati. The evolutionary algorithm used a population of size 50. Thepopulation was initialised with random (but legal) hromosomes. To selet parenthromosomes for breeding, size-3 tournament seletion was used (Goldberg, 1989).



6.3 � Evolutionary Tatis 123Newly generated hromosomes replaed existing hromosomes in the population,using size-3 rowding (Goldberg, 1989).The evolution ontinued until one of two stop riteria was ful�lled, namely (i)the �tness-stop riterion, or (ii) the run-stop riterion. The �tness-stop riterionaborts the evolution proess when a hromosome with a target �tness value hasbeen reated. During preliminary experiments suitable target �tness values weredetermined, namely 0.75 against the `soldier rush', and 0.70 against the `knightrush'. The run-stop riterion aborts the evolution proess when a maximum numberof generations has been produed.During preliminary experiments it was found that a maximum of only �ve gener-ations (i.e., 250 new hromosomes) was su�ient to evolve suessful game AI. Whenthe evolution proess ends, the hromosome with the highest �tness is onsideredthe solution.6.3.2 Enoding of TatisThe evolutionary algorithm works with a population of hromosomes. In the presentontext, a hromosome represents a game-AI sript. To enode a game-AI sript forWargus, eah gene in the hromosome represents one rule.Four di�erent gene types are distinguished, orresponding to the four basi ruleategories mentioned in Subsetion 6.2.2, namely (i) build genes, (ii) researh genes,(iii) eonomy genes, and (iv) ombat genes. Eah gene onsists of a `rule ID' thatindiates the type of gene (`B', `R', `E' and `C', respetively), followed by values forthe parameters needed by the gene.6 The genes are grouped by states, and the startof a state is indiated by a separate marker (`S'), followed by the state number. Ruledetails an be found in Appendix C, Setion C.4.The hromosome design is illustrated in Figure 6.3. A shemati representationof the hromosome, divided into states, is shown at the top. Below it, a shematirepresentation of one state in the hromosome is shown, onsisting of a state markerand a series of rule genes. Rule genes are identi�ed by the number of the state forwhih they our, followed by a period, followed by a sequene number. Below thestate representation, a shemati representation of one rule is shown. At the bottom,part of an example hromosome is shown.7Chromosomes for the initial population are generated randomly. The generatingmehanism starts by randomly produing genes for the �rst state, allowing onlygenes that are legal in this state. When a build gene is produed that spawns astate transition, the generating mehanism swithes to produing genes for the newstate. This ontinues until the last state is reahed, for whih �ve genes are produed,6Of the ombat gene, there are atually twenty variations, one for eah possible state. Eahvariation uses di�erent parameters. They use rule ID's marked `C1' to `C20'.7The example hromosome translates as follows. In state 1, �rst a defensive army is reated withnumber 2, onsisting of �ve soldiers. Then building type 4 is onstruted. The onstrution of thisbuilding spawns a transition to state 3 (thus, from Figure 6.2 it an be derived that building type4 is a `blaksmith'). In state 3, �rst eonomy ation 8 is exeuted, whih is followed by researhation 15. Finally, building type 3 (a `lumbermill') is onstruted, whih spawns a transition tostate 6.
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Figure 6.3: Chromosome design to store game AI for Wargus.and to whih a loop is attahed that ontinuously attaks with strong units. Thusit is ensured that only legal game-AI sripts are reated.6.3.3 Fitness FuntionTo determine the �tness of a hromosome, the hromosome is translated to a game-AI sript. The game-AI sript ontrols a dynami ivilisation against a stati ivi-lisation. A �tness funtion F measures the relative suess of the game-AI sriptrepresented by the hromosome. Fitness funtion F for the dynami player d, yield-ing a value in the range [0, 1], is de�ned as follows.
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ensures that a game AI that loses after a long game, is awarded ahigher �tness than a game AI that loses after a short game.SineWargus is ompletely deterministi, the �tness does not hange if multiple



6.3 � Evolutionary Tatis 125
Figure 6.4: State rossover.games are played. Were this not the ase, the �tness would have been determinedby playing several games and averaging over the �tness values per game.6.3.4 Geneti OperatorsTo breed new hromosomes, four geneti operators were implemented. By design,all four geneti operators ensure that a hild hromosome always represents a `legal'game-AI sript. Parent hromosomes are seleted with a hane orresponding totheir �tness values.The geneti operators take into aount `ativated' genes. An ativated gene is agene that represents a rule that was exeuted during the �tness determination. If ageneti operator produes a hild hromosome that is equal to a parent hromosomefor all ativated genes, the hild is rejeted and a new hild is generated. Thereason is that genes that are not ativated, are irrelevant to the game-AI sript thehromosome represents.The four geneti operators are the following.

• State Crossover selets two parent hromosomes, and opies states from ei-ther parent to the hild hromosome. The geneti operator is ontrolled by`mathing states'. A `mathing state' is a state that exists in both parenthromosomes. Figure 6.2 makes evident that, for Wargus, there are alwaysat least four mathing states, namely state 1, state 12, state 13, and state 20.State rossover will only be used when there are least three mathing stateswith ativated genes. A hild hromosome is reated as follows. States areopied from the �rst parent hromosome to the hild hromosome, starting atstate 1 and working down the hromosome. When there is a state transitionto a mathing state, there is a 50 per ent probability that from that point on,the role of the two parents is swithed, and states are opied from the seondparent. When the next state transition to a mathing state is enountered,again a swith between the parents an our. This ontinues until the laststate has been opied. The proess is illustrated in Figure 6.4. In the �gure,parent swithes our at state 8 and at state 13.
• Rule Replaement Mutation opies one parent hromosome to a hild hromo-some. Then, all ativated researh, eonomy, and ombat genes have a 25 per



126 Professional Adaptive Game AITati Average Lowest Highest > 250Soldier rush 0.78 0.73 0.85 2Knight rush 0.75 0.71 0.84 0Table 6.2: Evolutionary game AI in Wargus results.ent probability to be replaed with a random di�erent eonomy, researh, orombat gene. It is allowed to replae a gene of a ertain type by a gene of adi�erent gene type (e.g., it is allowed to replae a researh gene by a ombatgene). Build genes are exluded both for and as replaements, beause theyan spawn a state transition, whih might orrupt the hromosome.
• Biased Rule Mutation opies one parent hromosome to a hild hromosome.Then, all parameters for eonomy and ombat genes have a 50 per ent prob-ability to be mutated. Mutation hanges the parameter value by adding arandom integer value in the range [−5, 5].
• Randomisation generates a random new hild hromosome.For eah new hild hromosome that is generated, randomisation has a 10 perent probability to be seleted, and the other three geneti operators eah have a 30per ent probability to be seleted.6.3.5 Evolutionary-Tatis ResultsAs a remedy against eah of the two `rush' tatis, ten tests were performed thatgenerated a ounter-tati by evolutionary means. The results of the two seriesof ten tests are listed in Table 6.2. From left to right, the olumns of the tablerepresent (i) the tati used by the stati ivilisation, (ii) the average of the solution-�tness values, (iii) the lowest solution-�tness value, (iv) the highest solution-�tnessvalue, and (v) the number of tests that ended on the run-stop riterion. The tableshows surprisingly high average, highest, and even lowest solution-�tness values.Therefore, it may be onluded that o�ine adaptive game AI was suessful inrapidly disovering game-AI sripts able to defeat both `rush' tatis used by thestati ivilisation.6.3.6 Evolutionary-Tatis DisussionAbout the solutions evolved against the `soldier rush' tati, the following observa-tions were made. The `soldier rush' is used on a small map. As is usual for a smallmap, the game played by the solutions was always short. Most solutions inludedonly two states with ativated genes. Basially, all ten solutions ounter the `soldierrush' tati with a `soldier rush' tati of their own. In eight out of ten solutions,the solutions inluded building a `blaksmith' very early in the game. Then, the



6.4 � Improving Online Adaptive Game AI 127solutions seleted at least two out of the three possible researh advanements, afterwhih large attak fores were reated. These eight solutions sueed beause theyensure their soldiers are quikly upgraded to be very e�etive, before they attak.The remaining two solutions overwhelmed the stati ivilisation with sheer numbers.About the solutions evolved against the `knight rush', the following observationswere made. The `knight rush' is used on a large map, whih entied longer games. Onaverage, for eah solution �ve or six states were ativated. Against the `knight rush',all solutions inluded training large number of `workers' to be able to expand theivilisation quikly, and boosting the eonomy by exploiting additional resoure sitesafter setting up defenses. Almost all solutions worked towards the goal of quiklyreating advaned military units, in partiular `knights'. Seven out of ten solutionsahieved this goal by employing a spei� building order, namely a `blaksmith',followed by a `lumbermill', followed by a `keep', followed by `stables'. Two out of tensolutions preferred a building order that reahed state 11 as fast as possible. State11 is the �rst state that allows the building of the `knights'.Surprisingly, in several solutions against the `knight rush', the game AI employedmany `atapults'. Warraft II strategy guides generally onsider `atapults' to beinferior military units, beause of their high osts and onsiderable vulnerability. Apossible explanation for the suessful use of `atapults' by the evolutionary gameAI is that, with their high damaging abilities and large range, they are partiularlye�etive against tightly paked armies, suh as groups of `knights'.6.4 Improving Online Adaptive Game AIThe third step in ombining online and o�ine adaptive game AI, is to use the resultsahieved with o�ine adaptive game AI to improve the domain knowledge employedby online adaptive game AI. In Setion 6.2, it was disovered that dynami sriptingdid not ahieve satisfying results against the two `rush' tatis. Setion 6.3 desribesthe evolution of new game-AI sripts, whih are able to defeat the two `rush' tatis.The present setion disusses how the evolved game-AI sripts an be used to inreasethe reliability of dynami sripting by improving the rulebases. Subsetion 6.4.1disusses how the evolved game-AI sripts are translated into rulebase improvements.Subsetion 6.4.2 evaluates the new rulebases by repeating the experiment desribedin Setion 6.2. Subsetion 6.4.3 disusses the evaluation results.6.4.1 Improving the RulebasesSubsetion 6.3.6 desribes typial harateristis of the solutions disovered by theevolutionary game AI. The observations were used to manually reate four new rulesfor the dynami-sripting rulebases.
• Eight out of ten solutions against the `soldier rush' ontained a spei� patternof building and researh, namely �rst building a `blaksmith', then researhingbetter weaponry and armour, followed by the reation of large o�ensive fores.A new rule was reated that ontained exatly this pattern.
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• Against the `knight rush', almost all solutions aimed at reating advanedmilitary units quikly. This was aknowledged by reating a new rule, thatheks whether it is possible to reah a state that allows the reation of ad-vaned military units, by onstruting one new building. If this is possible,the rule onstruts that building, and reates an o�ensive fore onsisting ofthe advaned military units.
• Against the `knight rush', all solutions inluded boosting the eonomy by on-struting a new `townhall'. The original rulebases, used in Setion 6.2, on-tained rules for onstruting a `townhall', but these were invariably assignedlow weights. The explanation is that a new `townhall' is easily destroyed, andthus an only be suessful if it an be defended against enemy interferene.The solutions aknowledged this by �rst building up defenses. A new rulewas reated that ombined the building of a defensive army, followed by theonstrution of a new `townhall'.
• The best solution found against the `knight rush' was translated into a newrule without interpretation. All ativated genes for eah state were translatedand ombined in one rule, and stored in the orresponding rulebase.To keep the total number of rules onstant, the new rules replaed existing rules.The replaed rules were rules that dealt with air ombat. In the experiment desribedin Setion 6.2, the air-ombat rules always ended up with low weights.Besides the reation of the four new rules, small hanges were made to the exis-ting ombat rules, hanging their parameters to inrease the number of units of typespreferred by the solutions, and to derease the number of units of types avoided bythe solutions. Through these hanges, the use of `atapults' was enouraged.Details of the improved rulebase are supplied in Appendix C, Subsetion C.5.2.6.4.2 Evaluation of the Improved RulebasesThe experiment desribed in Setion 6.2 was repeated, with dynami sripting em-ploying the improved rulebases. To enourage high weights, the maximum reward

Rmax and the maximum penalty Pmax were both set to 400. The hange of the max-imum reward and penalty has little impat on the results ahieved with dynamisripting, sine the weight values are ompared to eah other � it is not the absolutevalue of a weight that is important, but the value of a weight relative to ompetingweight values. However, with the higher values for Rmax and Pmax, the boundariesset to the weight values, Wmin and Wmax, are reahed faster.Table 6.3 summarises the ahieved results. The olumns represent the samevariables as in Table 6.1. A omparison of Table 6.1 and Table 6.3 shows that theperformane of dynami sripting is onsiderably improved with the new rulebases.Against the two `balaned' tatis, the average turning point is redued by morethan 50 per ent. Against the two `rush' tatis, the number of games won out of100 has inreased onsiderably. It was observed that dynami sripting assignedlarge weights to all four new rules, reated in Subsetion 6.4.1. Therefore, it may be



6.4 � Improving Online Adaptive Game AI 129Tati Tests Average Median Lowest Highest > 100 WonSmall balaned 11 19 14 10 34 0 72.5Large balaned 11 24 26 10 61 0 66.4Soldier rush 10 10 27.5Knight rush 10 10 10.1Table 6.3: Evaluation results of dynami sripting in Wargus, using improvedrulebases.onluded that the new rules are e�etive, and are the likely ause for the improvedperformane. The improved performane against all tatis indiates an improvedreliability of dynami sripting with the new rulebases, ompared to dynami srip-ting with the original rulebases.6.4.3 DisussionDespite the improvement of the reliability of dynami sripting e�etuated by thenew rulebases, dynami sripting is still unable to outperform the two `rush' tatisstatistially. The explanation of this fat is as follows. The two `rush' tatis are'super-tatis', that an only be defeated by very spei� ounter-tatis, with littleroom for variation. By design, dynami sripting generates a variety of tatis at alltimes. Therefore, it is unlikely to make the appropriate hoies enough times in arow to reah the turning point.As was noted in Subsetion 5.5.6, the fat that suh super-tatis as the `rush'tatis are possible at all, an be onsidered a weakness of the game design.8 Adap-tive game AI may be able to deal with super-tatis, if it is able reognise that asuper-tati is used, and has a pre-programmed `answer' stored whih it an usewithout ativating a learning mehanism. However, a better solution would be tohange the game design to make super-tatis impossible. If adaptive game AI isused during the `quality assurane' phase of game development, super-tatis an bedisovered before a game is released to the publi, when there is still time to improvethe game design.One might wonder whether using ounter-tatis against super-tatis to im-prove the domain knowledge stored in rulebases, may lead to the rulebases over�t-ting against the super-tatis. Sine the experiment improved the performane ofdynami sripting not only against the `rush' tatis, but also against the `balaned'tatis, it seems over�tting has been avoided.Atually, there is a good reason why the proposed proedure to improve therulebases manages to avoid over�tting. The reason is a onsequene of the prinipledisussed in Chapter 3, that solutions to hard instanes enompass harateristis8This is not to suggest that Warraft II, on whihWargus is based, has a weak game design.Warraft II is a lassi game that has gained lasting respet. However, `rush' tatis are possiblein the game, and an be onsidered detrimental to the game's entertainment value.



130 Professional Adaptive Game AIof solutions to easy instanes. The `rush' tatis an be onsidered hard instanes,the `balaned' tatis easy instanes. The new rules derived from observing thesolutions (i.e., the evolved ounter-tatis) to the `rush' tatis, implement typialharateristis of the solutions to the `rush' tatis. These harateristis are likelyto be able to deal suessfully with easier tatis, too. Furthermore, as long as thenew rules are added to a rulebase that an deal with easy tatis, or replae rulesthat are inferior anyway, then at worst the new rules are inonsequential againsteasy tatis. Therefore, over�tting is unlikely to our.To improve the domain knowledge for online adaptive game AI, the proedurepresribes extrating typial harateristis of o�ine evolved tatis. This step re-quires understanding and interpretation of the evolved tatis, whih are ativitiesthat are di�ult to perform automatially. Therefore, in the experiment the extra-tion was done manually. However, to some extent it should be possible to automatethe extration of new rules, espeially sine the e�etiveness of the new rules an betested by running the proedure again. This will be investigated in future work.6.5 AeptaneO�ine adaptation of game AI, when applied before the game is released, is withoutrisk. Therefore, game developers will not hesitate to apply o�ine adaptation ifthey onsider the possible advantages it will bring worthwhile. In ontrast, gamedevelopers will regard online adaptation of game AI with onsiderable suspiion.Sine online adaptation of game AI an be used during playtesting to help improvingstati game AI, they might onsider using online adaptation during the `qualityassurane' phase, as a �rst step on the road to inlude it in a released game.I expet that, before game developers take a deision with regard to experiment-ing with online adaptive game AI, they will need some guarantee that the tehniquesdisussed in this researh generalise to their games. Three issues with regard to thegeneralisation of adaptive game AI are disussed below, namely (i) to what extentadaptive game AI generalises over the ourse of a game (6.5.1), (ii) to what extentadaptive game AI generalises to di�erent game types (6.5.2), and (iii) to what extentthe adaptive tehniques generalise to di�erent funtionalities (6.5.3). A major issuefor the aeptane of adaptive game-AI tehniques is whether they ontribute tothe entertainment experiened by the human player of a game. This is disussed inSubsetion 6.5.4. Finally, Subsetion 6.5.5 disusses the future of adaptive game AI.6.5.1 Generalisation over the Course of a GameIn the experiments desribed in Chapter 5 and 6, the adaptation tehniques aretested against a stati game AI in an e�etively unhanging situation. In ontrast,in modern games situations enountered by human players hange over the ourse ofthe game. In general, the agents ontrolled by the human player will beome morepowerful when the game progresses. At the same time, the omputer-ontrolledagents that oppose the human player will beome more powerful too. The question



6.5 � Aeptane 131is warranted whether adaptive game AI an be expeted to perform well in thesehanging irumstanes.The answer is that it depends on the design of the domain knowledge (e.g., thedynami-sripting rulebases) employed by the adaptive game AI. Adaptive gameAI an be expeted to funtion well over the ourse of the game, if the domainknowledge is formulated su�iently general to desribe rules and fats that hold formost situations in the game. As Appendix A shows, the rulebases designed for theCRPG simulation desribed in Chapter 5 are not su�iently general. For instane,a rule that asts a `Fireball' spell works �ne as long as the `Fireball' spell is a goodspell to use, but fails when there are better alternatives available. Contrariwise, asAppendix B shows, the rulebases designed for Neverwinter Nights only refer toations in a general manner, taking into aount the urrent status of the game.Of ourse, to ahieve a generalised implementation of game AI, the game shouldallow generalised domain knowledge to be formulated. For instane, a rule statingthat `an e�etive ation against a group of enemies standing lose together is at-taking them with an area-e�et weapon' should hold for the whole ourse of thegame, otherwise it does not re�et orret domain knowledge. However, even forgames where it is di�ult to formulate domain knowledge in general, adaptive gameAI an be implemented by using di�erent rulebases for di�erent game states. In thepresent hapter, this approah has been used, with great suess, to deal with thehanging irumstanes over the ourse of an RTS game.6.5.2 Generalisation to Di�erent Game TypesTo what extent an the tehniques for adaptive game AI, disussed in this thesis, beused in di�erent games types?For o�ine adaptive game AI, there are no real restritions to game types, sineo�ine adaptive game AI an generate literally anything. A major obstrution tousing o�ine adaptive game AI is that o�ine learning tehniques an take a hugeamount of omputational resoures before results are ahieved. Usually, the amountof required omputational resoures an be kept relatively small by arefully design-ing and implementing the o�ine adaptive game AI. However, areful design andimplementation require a onsiderable, and thus expensive, investment on the partof the game developers. Therefore, o�ine adaptive game AI should be applied togames where it an be really worthwhile. Typially, these are games with omplexgame AI, suh as CRPGs and strategy games.For online adaptive game AI, dynami sripting has already been shown appli-able to two ompletely di�erent types of games with highly omplex game AI,namely CRPGs (Chapter 5) and RTS games (the present hapter; furthermore,Dahlbom (2004) o�ers an alternative implementation of dynami sripting in RTSgames). By extrapolation, dynami sripting is also appliable to di�erent gametypes, that use sripted game AI with a omplexity less than CRPGs and RTSgames. This is the majority of games on the market today.To games that use game AI not implemented in sripts, dynami sripting is notdiretly appliable. However, based on the idea that domain knowledge must be the



132 Professional Adaptive Game AIore of an online adaptive game-AI tehnique, an alternative for dynami sriptingmay be designed. For instane, if game AI is based on a �nite-state mahine, statetransitions an be extrated from a rulebase to onstrut the �nite-state mahine,in a way similar to dynami sripting's seletion of rules for a game-AI sript.6.5.3 Generalisation of FuntionsIn the researh disussed in this thesis, game AI is developed with as its mainfuntion ompeting with the human player. However, the investigated tehniquesare not restrited to that funtion.Obviously, o�ine adaptive game AI, investigated in Chapter 4 and in the presenthapter, is based on evolutionary learning, whih an be applied to many di�erentproblem domains (f. Goldberg, 1989; Davis, 1991; Mihalewiz, 1992). For evolu-tionary learning, the only requirement for use is that an adequate �tness funtionan be designed (Goldberg, 1989).Online adaptive game AI in the form of dynami sripting, investigated in Chap-ter 5 and in the present hapter, an be applied to any funtion that meets threerequirements (as mentioned before in Subsetion 5.1.1): (i) the funtion an besripted, (ii) domain knowledge on the harateristis of a suessful funtion an beolleted, and (iii) an evaluation funtion an be designed to assess how suessfulthe funtion was exeuted. Suh funtions are not only found in games, but also inless `frivolous' appliation areas, suh as multi-agent systems.6.5.4 Learning to EntertainThe main goal of a game is to provide entertainment. If online adaptive game AI isnot bene�ial to the entertainment experiened by human players, game developerswill not be interested in implementing it. Therefore, the question is warrantedwhether online adaptive game AI really improves a game's entertainment fator.It is evident that not every human player is entertained by the same aspets ofa game. Charles and Livingstone (2004) di�erentiate between players that desire tomaster a game, and players that desire to experiene variety in a game. Obviously,the �rst group of players will not enjoy adaptive game AI, sine the game will adaptwhen players are getting lose to mastering it. However, the seond group of playerswill enjoy the variety adaptive game AI provides.How an be assessed whether the tehniques disussed in this thesis, in partiulardynami sripting, improves the entertainment of a game, for at least those playersthat enjoy the variety and the inreased hallenge? An answer to this question maybe disovered by a large-sale psyhologial investigation of players of a game thatan be experiened with or without adaptive game AI. However, suh an investi-gation is beyond the sope of this thesis. Still, literature provides indiations thatadaptive game AI improves the entertainment of games, as explained below.Most players are intrinsially motivated to play a game, i.e., they are not foredto play the game, but do so purely for pleasure. Empirial studies have linkedintrinsi motivation to the onept of `presene' (also referred to as `immersion'



6.5 � Aeptane 133or `suspension of disbelief'); the stronger the sense of `presene', the higher theintrinsi motivation, and thus the greater the entertainment experiened (Heeter,1992; IJsselsteijn et al., 2004). Sine adaptive game AI allows omputer-ontrolledagents to avoid the ontinuous repetition of mistakes, it improves the feeling ofimmersion experiened by the human player, and thus ontributes positively to theentertainment provided by the game.To measure the entertainment provided by analytial games, Iida and Yoshimura(2003) formulated a theory of game re�nement. Aording to the theory, gamere�nement is expressed by the formula √
B

D , where B represents the branhing fatorof the game, and D represents the game depth, i.e., the average number of moves inthe game until the outome is deided. Game re�nement was alulated for severalChess variations (Iida, Takeshita, and Yoshimura, 2002) and for the game of MahJong (Iida et al., 2004). Iida et al. (2002) surmised that for optimal entertainment,the re�nement value of a game must be in the neighbourhood of 0.07.Unfortunately, the re�nement formula annot be easily translated from analyt-ial games to ommerial games, sine the branhing fator for ommerial gamesis very di�ult to determine.9 It seems lear that, in order to apply the re�nementformula to ommerial games, theory must be developed to determine how the on-epts of `branhing fator' and `game depth' an be translated to ommerial games.Yannakakis and Hallam (2004) proposed a metri to measure the `interest value' ofommerial predator-prey games (where the human player is the `prey'), based onthe prey's `lifetime', and the predator's `diversity in tatis'. However, their met-ri might be ritiised for the fat that it equates inreased lifetime for the humanplayer with inreased entertainment value, while it seems evident that humans arenot entertained by a game that drags on endlessly.Even though the re�nement formula annot be applied to games diretly, thebasis for the theory of re�nement is appliable to all games. Iida and Yoshimura(2003) derive the theory of re�nement from the observation that the entertainmentexperiened from a game results from three essential properties of games, namely (i)omplexity, (ii) fairness, and (iii) re�nement.Complexity is translated as `noble unertainty', i.e., to be entertaining, the rulesof the game must be of su�ient omplexity that players feel that it is possible(and useful) to disover new, more advaned tatis. In ommerial games, againstinferior game AI, there is no need to design new tatis. Adaptive game AI hasthe ability to inrease the playing strength of omputer-ontrolled agents, and thusstimulates omplexity.Fairness is translated as `draw ratio', i.e., the better two opponents are mathed,the higher the entertainment they will experiene. Stati game AI always plays agame with the same level of skill, and thus is likely to play the game signi�antly9For example, in a CRPG, a wizard may have spells that an be unleashed to any loationwithin range. Use of suh a spell annot be onsidered just one possible move, sine the spell e�etdepends on its target loation. However, use of suh a spell also annot be onsidered a virtuallyendless number of moves, sine the pratial number of useful loations will be limited. Still, formost omplex ommerial games the branhing fator will be muh higher than the branhingfator for most analytial games.



134 Professional Adaptive Game AIworse than human players.10 To ompensate for inferior game AI, game developerswill often supply omputer-ontrolled agents with `physial' attributes that outrankhuman-ontrolled agents. Suh design detrats from the fairness of mathing thephysial aspets of the agents ontrolled by the human player and the omputer.Adaptive game AI has the ability to improve the playing strength of omputer-ontrolled agents against a human player, even when the physial attributes of theomputer-ontrolled agents are equal to those of the agents ontrolled by the humanplayer. Thus, adaptive game AI stimulates fairness.Re�nement is translated as the `seesaw game', i.e., the optimal length of timefor whih the outome of the game is unertain. Entertainment is high if the gameis not deided `too fast', and does not drag on after the outome has been deided.In this respet, adaptive game AI inreases the period of time needed for a humanplayer to master a game. Furthermore, when adaptive game AI is enhaned withdi�ulty saling, it will also ensure that novie players experiene a well-mathedgame. Thus, adaptive game AI stimulates re�nement.In onlusion, adaptive game AI has a bene�ial e�et on all aspets whih formthe basis of the theory of re�nement. Therefore, as far as the theory of game re�ne-ment is appliable to ommerial games, the entertainment provided by ommerialgames bene�ts from adaptive game AI.6.5.5 The Future of Adaptive Game AIObserving the state of the art in games today, it is lear that game AI has a long roadto travel before truly believable omputer-ontrolled haraters are implemented.The ability to orret mistakes (self-orretion), and the ability to adapt to hangingirumstanes (reativity), are essential elements of a believable harater. Despitethis, the onsensus amongst game developers and publishers seems to be that adap-tive game AI is something to be avoided. Their distrust stems not so muh from alak of interest, but more from laziness (Rabin, 2004b) and a fear of breaking gameAI that more or less worked when designed manually (Woodok, 2002). However,as soon as one ompany manages to pull o� adaptive game AI suessfully, the othersare fored to join in, lest they will be unable to ompete.Dynami sripting has been shown to be able to implement suessful onlineadaptive game AI, proving that online adaptive game AI is possible in state-of-the-art games. The question is therefore not if, but when adaptive game AI will beomea standard element of games.6.6 Chapter SummaryThis hapter disussed how adaptive game AI an be applied in pratie. O�ineadaptive game AI an be used during the `quality assurane' phase of game develop-10One might assume that it is also possible for stati game AI to play the game better than humanplayers, but human players that lose a game too often will, in general, quit playing (Livingstoneand Charles, 2004).



6.6 � Chapter Summary 135ment to �ne-tune and improve manually-designed game AI. Online adaptive game AIallows the game AI to adapt to human-player tatis after a game has been released.Sine game developers onsider online adaptive game AI risky, during the `qualityassurane' phase the reliability of the game AI must be ensured by on�rming thatit meets the requirements spei�ed in Subsetion 2.3.4.To inrease the reliability of online adaptive game AI, o�ine adaptive game AIan be used to improve the domain knowledge used by online adaptive game AI. Athree-step proedure is proposed to e�etuate this, namely (i) using online adaptivegame AI to disover strong tatis, (ii) using o�ine adaptive game AI to evolveounter-tatis against the disovered tatis, and against manually-designed strongtatis, and (iii) extrating harateristis from the evolved ounter-tatis to addto the domain knowledge used by the online adaptive game AI. The proedure wasempirially validated by applying it to dynami sripting in a Real-Time Strategy(RTS) game.The hapter also disussed several generalisation issues of adaptive game AI. Itwas argued that the tehniques disussed in this thesis generalise over the ourse ofa game, and to di�erent game types. The tehniques are not limited to game AIthat ompetes with human players, but an be applied to other funtionalities ingames, and in other appliations as well. Finally, it was argued that adaptive gameAI will ontribute to the entertainment experiened by human players of a game,and that, in the future, adaptive game AI will beome a standard element of games.





Chapter 7ConlusionThe real danger is not that omputers will begin to think like men,but that men will begin to think like omputers.� Sydney J. Harris (1917�1986).This hapter provides a onlusive answer to the problem statement and researhquestions posed in Chapter 1. Setion 7.1 restates and answers the four researhquestions. Setion 7.2 translates the answers to the researh questions to an answerto the problem statement. Setion 7.3 looks at future work. The hapter ends withonluding remarks in Setion 7.4.7.1 Answer to Researh QuestionsThe four researh questions, stated in Setion 1.5, are answered in the present se-tion. Subsetion 7.1.1 answers the �rst researh question, on o�ine adaptive gameAI. Subsetion 7.1.2 answers the seond researh question, on online adaptive gameAI. Subsetion 7.1.3 answers the third researh question, on di�ulty saling. Sub-setion 7.1.4 answers the fourth researh question, on the integration of adaptivegame AI in the game-development proess.7.1.1 O�ine Adaptive Game AIThe �rst researh question reads:Researh question 1: To what extent an o�ine mahine-learningtehniques be used to inrease the e�etiveness of game AI?The answer to the �rst researh question is derived from Chapters 3, 4, and 6.Chapter 3 disussed the reation of suessful agent ontrollers with evolution-ary learning. It showed that by `doping' (or `seeding') the initial population with asolution to a hard problem instane, evolved agent ontrollers are signi�antly more



138 Conlusione�etive than agent ontrollers evolved without doping. Sine game AI that deter-mines the behaviour of an in-game agent, is equivalent to an agent ontroller, it maybe onluded that the appliation of o�ine mahine-learning tehniques to game AIwill ahieve more e�etive results if it onentrates on hard game situations �rst.As stated in Chapter 6, the bene�ial e�et of foussing on hard instanes for de-riving generalised game AI, is an explanation for the fat that over�tting is avoidedwhen generalised game AI is improved by exploiting tatis used by game AI thatis designed to defeat a superior opponent.Chapter 4 disussed evolutionary game AI. It showed that o�ine evolutionarygame AI is suitable for deteting possible exploits in manually-programmed gameAI, and for disovering new tatis. It also indiated that, for o�ine evolutionarygame AI, the use of a learning struture that is less suitable for storing game AIwill negatively in�uene the suess of the ahieved results. Furthermore, it willnegatively in�uene the e�ieny by whih results are generated. For game AI thatis best stored in prodution rules, a learning struture should be used that is designedto evolve sripts. In Chapter 6, evolutionary game AI was used to evolve sripts,and proved to be not only suessful, but also very e�ient.Chapter 6 disussed the appliation of o�ine evolutionary game AI in pratie.The hapter desribed a three-step proedure to use o�ine evolutionary game AIto improve the domain knowledge used by online adaptive game AI during the`quality assurane' phase of game development, thereby improving the reliabilityof online adaptive game AI. It showed that this appliation of o�ine adaptive gameAI ould be very suessful. Sine the omputational requirements for adaptivegame AI set no restritions to o�ine adaptive game AI, the only limitations tothe appliation of o�ine mahine-learning tehniques are available resoures (i.e.,time and money). Furthermore, the use of o�ine adaptive game AI during `qualityassurane' is essentially risk-free. Therefore, an appliation of o�ine adaptive gameAI as desribed by the three-step proedure is likely to be suessful in the pratieof game development, and easily adopted by game developers.In onlusion, the answer to the �rst researh question is that:
• omputational requirements form no obstale for the appliation of o�inemahine-learning tehniques to game AI;
• o�ine mahine-learning tehniques an inrease the e�etiveness of game AIby (i) deteting exploits, (ii) suggesting new tatis, and (iii) improving thedomain knowledge used by online mahine-learning tehniques; and
• o�ine mahine-learning tehniques ahieve superior results when designinge�etive game AI, when they onentrate on hard problem instanes.7.1.2 Online Adaptive Game AIThe seond researh question reads:Researh question 2: To what extent an online mahine-learningtehniques be used to inrease the e�etiveness of game AI?



7.1 � Answer to Researh Questions 139The answer to the seond researh question is derived from Chapters 2, 4, 5, and 6.Chapter 2 listed four omputational requirements (namely the requirements ofspeed, e�etiveness, robustness, and e�ieny) and four funtional requirements(namely the requirements of larity, variety, onsisteny, and salability) for mahine-learning tehniques to adapt game AI online. When a tehnique meets the four om-putational requirements, it is able to inrease the e�etiveness of game AI. Whenit also meets the funtional requirements of larity, variety, and onsisteny, it isaeptable to game developers to inrease the e�etiveness of game AI online. Itwas also argued that any online mahine-learning tehnique for improving the e�e-tiveness of game AI is neessarily based on domain knowledge.Chapter 4 disussed evolutionary game AI. It showed that online evolutionarygame AI is able to inrease the e�etiveness of game AI during game-play. However,the suess of online evolutionary game AI was shown to depend on the potentialsolutions residing in a small searh spae. In general, when evolving game AI that isomplex, online evolutionary game AI will not meet the omputational requirementof e�ieny. Therefore, to adapt omplex game AI online, a di�erent approah needsto be used.Chapter 5 presented `dynami sripting', an online mahine-learning tehniquefor game AI. Dynami sripting was shown to meet all four omputational require-ments, and the funtional requirements of larity and variety. Furthermore, anoutlier-redution enhanement was presented for dynami sripting, whih allowsit to meet the funtional requirement of onsisteny. Therefore, dynami sriptingis a mahine-learning tehnique suitable for inreasing the e�etiveness of game AIonline.The suess of dynami sripting heavily depends on the quality of the do-main knowledge it uses (in the form of tatial rules). Chapter 6 shows how o�-line mahine-learning tehniques an be used to inrease the quality of the domainknowledge used by dynami sripting, thereby improving its reliability.In onlusion, the answer to the seond researh question is that:
• online mahine-learning tehniques for game AI are heavily dependent on do-main knowledge;
• online mahine-learning tehniques an improve the e�etiveness of game AI,while meeting all requirements for aeptane; and
• o�ine mahine-learning tehniques an be used to improve the reliability ofonline adaptive game AI.7.1.3 Di�ulty SalingThe third researh question reads:Researh question 3: To what extent an mahine-learning tehniquesbe used to sale the di�ulty level of game AI to meet the human player'slevel of skill?



140 ConlusionThe answer to the third researh question is derived from Chapter 5. The hapterpresents dynami sripting as a mahine-learning tehnique for the online adaptationof game AI. Dynami sripting was initially designed to inrease the e�etiveness ofgame AI. As the answer to the seond researh question indiates, this initial versionof dynami sripting did not meet the funtional requirement of salability. Thus, itould only be used to inrease the e�etiveness of game AI, not to math the playingstrengths of the game AI and the human player.A di�ulty-saling enhanement to dynami sripting was presented that al-lows it to math automatially the playing strength of the game AI and the play-ing strength of the human player. Of the several possible implementations of adi�ulty-saling enhanement, `top ulling' was most suessful, being reliable, easyto implement, and able to math the playing strength of both inferior and superioropponents.1 Top ulling funtions by automatially making the most suessful ta-tial domain knowledge unavailable when the game AI is deteted to be too strong,and by automatially making it available again when the game AI is deteted to betoo weak. After applying top ulling, dynami sripting meets all four omputationalrequirements and all four funtional requirements.In onlusion, the answer to the third researh question is that online adaptivegame AI an be made to sale its playing strength to meet the human player's levelof skill, by hanging automatially the availability of domain knowledge that realisesthe most e�etive game AI.7.1.4 Integration in State-of-the-Art GamesThe fourth researh question reads:Researh question 4: How an adaptive game AI be integrated in thegame-development proess of state-of-the-art games?The answer to the fourth researh question is derived from Chapters 5 and 6.Chapter 5 presents dynami sripting as a tehnique for online adaptive gameAI. The hapter shows that dynami sripting an be used in state-of-the-art games,by implementing it in the game Neverwinter Nights (2002), and showing it to besuessful. The hapter also argues that online adaptive game AI gives best resultsagainst human players that do not use highly-suessful tatis, i.e., non-expertplayers.Chapter 6 spei�ally disusses the integration of adaptive game AI in the de-velopment proess of state-of-the-art games. For games that use only manually-designed game AI, o�ine adaptive game AI an be used before the game's release,during the `quality assurane' phase of game development, for deteting possibleexploits in the game AI, and for disovering new tatis. Sine there is little risk as-soiated with the use of o�ine adaptive game AI, game developers will not hesitateto use it when they feel it is worth their while.1Of ourse, using di�ulty saling the game AI will never get more e�etive than the moste�etive results ahieved with online adaptive game AI without a di�ulty-saling enhanement.



7.2 � Answer to Problem Statement 141Sine online adaptive game AI is still new to games, its inlusion must be onsid-ered during the earliest phases of game development. Game developers and publi-shers feel adaptive game AI is risky. Only when they are onvined that adaptivegame AI is reliable (i.e., meets the requirements spei�ed in Chapter 2), they will bewilling to use it in released games. O�ine adaptive game AI an be used to inreasethe reliability of online adaptive game AI, by improving the quality of the domainknowledge used.In onlusion, the answer to the fourth researh question is that:
• o�ine adaptive game AI an be used during the `quality assurane' phase ofgame development to improve the quality of manually-designed game AI;
• online adaptive game AI an be used in released games when game developersand publishers are onvined of its reliability;
• the reliability of online adaptive game AI an be guaranteed by showing thatit meets the four omputational and four funtional requirements; and
• the reliability of online adaptive game AI an be inreased by using o�ineadaptive game AI to improve the quality of the domain knowledge used.7.2 Answer to Problem StatementThe problem statement reads:Problem statement: To what extent an mahine-learning tehniquesbe used to inrease the quality of omplex game AI?Taking into aount the answers to the the researh questions in Setion 7.1, theanswer to the problem statement is that:
• reliability of online adaptive game AI is guaranteed if it meets the four om-putational and four funtional requirements;
• o�ine mahine-learning tehniques an be used during the `quality assurane'phase of game development to inrease the e�etiveness of game AI by (i)deteting exploits, (ii) suggesting new tatis, and (iii) inreasing the reliabilityof online adaptive game AI by improving the quality of the domain knowledgeused;
• after a game's release, online mahine-learning tehniques an (i) improve thee�etiveness of game AI, and (ii) sale the di�ulty level of game AI to maththe playing strength of the human player; and
• game developers and publishers will onsider using online adaptive game AIwhen they are onvined that it is reliable.



142 Conlusion7.3 Future WorkThe researh disussed in this thesis indiates three areas of future researh.1. DECA Validation: Chapter 3 presents the Doping-driven Evolutionary Con-trol Algorithm (DECA). The harateristis of DECA require further inves-tigation in future work. It must be determined for whih tasks and underwhih onditions DECA performs better or worse than alternative tehniques.In partiular, in empirial studies DECA should be ompared to hilllimbing(3.5.2), multitask learning (3.5.3), multi-objetive learning (3.5.4), and boost-ing (3.5.5). In addition to these empirial studies, a solid explanation for thedoping e�et is required to identify problems to whih DECA an be appliedsuessfully. To this purpose, the key assumption in the explanation for thedoping e�et, namely the supposed asymmetry of the searh spae with respetto easy and hard solutions (3.1.3), needs veri�ation. Furthermore, on�rma-tion is needed for the belief that solutions to harder task instanes enom-passing harateristis of solutions to easier task instanes underlies DECA'ssuess (3.5.1). To this end, DECA should be tested on a variety of benh-mark problems, designed to exhibit spei� harateristis with respet to thestruture of the searh spae. Traing the lineage of the best evolved solutionsbak to the doped solutions will be a key ativity in understanding the fatorsresponsible for DECA's suess.2. Entertainment Validation: Chapter 1 stated that the goal of games is to pro-vide entertainment. Entertainment is a subjetive experiene of human play-ers. While this thesis argued that adaptive game AI is able to inrease theentertainment value of games, it used only experiments wherein stati gameAI replaed the human player. In future work, an empirial study should in-vestigate the e�etiveness and entertainment value of online adaptive gameAI (e.g., dynami sripting) in games played against atual human players.While suh a study requires many subjets and a areful experimental design,the game-play experienes of human players are important to onvine gamedevelopers to adopt dynami sripting in their games.3. Adaptive Game AI for Multi-player Games: The adaptive game AI disussedin this thesis foussed on learning from a single human player. For futurework, a logial extension is adaptive game AI that learns from multiple parallelplayers. A data store an be used to store samples of game-play experienesagainst multiple human players. Game AI an use the data store (i) to guideits deisions using a ase-based reasoning approah, and (ii) as a model topredit the e�et of ations whih it deliberates. An approah to adaptivegame AI based on a data store an ahieve at least the same reliability asthe adaptive game AI disussed in this thesis, and probably even a higherreliability. Moreover, it provides an approah to redue the e�et of non-determinism in games (sine the number of samples inreases with the numberof human players), and to design ompletely new tatis online (sine the data



7.4 � Final Thoughts on Dynami Sripting 143store an be used as a model). Three problems that this researh must dealwith are (i) the design of a rapidly aessible data store that ontains game-play samples and allows a relevant mapping of game-play situations to thestored samples, (ii) the design of an algorithm that uses the data store toallow game AI to respond to new game-play situations, and (iii) the design ofan algorithm that uses the data store to allow game AI to math the playingstrength of the human player, without a�eting negatively the entertainmentderived from the game.7.4 Final Thoughts on Dynami SriptingA famous folk �gure in the Arabi world is the Mullah Nasrudin. Nasrudin is a sageand a soundrel, whose wisdom of words seems to be ever louded by his reputationas a prankster. While some of the tales about Nasrudin are outright jokes, mosthave a deeper meaning that is intended to transfer philosophial thinking in anamusing pakage. One of the stories about Nasrudin, reanted by Shah (1968), goesas follows:Nasrudin stood up in the market-plae and started to address the throng.�O people! Do you want knowledge without di�ulties, truth withoutfalsehood, attainment without e�ort, progress without sari�e?�Very soon a large rowd gathered, everyone shouting: �Yes, yes!��Exellent!� said the Mulla. �I only wanted to know. You may rely uponme to tell you all about it if I ever disover any suh thing.�The meaning behind this story is evident: Nasrudin's appeal to the rowd listsfour desirable features of progression, whih the rowd would love to believe arepossible, but whih he feels are evidently unattainable regardless how muh peopleovet them.When I read this story, I notied by how similar the four features whih Nas-rudin mentions are to the four omputational requirements of online adaptive gameAI, disussed in Setion 2.3.4. `Knowledge' an be interpreted as game AI, and so`knowledge without di�ulties' beomes the requirement of e�ieny: quik, easysteps towards suessful game AI. `Truth' an be interpreted as orret domainknowledge, and so `truth without falsehood' beomes the requirement of robustness:orret domain knowledge that does not get tainted by inferior domain knowledge.`Attainment' an be interpreted as the disovery of suessful game AI, and so `at-tainment without e�ort' beomes the requirement of speed: the ahievement ofsuessful game AI without investing muh in the name of resoures. `Progress'an be interpreted as the proess of reating inreasingly e�etive game AI, andso `progress without sari�e' beomes the requirement of e�etiveness: ontinuousimprovements of game AI without sari�ing intermediate results by installing gameAI of inferior quality.



144 ConlusionNasrudin believes that the features are impossible to ahieve, and the rowd,slightly embarrassed by its initial enthusiasm, will probably agree to that. Indeed,the features do sound too good to be true. Yet, for online adaptive game AI thesefeatures are requirements. And, as has been shown in this thesis, they atually areattainable.When presenting some of the results disussed in this thesis at onferenes, oa-sionally I have been onfronted with the remark that the dynami-sripting tehniqueis rather simple. In these instanes, the remark was meant to be ritiising, as ifsomething simple is somehow unworthy of sienti� merit. I would like to point out,that I sinerely believe that it is preisely the simpliity of dynami sripting thatallows it to meet all four omputational requirements. While more omplex teh-niques may be designed, and may disover even more suessful game AI, if theyfail to meet the four omputational requirements they are of no interest to game de-velopers. In this thesis I sought the ombination of sienti� progress and pratialappliability, and the mere fat that a suessful approah to this ombination laksomplexity is no reason to disqualify it.Interestingly, when I �rst ame up with the dynami-sripting tehnique, I almostdisquali�ed the tehnique myself, thinking �it is too easy� and �if it would work,surely someone else would have thought of it �rst�. Muh to my surprise, dynamisripting worked better than I had expeted. For me, the surprise has gone now,but what remains is the realisation that dynami sripting is one of those tehniquesthat are only obvious in hindsight.
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Appendix ACRPG Simulation Game AIIn Chapter 5, experiments with dynami sripting in a simulated CRPG were dis-ussed. This appendix desribes implementation details of the CRPG simulation(A.1), the sripting language used to de�ne game AI (A.2), the rulebases used togenerate suessful game AI for the dynami team (A.3), and the tatis employedby the stati team (A.4).A.1 CRPG simulationThe CRPG simulation is modelled after the Baldur's Gate games. The implemen-tations of agent attributes, ombat, and magi are all to the spei�ations of Bal-dur's Gate II: Shadows of Amn (Ohlen, Kristjanson, Karpyshyn, and Muzyka,2000). The simulation entails an enounter between two teams of similar ompo-sition. Eah team onsists of four agents, namely two �fth-level `�ghters' and two�fth-level `wizards'. The initial position of all agents in the CRPG simulation isillustrated in Figure 5.2. The front row of eah team onsists of the two �ghters,and the bak row of the two wizards. The ombat area (the large square in whihthe agents are loated) measures 1000 × 1000 units, whih equals �fty by �fty feet.The initial distane between two �ghters on opposite sides is 800 units.The armament and weaponry of the teams is stati, and eah agent is allowedto arry two magi potions. In addition, the wizards are allowed to memorise sevenmagi spells. Potions and spells are implemented aording to Baldur's Gatespei�ations (Ohlen et al., 2000). Three di�erent potions are available, namely of(i) Healing, (ii) Fire Resistane, and (iii) Free Ation. Twenty-one magi spells areavailable, namely eight of the �rst level, eight of the seond level, and �ve of the thirdlevel. The eight �rst-level spells are (i) Blindness, (ii) Charm Person, (iii) ChromatiOrb, (iv) Grease, (v) Larloh's Minor Drain, (vi) Magi Missile, (vii) Shield, and(viii) Shoking Grasp. The eight seond-level spells are (i) Blur, (ii) Deafness, (iii)Luk, (iv) Melf's Aid Arrow, (v) Mirror Image, (vi) Ray of Enfeeblement, (vii)Stinking Cloud, and (viii) Strength. The �ve third-level spells are (i) Dispel Magi,
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Figure A.1: The CRPG simulation.(ii) Fireball, (iii) Flame Arrow, (iv) Hold Person, and (v) Monster Summoning I.A �fth-level wizard an memorise four �rst-level spells, two seond-level spells, andone third-level spell.A.2 Sripting LanguageTo implement game-AI sripts, the CRPG simulation employs a sripting language,whih has been designed to be as powerful as the sripting language used for theBaldur's Gate games. It makes use of keywords and literals, whih are listedin Table A.1. Besides the literals listed, names of potions and spells an also beused as literals. In the table, self refers to the agent whose sript is exeuted,`opponent agent' refers to a member of the team opposing self, and `omradeagent' refers to a member of self's team (inluding self). Game-AI sripts onsistof a sequene of onditional statements, with an (optional) onditional part and anation part, strutured as if <onditional> then <ation>. When the game AIneeds to selet a new ation, the statements in the sript are heked in sequene.Of eah statement, the onditional part is evaluated. If it evaluates to `true' (or ifit is absent), the orresponding ation is heked. If the ation obeys all relevanthard and soft onstraints, it is seleted and evaluation ends. Otherwise, the nextstatement in sequene is heked, until either an ation is seleted, or the sript ends.The seleted ation is exeuted. If no ation is seleted, the default ation pass isexeuted, though it is good pratie to add ations to the end of the sript that analways be exeuted.The onditional part an hek many di�erent onditions, ombined with thelogial operators and, or and not. Conditions onsist of either a logial method thatreturns a boolean, or a omparison between numerial expressions. The numerialexpressions an use the numerial operators + (addition), - (substration), * (mul-tipliation), and / (division). Besides integers, the numerial expressions an usenumerial methods.



A.2 � Sripting Language 163Table A.1: Simulation sripting language: keywords and literals.Ationsast Called with a spell as parameter. Casts the spell.drink Called with a potion as parameter. Drinks the potion.meleeattak Called with an agent as parameter. Attaks the agentwith the default melee weapon.movefrom Called with a loation or an agent as parameter. Movesaway in a diret line from the loation, or from the agent.moveto Called with a loation or an agent as parameter. Movesin a diret line towards the loation, or towards the agent.pass Passes.rangedattak Called with an agent as parameter. Attaks the agentwith the default ranged weapon.Agentslosestenemy The opponent agent losest to self.losestfriend The omrade agent losest to self, exluding self.defaultenemy In the onditional statement, the most reently referredagent among the opponent agents.defaultfriend In the onditional statement, the most reently referredagent among the omrade agents.enemy Used with boolean methods; returns a random opponentagent for whih the method returns true.friend Used with boolean methods; returns a random omradeagent for whih the method returns true.furthestenemy The opponent agent furthest from self.furthestfriend The omrade agent furthest from self.randomenemy A random opponent agent.randomfriend A random omrade agent.self The agent whose sript is exeuted.strongestenemy The opponent agent with the most health.strongestfriend The omrade agent with the most health.weakestenemy The opponent agent with the least health.weakestfriend The omrade agent with the least health.In�uenesbadinfluene A detrimental in�uene.freezinginfluene A disabling in�uene.goodinfluene A bene�ial in�uene.Literals"Aid" In�uene. Caused by a `Melf's Aid Arrow' spell.ontinued on the next page



164 CRPG Simulation Game AITable A.1: ontinued from the previous page"Animal" Agent type. Summoned monster."Blinded" In�uene. Caused by a `Blindness' spell."Blurred" In�uene. Caused by a `Blur' spell."Charmed" In�uene. Caused by a `Charm Person' spell."Deafened" In�uene. Caused by a `Deafness' spell."Fighter" Agent type. Fighter lass."Fire Resistant" In�uene. Caused by a potion of `Fire Resistane'."Freedom" In�uene. Caused by a potion of `Free Ation'."Held" In�uene. Caused by a `Hold Person' spell."Luky" In�uene. Caused by a `Luk' spell."Mirrored" In�uene. Caused by a `Mirror Image' spell."Nauseating Fumes" Cloud. Caused by a `Stinking Cloud' spell."Shielded" In�uene. Caused by a `Shield' spell."Slippery Surfae" Cloud. Caused by a `Grease' spell."Strengthened" In�uene. Caused by a `Strength' spell."Stunned" In�uene. Caused by a `Chromati Orb' spell or by a`Nauseating Fumes' loud."Weakened" In�uene. Caused by a `Ray of Enfeeblement' spell."Wizard" Agent type. Wizard lass.Loationsanywhere A random loation anywhere in the ombat area.bakenemy Just behind the opponent agent furthest to the bak.bakfriend Just behind the omrade agent furthest to the bak.entreall The mathematial entre of all agents.entrelouds The mathematial entre of all louds in whih themethod-alling agent is loated.entreenemy The mathematial entre of all opponent agents.entrefriend The mathematial entre of all omrade agents.frontenemy Just in front of the frontline opponent agent.frontfriend Just in front of the frontline omrade agent.randomenemyhalf A random loation in the ombat area at the side of theopponent team.randomfriendhalf A random loation in the ombat area at the side of theomrade team.Methodshaneperentage Called with a number as parameter. Returns `true' witha hane equal to the parameter when it is interpreted asa perentage. ontinued on the next page



A.2 � Sripting Language 165Table A.1: ontinued from the previous pagedistane Called with one or two agents as parameter. With oneagent as parameter, it returns the distane between thatagent and the method-alling agent. With two agents asparameter, it returns the distane between the two agents.health The health of the method-alling agent as an integer.healthperentage Called with a number as parameter. Returns the perent-age that the urrent health of the method-alling agent isof its starting health.influene Called with an in�uene e�et as parameter. Returns`true' if the method-alling agent is under said e�et.loatedin Called with a loud e�et. Returns `true' if the method-alling agent is within the area overed by the loud e�et.maxhealth The initial health of the method-alling agent.random Called with a number as parameter. Returns a randominteger less than the parameter.roundnumber The number of the urrent ombat round.segmentnumber The number of the urrent ombat-round segment.spellount The number of spells the method-alling agent has mem-orised.stepsize The movement speed of the method-alling agent.Potionsrandompotion A random potionSpellsrandomareaeffet A random area-e�et spell.randomurse A random urse.randomdamaging A random damaging spell.randomdefensive A random defensive spell.randomoffensive A random urse or damaging spell.randomspell A random spell.strongareaeffet One of the highest-level area-e�et spells.strongurse One of the highest-level urses.strongdamaging One of the highest-level damaging spells.strongdefensive One of the highest-level defensive spells.strongoffensive One of the highest-level urses or damaging spells.weakareaeffet One of the lowest-level area-e�et spells.weakurse One of the lowest-level urses.weakdamaging One of the lowest-level damaging spells.weakdefensive One of the lowest-level defensive spells.weakoffensive One of the lowest-level urses or damaging spells.



166 CRPG Simulation Game AILogial and numerial methods are alled as <agent>.<method>(<parameters>).The agent whose sript is exeuted an be referred to as self. If <agent> is self,the <agent>-part and the dot need not be inluded. If <method> does not haveparameters, the part (<parameters>) an be ignored. Some methods are polymor-phi, i.e., they have di�erent implementations when used with di�erent types ofparameters.Agents an be referred to using keywords. Exept for defaultenemy, default-friend, and self, an agent keyword an be used with an agent-type literal, restrit-ing the agent lass to the value of the parameter.As parameters, a method an take keywords and literals. `Agent' parameters, `in-�uene' parameters, `loation' parameters, `potion' parameters, and `spell' parame-ters an be referred to using keywords. `In�uene' parameters, `potion' parameters,and `spell' parameters an also be referred to using literals. A numerial parameteris a numerial expression, whih an ontain numerial methods.The ation part of a onditional statement is alled as a method, without spei-fying the <agent>, beause it is always self that exeutes the ation. Five ationsare possible, namely (i) attaking (two varieties, namely with a melee weapon orwith a ranged weapon), (ii) moving (two varieties, namely away from or towards),(iii) asting a spell, (iv) drinking a potion, and (v) passing.A.3 RulebasesIn the simulated CRPG their are two lasses of agents for whih game AI an bede�ned, namely �ghters and wizards. Eah of these lasses has its own rulebase fordynami sripting to employ. The rulebase for �ghters is presented in SubsetionA.3.1, and the rulebase for wizards is presented in Subsetion A.3.2.A.3.1 Fighter RulebaseThis subsetion presents the rulebase used by dynami sripting for the �ghter lassin the simulated CRPG. The rulebase onsists of twenty rules. In front of eah ruleare the rule number, and, between brakets, the priority of the rule. `[0℄' is thelowest priority, while `[9℄' is the highest priority.1. [9℄ if roundnumber <= 1 thendrink( "Potion of Fire Resistane" );2. [9℄ if roundnumber <= 1 thendrink( "Potion of Free Ation" );3. [5℄ if healthperentage < 50 thendrink( "Potion of Healing" );4. [5℄ if healthperentage < 25 thendrink( "Potion of Healing" );5. [5℄ if influene( "Slippery Surfae" ) thendrink( "Potion of Free Ation" );6. [3℄ movefrom( entrelouds );



A.3 � Rulebases 1677. [3℄ if segmentnumber >= 1 thenmovefrom( entrefriend );8. [3℄ if loatedin( "Nauseating Fumes" ) thendrink( "Potion of Free Ation" );9. [1℄ meleeattak( losestenemy( "Wizard" ) );10. [1℄ meleeattak( losestenemy( "Fighter" ) );11. [1℄ if distane( weakestenemy ) > 300 thenrangedattak( defaultenemy );12. [1℄ if distane( weakestenemy( "Wizard" ) ) > 300 thenrangedattak( defaultenemy );13. [1℄ if not influene( "Slippery Surfae" ) thenmeleeattak( losestenemy );14. [1℄ if distane( losestenemy ) > 300 thenrangedattak( randomenemy );15. [1℄ if distane( losestenemy ) > 300 thenrangedattak( weakestenemy );16. [1℄ if distane( losestenemy ) < 200 thenmeleeattak( defaultenemy );17. [1℄ drink( randompotion );18. [0℄ meleeattak( weakestenemy );19. [0℄ rangedattak( weakestenemy );20. [0℄ meleeattak( losestenemy );Rule 1 and 2 fore the agent to perform a spei� ation in the very �rst round,but not later. These rules have the highest priority, beause they are only usefulwhen at the very beginning of the sript.Rule 6 states that the agent should move away from the entre of a loud. Theloation entrelouds only returns a valid value for the ation movefrom if theagent is atually loated in a loud. All louds in the CRPG simulation have adetrimental e�et, and rule 6 helps agents to avoid them.Rule 7 heks a segment number. A ombat round onsists of ten segments. Inthe �rst segment of a ombat round an agent hoses an ation, whih is exeuted inone of the later segments (it depends on the ation when that will be exatly). Afteran ation is exeuted, an agent has to wait until the next round to hoose a newation. However, the agent still has the ability to move. Rule 7 gives an agent extramove ations after the agent's main ation for the ombat round has been exeuted.A �ghter game-AI sript onsists of �ve rules extrated from the rulebase, towhih at the end the rule meleeattak( losestenemy ) is attahed.A.3.2 Wizard RulebaseThis subsetion presents the rulebase used by dynami sripting for the wizard lassin the simulated CRPG. The rulebase onsists of �fty rules. In front of eah rule arethe rule number, and, between brakets, the priority of the rule. `[0℄' is the lowestpriority, while `[9℄' is the highest priority.



168 CRPG Simulation Game AI1. [9℄ if influene( "Aid" ) thenrangedattak( losestenemy( "Wizard" ) );2. [9℄ if roundnumber <= 1 thendrink( "Potion of Fire Resistane" );3. [9℄ if roundnumber <= 1 thendrink( "Potion of Free Ation" );4. [9℄ if roundnumber <= 1 thenast( "Monster Summoning I", entreenemy );5. [9℄ if roundnumber <= 1 thenast( "Hold Person", randomenemy );6. [9℄ if roundnumber <= 1 thenast( "Fireball", entreenemy );7. [9℄ if roundnumber <= 1 thenast( "Mirror Image" );8. [7℄ if roundnumber <= 1 thenast( randomdefensive );9. [5℄ if loatedin( "Nauseating Fumes" ) thendrink( "Potion of Free Ation" );10. [5℄ if enemy.influene( "Charmed" ) thenast( "Charm Person", defaultenemy );11. [3℄ if healthperentage < 50 thendrink( "Potion of Healing" );12. [3℄ movefrom( entrelouds );13. [3℄ if segmentnumber >= 1 thenmovefrom( entrefriend );14. [3℄ if segmentnumber >= 1 thenmovefrom( losestenemy );15. [3℄ if friend.influene( badinfluene ) andnot defaultfriend.influene( goodinfluene ) thenast( "Dispel Magi", defaultfriend );16. [2℄ ast( "Fireball", furthestenemy );17. [2℄ ast( "Charm Person", randomenemy( "Fighter" ) );18. [2℄ ast( "Charm Person", randomenemy( "Wizard" ) );19. [2℄ ast( "Deafness", randomenemy( "Wizard" ) );20. [2℄ ast( "Monster Summoning I", randomenemyhalf );21. [2℄ ast( "Ray of Enfeeblement", randomenemy( "Fighter" ) );22. [2℄ if friend.influene( "Weakened" ) thenast( "Strength", defaultfriend );23. [2℄ if friend( "Wizard" ).influene( "Deafened" ) thenast( "Dispel Magi", defaultfriend );24. [2℄ ast( "Mirror Image" );25. [2℄ ast( "Blindness", randomenemy( "Fighter" ) );26. [2℄ ast( "Blur" );27. [2℄ ast( "Shield" );28. [2℄ ast( "Luk", randomfriend );



A.3 � Rulebases 16929. [2℄ ast( "Chromati Orb", randomenemy );30. [2℄ if roundnumber <= 1 thenast( "Stinking Cloud", entreenemy );31. [2℄ ast( "Stinking Cloud", randomenemy( "Wizard" ) );32. [2℄ ast( "Stinking Cloud", randomenemy( "Fighter" ) );33. [2℄ ast( "Hold Person", losestenemy );34. [2℄ ast( "Flame Arrow", randomenemy );35. [2℄ if (health < maxhealth - 4) and (weakestenemy.health >= 4) thenast( "Larloh's Minor Drain", defaultenemy );36. [2℄ ast( "Grease", randomenemy( "Fighter" ) );37. [2℄ ast( "Magi Missile", weakestenemy( "Wizard" ) );38. [2℄ ast( "Magi Missile", weakestenemy );39. [2℄ ast( "Melf's Aid Arrow", randomenemy( "Wizard" ) );40. [2℄ ast( "Shoking Grasp", losestenemy );41. [2℄ ast( "Blur" );42. [1℄ ast( randomoffensive, randomenemy );43. [1℄ ast( randomblessing, randomfriend );44. [1℄ ast( randomurse, randomenemy );45. [1℄ ast( randomdefensive );46. [1℄ ast( randomareaeffet, randomenemy );47. [1℄ drink( randompotion );48. [0℄ rangedattak( weakestenemy( "Wizard" ) );49. [0℄ rangedattak( weakestenemy );50. [0℄ if distane( losestenemy ) < 100 thenmeleeattak( defaultenemy );Rule 1 fores the agent to use a ranged weapon to attak, when under the in�u-ene of aid. Aid damage auses any spell the wizard has seleted to fail. Therefore,whilst under the in�uene of aid, spell-asting is not useful. Rule 1 takes this intoaount by foring the wizard to use ranged attaks until the aid has dissolved.Rule 6 fores the agent to ast a `Fireball' spell the very �rst round. A `Fireball'is an area-e�et spell, whih seriously damages anyone in its range of e�et. It ismost useful against a group of opponents that are standing lose together, whileomrades are still a good distane away. This is the situation at the start of ombat.Rule 10 heks whether there is an opponent that is harmed. An opponent thatis harmed, is atually a friend under the in�uene of a `Charm Person' spell, whois now �ghting for the opposing team. A seond `Charm Person' spell ast at theopponent will remove the e�et of the �rst spell, turning the erstwhile opponentfriendly again.Rule 15 heks whether a omrade is under any detrimental spell e�et, whilenot being under any bene�ial spell e�et. If so, the wizard attempts to removeseveral detrimental spell e�ets with the `Dispel Magi' spell. Sine `Dispel Magi'makes no di�erene between detrimental and bene�ial spell e�ets, `Dispel Magi'is best applied at a omrade that is only a�eted by detrimental e�ets. The ruletakes this into aount.



170 CRPG Simulation Game AIRule 19 makes the agent ast `Deafness' at an opponent wizard. While `Deafness'an be ast at �ghters, it only a�ets wizards detrimentally.Rule 21 makes the agent ast `Ray of Enfeeblement' at an opponent �ghter. `Rayof Enfeeblement' saps the strength of an opponent. While `Ray of Enfeeblement'an be ast at wizards, wizards do not have high strength to begin with. Therefore,the spell is most useful against �ghters.Rule 23 makes the agent ast `Dispel Magi' to a omrade wizard that su�ersfrom the `Deafness' spell. Within the CRPG simulation, `Dispel Magi' is the onlyremedy against being deafened.Rule 30 is atually a mistake; it should have priority 9, but it has priority 2.When this rule is seleted for a sript, its hane to be ativated is remote.A wizard game-AI sript onsists of ten rules extrated from the rulebase,to whih at the end the rules ast( strongoffensive, losestenemy ) andrangedattak( losestenemy ) are attahed.A.4 Stati TatisChapter 5 refers to �ve di�erent basi tatis used by the stati team. The tatisonsist of a game-AI sript for eah of the members of the stati team. The teamonsists of two �ghters and two wizards. For all tatis, the two �ghters use the samesript. The following �ve subsetions present the sripts used for eah of the �vestati tatis, namely the `o�ensive' tati (A.4.1), the `disabling' tati (A.4.2), the`ursing' tati (A.4.3), the `defensive' tati (A.4.4), and the `novie' tati (A.4.5).A.4.1 The O�ensive TatiFor the `o�ensive' tati, the two �ghters use the following sript:if healthperentage < 50 thendrink( "Potion of Healing" );meleeattak( losestenemy );With the `o�ensive' tati, the two �ghters will use their melee weapon to attakopponents. In general, �ghters are muh more e�etive when using melee attaksthan when using ranged attaks. The �ghters will attempt to heal when they aredamaged too muh.The two wizards both use the following sript:if healthperentage < 50 thendrink( "Potion of Healing" );ast( "Fireball", entreenemy );ast( "Melf's Aid Arrow", losestenemy( "Wizard" ) );ast( "Melf's Aid Arrow", losestenemy );ast( "Magi Missile", weakestenemy );rangedattak( losestenemy );



A.4 � Stati Tatis 171With the `o�ensive' tati, the very �rst round of an enounter, both wizards willthrow a `�reball' at the entre the opponent team. The e�et is that usually the twowizards of the opposing team will be killed outright, unless they immediately startmoving or take protetive measures. In the following rounds, the two wizards will�rst attempt to kill opponents with damaging magi spells, starting any remainingopponent wizard. When the wizards are out of spells, they will use ranged attaks.A.4.2 The Disabling TatiFor the `disabling' tati, the two �ghters use the following sript:if roundnumber <= 1 thendrink( "Potion of Free Ation" );if healthperentage < 50 thendrink( "Potion of Healing" );meleeattak( losestenemy );With the `disabling' tati, the two �ghters will �rst drink a potion of free ation,ensuring that they will be una�eted by the area-e�et spells used by the wizardsin the team. The remainder of the sript is equal to the o�ensive tati sript.The �rst wizard uses the following sript:if healthperentage < 50 thendrink( "Potion of Healing" );drink( "Potion of Free Ation" );if not losestenemy( "Fighter" ).influene( freezinginfluene ) thenast( "Stinking Cloud", defaultenemy );ast( "Chromati Orb", losestenemy( "Fighter" ) );ast( "Hold Person", randomenemy );ast( "Stinking Cloud", randomenemy );ast( "Chromati Orb", randomenemy );rangedattak( losestenemy );The seond wizard uses the same sript, exept that in lines 4 and 6, the referenesto �Fighter� are replaed by �Wizard�. With the `disabling' tati, the two wizardswill �rst drink a potion of free ation, ensuring that they will be una�eted by thearea-e�et spells they use.1 After that they use all kinds of spells that disable theiropponents, suh as freezing them in plae, or making them nauseous. When thewizards are out of spells, they will use ranged attaks.1As Chapter 5 showed, the `disabling' tati is rather weak. The main reason for its weaknessis that all four stati-team members drink a potion in the �rst ombat round. Sine they do notmove from their starting position, they are rather suseptible to their opponents attaking themwith damaging area-e�et magi, similar to the `o�ensive' tati.



172 CRPG Simulation Game AIA.4.3 The Cursing TatiFor the `ursing' tati, the two �ghters use the same sript as with the `o�ensive'tati. The �rst wizard uses the following sript:if healthperentage < 50 thendrink( "Potion of Healing" );ast( "Hold Person", losestenemy( "Fighter" ) );ast( "Deafness", losestenemy( "Wizard" ) );ast( "Charm Person", losestenemy( "Wizard" ) );ast( "Ray of Enfeeblement", losestenemy( "Fighter" ) );ast( "Blindness", losestenemy( "Fighter" ) );if not furthestenemy( "Fighter" ).influene( freezinginfluene ) thenast( "Chromati Orb", defaultenemy );if not furthestenemy( "Wizard" ).influene( freezinginfluene ) thenast( "Chromati Orb", defaultenemy );ast( "Chromati Orb", randomenemy );rangedattak( losestenemy );The seond wizard uses the following sript:if healthperentage < 50 thendrink( "Potion of Healing" );ast( "Monster Summoning I", entreenemy );ast( "Deafness", losestenemy( "Wizard" ) );ast( "Charm Person", losestenemy( "Fighter" ) );ast( "Ray of Enfeeblement", losestenemy( "Fighter" ) );ast( "Blindness", losestenemy( "Fighter" ) );if not losestenemy( "Wizard" ).influene( freezinginfluene ) thenast( "Chromati Orb", defaultenemy );if not losestenemy( "Fighter" ).influene( freezinginfluene ) thenast( "Chromati Orb", defaultenemy );ast( "Chromati Orb", randomenemy );rangedattak( losestenemy );The `ursing' tati aims at the wizards hampering their opponents in severaldi�erent ways, while the �ghters attak them up-lose. While the two wizards mostlyuse the same spells, they attempt to hose di�erent targets for their spells. The`ursing' tati relies heavily on hane. Espeially the use of harming spells isrisky: they have a 50 per ent hane to fail. However, if they sueed, they an bedeisive in determining the outome of the �ght. The `ursing' tati is quite strongif hane is in favour of the stati team, but it is mediore otherwise. As a result,the `ursing' tati is most suseptible to the ourrene of extreme outliers.A.4.4 The Defensive TatiFor the `defensive' tati, the two �ghters use the following sript:



A.4 � Stati Tatis 173if roundnumber <= 1 thendrink( "Potion of Fire Resistane" );if healthperentage < 50 thendrink( "Potion of Healing" );meleeattak( losestenemy );With the `defensive' tati, the two �ghters will �rst drink a potion of �re re-sistane, ensuring that �re-damaging spells, whih are the most ommon damagingspells at this level, are less e�etive when used against them. The remainder of thesript is equal to the o�ensive tati sript.The �rst wizard uses the following sript:if healthperentage < 50 thendrink( "Potion of Healing" );ast( "Mirror Image" );ast( "Monster Summoning I", entreenemy );ast( "Shield" );ast( "Larloh's Minor Drain", losestenemy );rangedattak( losestenemy );The seond wizard uses the same sript, exept that line 5 is replaed by�ast( "Fireball", losestenemy( "Fighter" ) );�. The `defensive' tatiaims at the stati team's wizard using mainly defensive spells. Espeially the `MirrorImage' spell is, in the Baldur's Gate implementation,2 quite e�etive in keepingthe wizards from su�ering any damage.A.4.5 The Novie TatiFor the `novie' tati, the two �ghters use the same sript as with the `o�ensive'tati. The �rst wizard uses the following sript:if healthperentage < 50 thendrink( "Potion of Healing" );ast( "Hold Person", losestenemy( "Fighter" ) );ast( "Mirror Image" );if not losestenemy( "Fighter" ).influene( freezinginfluene ) thenast( "Stinking Cloud", defaultenemy );ast( "Magi Missile", losestenemy( "Wizard" ) );ast( randomoffensive, randomenemy );ast( "Chromati Orb", randomenemy );rangedattak( losestenemy );The seond wizard uses the following sript:2The Baldur's Gate implementation of the `Mirror Image' spell is atually quite di�erent fromo�ial spei�ation (Cook et al., 2000); so muh, in fat, that the Baldur's Gate implementationmay be onsidered a programming bug, for the spell is muh too powerful for the level at whih itis available in the game.



174 CRPG Simulation Game AIif healthperentage < 50 thendrink( "Potion of Healing" );ast( "Mirror Image" );ast( "Fireball", losestenemy( "Wizard" ) );ast( randomoffensive, randomenemy );rangedattak( losestenemy );The `novie' tati aims at imitating a tati that a novie player might use. Anovie player will probably have disovered the power of the `Mirror Image' spelland the `Fireball' spell, but other than that will not know whih spells are e�etiveand whih are not. In the tati, this is implemented as the wizards using mostlyrandom spells.



Appendix BNeverwinter Nights Game AIIn Chapter 5, experiments with dynami sripting in the game NeverwinterNights were disussed. This appendix desribes Neverwinter Nights and themodule implemented for the experiments (B.1), the stati game AI implemented bythe game developers (B.2), and the rulebases used to generate suessful game AIfor the dynami team (B.3).B.1 Neverwinter Nights ModuleNeverwinter Nights is a CRPG, developed by BioWare Corp (loated in Ed-monton, Canada), released in 2002. One of the major gimmiks of the game isthe availability of an extensive toolset, alled `Aurora', that an be used to developompletely new game modules based on the Neverwinter Nights game engine.Aurora sales fairly well from novie users without programming experiene, whoan easily �t together existing game elements, to experiened programmers, who anrebuild the inner workings of the game from srath. BioWare proved the power ofthe toolset, by ommerially releasing two new Neverwinter Nights modules in2003, whih were developed by a third party.The Neverwinter Nights module developed to perform the experiments dis-ussed in Chapter 5 entails an enounter between two teams of similar omposition.Eah team onsists of four agents, namely a �ghter, a priest, a rogue, and a wizard,all of the eighth experiene level. The initial position of all agents in the CRPGsimulation is illustrated in Figure B.1. The front row of eah team onsists of the�ghter and the priest, and the bak row of the wizard and the rogue. The ombatarea (the arena in whih the agents are loated) has a diameter of one-and-one-halfNeverwinter Nights ells, or �fty feet.The armament, weaponry, spell seletion and inventory of the teams is stati.Eah �ghter arries a potion of `Cure Serious Wounds' and a potion of `Speed'. Eahwizard arries a potion of `Cure Light Wounds' and a potion of `Speed'. Eah priestarries a potion of `Cure Moderate Wounds', a potion of `Owl's Wisdom', and a



176 Neverwinter Nights Game AI

Figure B.1: The Neverwinter Nights module.potion of `Bless'. Eah rogue arries a potion of `Cure Moderate Wounds', a potionof `Speed', and a potion of `Invisibility'. Wizards have aess to the following spells(one opy of eah spell, unless indiated otherwise): `Daze' (two opies), `Ray ofFrost', `Resistane', `Burning Hands', `Magi Missile' (two opies), `Negative EnergyRay', `Melf's Aid Arrow' (two opies), `Summon Creature II', `Fireball', `FlameArrow', `Negative Energy Burst', `Evard's Blak Tentales', and `Minor Globe ofInvulnerability'. Priests have aess to the following spells (one opy of eah spell,unless indiated otherwise): `Cure Minor Wounds', `Light' (two opies), `Resistane',`Virtue' (two opies), `Cure Light Wounds', `Doom', `Santuary', `Summon CreatureI', `Aid', `Silene', `Sound Burst', `Animate Dead', `Cure Serious Wounds', `Prayer',`Cure Critial Wounds', `Divine Power'. A detailed desription of NeverwinterNights is given by Knowles et al. (2002).I hose not to inlude a `sorerer' in the teams. The reason is that sorerersare not limited to the spells they memorise, but an use any of the spells of thelevels they have aess to. Therefore, a sorerer an always exeute the �rst rule ina sript that asts a spell, and will ontinue asting the same spell over and overagain until all asting power is gone. Therefore, for a sorerer, sripting is not ideal.



B.2 � Stati Game AI 177As an alternative, a sorerer ould be ontrolled by the rulebase as a whole, wherefor eah ation a rule is seleted at random from the rulebase, with a probabilityorresponding to the rules' weights. This system has atually been implemented inthe Neverwinter Nights module as an alternative to the sripting system, butno experiments have been performed with it yet.B.2 Stati Game AIThe Neverwinter Nights game AI is implemented in the Neverwinter Nightssripting language alled `NWSript'. NWSript is derived from C++. Although itlaks many of the powerful features of C++,1 it is a fairly powerful language thatallows the implementation of advaned onepts. NWSript is doumented by Loeand Crokett (2002) and by the NWN Lexion Group (2004).The Neverwinter Nights game AI is implemented in NWSript. This setiondisusses the three di�erent variations of the Neverwinter Nights game AI usedin this thesis, namely (i) the game AI of Neverwinter Nights version 1.29 (B.2.1),(ii) the game AI of Neverwinter Nights version 1.61 (B.2.2), and (iii) the ursedversion of the game AI of Neverwinter Nights version 1.61 (B.2.2),B.2.1 Game AI 1.29The game AI inluded in Neverwinter Nights version 1.29 onsists of a straight-forward sript, titled DetermineCombatRound() (found in the �le nw_i0_generi).exeuted for all agents in the game. Basially, eah line of the sript onsists ofa hek whether the lass of the agent is allowed to exeute that line (e.g., a lineonerning magi will only be exeuted for spell asters), followed by a `talent'. A`talent' is a all to a funtion that may perform an ation of a ertain type. If thetalent indeed generates an ation, it returns the value `true' and the sript ends.If not, it returns the value `false' and the next line in the sript is exeuted. Forinstane, the following is a short ode snippet from the game AI sript:if (nClass == CLASS_TYPE_BARD){ if (TalentHeal())return;if (TalentBardSong())return;}This ode tests whether the lass of the agent that exeutes the sript is `bard'. If so,then the funtion TalentHeal() is alled. This funtion heks whether the agenthas healing apabilities, and whether it is useful at this point to perform a healingation. If no healing ation is generated, the funtion TalentBardSong() is alled,1For instane, other than `string', `integer' and `�oat' there are no variable types, and it is notpossible to reate new lasses.



178 Neverwinter Nights Game AIwhih heks whether it is useful at this point for the agent to perform a singingation.The game AI uses random numbers to provide variety. For instane, at the startof the sript a random number deides whether the agent will perform an o�ensive(with 75 per ent probability) or a defensive ation (with 25 per ent probability).The game AI of Neverwinter Nights version 1.29 is not so strong. For in-stane, when omputer-ontrolled agents are distaned further from their enemiesthan they an over in one ombat round, they will use ranged weapons. They willstik to using ranged weapons, even if their enemy loses in. Sine usually agentsdo more damage with melee weapons than with ranged weapons, an e�etive wayto deal with agents using ranged weapons is to run towards them and attak withmelee weapons. This is atually one of the tatis disovered by dynami sriptingagainst game AI 1.29.B.2.2 Game AI 1.61The Neverwinter Nights game AI was ompletely rewritten about a year afterthe �rst release of the game. The game AI for version 1.61 is signi�antly moree�etive than the game AI for version 1.29.Game AI 1.61 starts by assigning integer values to three variables, namednOffense, nCompassion, and nMagi. These variables represent a perentage prob-ability to use an o�ensive attak, to help ompanions, and to use magi, respetively.A fourth variable, named nCrazy, is a modi�er that deides how big the variety indeisions is. The variables get typial values for the lass and attributes of the agentfor whih the game AI is exeuted. Then, the values of the variables are used todeide whih part of the sript is exeuted. For instane, the following is a shortode snippet from the game AI sript:if ((nOffense <= 50) && (nMagi > 50) && (nCompassion > 50)){ if (TalentHeal())return;if (TalentCureCondition())return;if (TalentUseProtetionOthers())return;if (TalentEnhaneOthers())return;}This ode tests whether the agent is not o�ensive, has aess to magi, and feelsompassionate. If so, it attempts to selet a `talent' that supports its ompanions.It �rst attempts healing, then uring (e.g., removing poison), then protetive magi,and �nally general enhanements of others.The game AI provides variety by using random values for the four variables,ensuring that the values whih the variables reeive are in aordane with the lass



B.3 � Rulebase 179and attributes of the agent that exeutes the sript. The talents themselves havebeen updated to remove some randomness, and to make them more e�etive.The game AI ofNeverwinter Nights version 1.61 is onsiderably stronger thanthe game AI of Neverwinter Nights version 1.29. For instane, �ghter agentsthat are able to use strong melee attaks, will often attak with melee weapons, evenif they start out far from their enemies. They are also more limited in their ability tohoose less e�etive ations. For instane, while in Neverwinter Nights version1.29 they often wasted time by drinking useless potions, in Neverwinter Nightsversion 1.61 �ghters will never drink potions exept to heal.Interestingly, the redued amount of randomness allows dynami sripting todesign tatis that are able to easily defeat game AI 1.61. For instane, a dynami�ghter agent will quikly learn to drink a potion of `Speed' at the start of a �ght,allowing it more e�etive melee attaks than a stati �ghter agent that refuses todrink any potion.B.2.3 Cursed Game AICursed game AI is atually equal to game AI 1.61. However, there is a di�erenein the way the ombat is handled. With ursed game AI, after every twelve �ghts,three `ursed' �ghts are exeuted. At the start of a ursed �ght, the average �tnessfor both teams over the last ten �ghts is alulated. If the dynami team has ahigher average �tness than the stati team, the stati team gets ursed, otherwisethe dynami team gets ursed. The ursing of a team onsists of disabling themembers of the team for the �rst 60 seonds of a �ght. Furthermore, if the statiteam is ursed, the dynami team selets rules from the rulebase using all equalweights.Consequently, when the dynami team is winning (i.e., has a higher average�tness), during the ursed �ghts it will be at a great disadvantage to the statiteam. Therefore, it is likely that a dynami team that employs a suessful rulebaseAI will lose a ursed �ght despite using good AI. Contrariwise, when the dynamiteam is losing (i.e., has a lower average �tness), during the ursed �ghts it will beat a great advantage to the stati team, and thus will probably win despite usingrandom AI.In summary, for 20 per ent of the �ghts, ursed game AI attempts to fooldynami sripting into rating good AI as being inferior, and rating random AI asbeing good.B.3 RulebaseDynami sripting as implemented in Neverwinter Nights uses one entral rule-base for all lasses. For eah rule in the rulebase an indiation is given for whihlasses the rule is meant. At the start of a test (i.e., a series of �ghts), a separaterulebase is reated for eah lass by extrating those rules from the entral rulebaseorresponding to the lass.



180 Neverwinter Nights Game AIThe entral rulebase is listed below. In front of eah rule are the rule number,and, between brakets, the priority of the rule. `[0℄' is the lowest priority, while `[4℄'is the highest priority. Instead of ode, a desription of eah rule is given, followedby the lasses for whih the rule is appliable. `F' indiates the �ghter lass, `P'indiates the priest lass, `R' indiates the rogue lass, and `W' indiates the wizardlass. The implementation of the rules is always by alling a `talent' funtion, inmany ases the same `talent' funtions the standard game AI uses.1. [4℄ Heal self when health < 25% (F,P,R,W)2. [4℄ If not yet in ombat, buff self (F,R)3. [4℄ Cast `Immunity to Death Magi' (P)4. [4℄ Cast `Freedom' (P)5. [4℄ Cast `Regenerate' (P)6. [4℄ Cast `Mass Haste' or `Haste' (P,W)7. [4℄ Cast `Time Stop' (W)8. [4℄ Heal self when health < 50% (F,P,R,W)9. [4℄ Empty rule (F,P,R,W)10. [3℄ Cast highest magi-absorption spell (W)11. [3℄ Cast highest summoning spell at nearest enemy (P,W)12. [3℄ Cast highest summoning spell at nearest enemy spellaster(P,W)13. [3℄ Cast highest area-effet damaging spell at nearest enemy(P,W)14. [3℄ Cast highest area-effet damaging spell at nearest enemyspellaster (P,W)15. [3℄ Cast highest damaging-loud spell at nearest enemy (P,W)16. [3℄ Cast highest damaging-loud spell at nearest enemyspellaster (P,W)17. [3℄ Cast highest ursing-loud spell at nearest enemy (P,W)18. [3℄ Cast highest ursing-loud spell at nearest enemy spellaster(P,W)19. [3℄ Cast highest area-effet ursing spell at nearest enemy (P,W)20. [3℄ Cast highest area-effet ursing spell at nearest enemyspellaster (P,W)21. [3℄ Cast highest one spell at nearest enemy (P,W)22. [3℄ Cast highest one spell at nearest enemy spellaster (P,W)23. [3℄ Cast highest damaging spell at nearest enemy (P,W)24. [3℄ Cast highest damaging spell at nearest enemy spellaster (P,W)25. [3℄ Cast highest ursing spell at nearest enemy (P,W)26. [3℄ Cast highest ursing spell at nearest enemy spellaster (P,W)27. [3℄ Cast highest anti-invisibility spell (P,W)28. [3℄ Cast highest anti-mind-affeting spell (P,W)29. [3℄ Cast highest damage-absorption spell (P,W)30. [3℄ Cast highest breah spell at nearest enemy (P,W)31. [3℄ Cast highest breah spell at nearest enemy spellaster (P,W)



B.3 � Rulebase 18132. [3℄ Melee-attak nearest enemy (F,R)33. [3℄ Melee-attak nearest enemy spellaster (F,R)34. [3℄ Ranged-attak nearest enemy (F,R)35. [3℄ Ranged-attak nearest enemy spellaster (F,R)36. [3℄ Melee-attak nearest enemy fighter or rogue (F,R)37. [3℄ Ranged-attak nearest enemy fighter or rogue (F,R)38. [3℄ Empty rule (F,P,R,W)39. [2℄ Heal a ompanion (P)40. [2℄ Heal self (F,P,R,W)41. [2℄ Use advaned protetive magi on self (P,W)42. [2℄ Use protetive magi on self (P,W)43. [2℄ Use protetive magi on ompanions (P,W)44. [2℄ Buff self (F,P,R,W)45. [2℄ Buff ompanions (P,W)46. [2℄ Respond to a melee-attaker against self, preferably aspellaster (P,W)47. [2℄ Respond to a ranged-attaker against self, preferably aspellaster (P,W)48. [2℄ Use offensive magi at an enemy that attaks from a distane,preferably a spellaster (P,W)49. [2℄ Use summoning magi (P,W)50. [2℄ Use offensive magi against the nearest spellaster (P,W)51. [2℄ Melee-attak nearest spellaster (F,P,R,W)52. [2℄ Cure self of a disability (P)53. [2℄ Turn undead (P)54. [2℄ If there are multiple melee-attakers against self, respondto them, preferably to nearest spellaster (P)55. [2℄ Buff self (F,R)56. [2℄ Sneak attak (F,R)57. [2℄ Melee-attak nearest fighter or rogue (F,R)58. [2℄ Use offensive magi against nearest fighter or rogue (P,W)59. [2℄ Empty rule (F,P,R,W)60. [1℄ Respond to a melee-attaker against self (P,W)61. [1℄ Respond to a ranged-attaker against self (P,W)62. [1℄ Use offensive magi at an enemy that attaks from a distane(P,W)62. [1℄ Use offensive magi (P,W)63. [1℄ Melee-attak (F,P,R,W)64. [1℄ If there are multiple melee-attakers against self, respondto them (P)65. [1℄ Empty rule (F,P,R,W)66. [0℄ Melee-attak (F,P,R,W)Rule 2 fores the agent to use a potion or speial ability that enhanes its har-ateristis (whih is alled `bu�ng'). Beause of the ombat hek, this will only be



182 Neverwinter Nights Game AIexeuted at the start of a �ght.Rule 3 to 7 are `bu�ng' rules for priests and wizards. However, the spells usedin these rules are unavailable at the experiene level of the priest and wizards usedin the experiments. Therefore, these rules are e�etively empty rules, for the lassesthat are allowed to use them.Rule 39 to 58 are extrated without hange from the Neverwinter Nightsgame AI version 1.29.Priests and wizards game-AI sripts ontain ten rules extrated from their re-spetive rulebases, while the game-AI sripts of �ghters and rogues ontain �ve rules.Rule 9, rule 38, rule 59, and rule 65 are empty rules, that an be seleted to makesripts e�etively shorter than the number of rules extrated from the rulebase. Atthe end of a generated sript, a all is added to the standard Neverwinter Nightsgame AI. Note that, sine version 1.29 and version 1.61 of the standard game AI aredi�erent, the e�et of this all is dependent on the Neverwinter Nights versionused.



Appendix CWargus Game AIIn Chapter 6, experiments with dynami sripting in the game Wargus were dis-ussed. This appendix1 desribes Wargus and the maps used for the experiments(C.1), the sripting language used to implement game AI (C.2), the stati game AI(C.3), the gene types used to design hromosomes (C.4), and the rulebases used togenerate suessful game AI for the dynami team (C.5).C.1 WargusWargus is a faithful lone of the game Warraft II, released by Blizzard in1995 (and released again in 1999). Wargus is built on the open-soure game en-gine Stratagus. Stratagus was formerly known as FreeCraft, but for legalreasons the engine has been renamed. Stratagus is implemented in C. Wargusis a game module for Stratagus, implemented in the high-level Lua sripting lan-guage (Ierusalimshy, de Figueiredo, and Celes, 2003).2 In the aademi ommunity,Stratagus is gaining popularity as a researh environment for RTS games (Ahaand Molineaux, 2004; Marthi, Latham, Russel, and Guestrin, 2004).The experiments in the Wargus environment, desribed in Chapter 6, wereperformed on two di�erent maps; in the tests where the stati game AI employedthe `small balaned tati' or the `soldier rush', a small map was used, while in thetests where the stati game AI employed the `large balaned tati' or the `knightrush', a large map was used. The two maps are illustrated in Figure C.1. The smallmap, measuring 64 by 64 ells, is displayed left. The large map, measuring 128 by128 ells, is displayed right. The blak areas on the maps represent water. Themark `A' indiates the starting base of the dynami ivilisation, and the mark `B'indiates the starting base of the stati ivilisation. Note that on the large map theivilisations are far apart, unless they approah eah other by sea. However, sinenaval units were not used during the experiments, the sea route was disabled.1The ontents of this appendix are based on the work by Ponsen (2004)2Lua is not an abbreviation. It is the word for `moon' in Portuguese, and is pronouned `loo-ah'.
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Figure C.1: The two maps used in the Wargus tests.C.2 Sripting LanguageThe Wargus game AI, implemented in Lua, is based on the onept of `fores'. A`fore' refers to a group of units, ombined in a numbered army. Eah unit in thegame belongs to a fore, and a unit without a fore is assigned to a random foreautomatially. Any ommands assigned to a fore are assigned to eah unit thatbelongs to the fore. Wargus supports a maximum of ten di�erent fores. A forean be either o�ensive or defensive. An o�ensive fore will move towards and intothe area ontrolled by the opposing ivilisation, attaking enemy units and buildingsalong the way. A defensive fore will stay in the area ontrolled by its ivilisation,responding to enemy attaks. The fore numbered zero is always defensive.A game-AI sript for Wargus is exeuted sequentially. Eah rule in the sriptis exeuted (at most) one, starting at the top, and ontinuing to the bottom, untilthe game ends.C.3 Stati TatisIn theWargus experiments, the stati ivilisation uses four di�erent tatis. Two ofthese tatis, the `small balaned tati' and the `large balaned tati', use the samegame-AI sript, but apply it to a small and a large map, respetively. The threegame-AI sripts are disussed in the following subsetions. Subsetion C.3.1 presents



C.3 � Stati Tatis 185the `balaned tati', Subsetion C.3.2 presents the `soldier rush', and SubsetionC.3.3 presents the `knight rush'.C.3.1 Balaned TatiThe `balaned tati' is an improved variation of the `land attak' game AI, whihwas developed by theWargus designers. The (rather long) sript starts with build-ing a large group of `workers', whose funtion is to gather resoures and onstrutbuildings. The sript then de�nes a few fores, using them for both attak anddefense. When the fores are in plae, it onstruts all buildings needed to get tostate 4 (see Figure 6.2), followed by an extension of the existing fores, followed bythe researh of all possible weapon and armour upgrades. At that point, the sriptis able to build fairly strong fores. It mixes the onstrution of new buildings withextending its existing fores and the reation of new ones, whih are used for botho�ense and defense. If the ivilisation manages to get to state 20 (see Figure 6.2),the sript ontinues to build units, whih are assigned an o�ensive or a defensiverole, with a ratio of 2 to 1.C.3.2 Soldier Rush TatiThe `soldier rush' tati aims at overwhelming the enemy with simple soldiers at thestart of the game. Sine a tati that is based on the deployment of low-level unitsworks best on a map where the opposing ivilisations are lose to eah other, duringthe experiments the `soldier rush' was applied to the small map. The `soldier rush'sript ontains the following seventeen steps:1. Indiate the need for a `townhall'.2. Set the amount of needed `workers' to 1.3. Set the amount of needed `workers' to 10.4. Indiate the need for a `barraks'.5. Build fore 0 as two `soldiers'.6. Build fore 1 as ten `soldiers'.7. Attak with fore 1.8. Set the amount of needed `workers' to 15.9. Indiate the need for a `blaksmith'.10. Indiate the need for an extra `barraks'.11. Researh two weapon and two armour upgrades.12. Build fore 0 as four `soldiers'.13. Build fore 1 as ten `soldiers'.14. Attak with fore 1.15. Build fore 1 as five `soldiers'.16. Attak with fore 1.17. Loop bak to step 15.



186 Wargus Game AIC.3.3 Knight Rush TatiThe `knight rush' tati aims at overwhelming the opposing ivilisation with ad-vaned units. The (rather long) sript starts similar to the `soldier rush', but insteadof ontinuously attaking as happens in the `soldier rush' sript after step 12, the`knight rush' doubles the amount of workers and builds a `keep', `stables', a `lum-bermill', and a `astle', followed by several even more advaned buildings. Thenit starts hurning out huge fores, onsisting of high-level units, and uses them toattak ontinuously.C.4 Rule DesignThe evolutionary game AI uses a hromosome to speify Wargus tatis. As de-tailed in Subsetion 6.3.2, a hromosome onsists of rule genes. There are fourdi�erent gene types, namely (i) build genes, (ii) researh genes, (iii) eonomy genes,and (iv) ombat genes.Build genes onsist of a rule ID `B', followed by one numerial parameter, thatindiates the type of building to be onstruted. The parameter takes an integervalue in the range [1, 12]. The di�erent parameters for build genes are de�ned asfollows:31 = Townhall 4 = Blaksmith 7 = Castle 10 = Temple2 = Barraks 5 = Keep 8 = Airport 11 = Guard tower3 = Lumbermill 6 = Stables 9 = Mage tower 12 = Cannon towerResearh genes onsist of a rule ID `R', followed by one numerial parameter,that indiates the type of researh to be done. The parameter takes an integer valuein the range [13, 21]. The di�erent parameters for researh genes are de�ned asfollows:13 = Missile upgrade 16 = Catapult upgrade 19 = Mage upgrade 314 = Armour upgrade 17 = Mage upgrade 1 20 = Mage upgrade 415 = Weapon upgrade 18 = Mage upgrade 2 21 = Mage upgrade 5Eonomy genes onsist of a rule ID `E', followed by one numerial parameter,that indiates the number of workers to be trained. The parameter takes any positiveinteger value.Combat genes onsist of a rule ID, onsisting of a `C' and a number, followedby several parameters. The number takes an integer value in the range [1, 20] (or-responding to the twenty possible states, illustrated in Figure 6.2), and determineswhih parameters the gene has. Combat genes de�ne fores. The �rst of the para-meters is the number of the fore to be de�ned, as an integer value in the range [0, 9].The last of the parameters is the role of the fore, namely `o�ensive' or `defensive'.3Note that the `guard tower' and the `annon tower' do not allow new researh or the reationof new unit types, therefore they do not spawn state transitions, and thus do not our in Figure6.2.



C.5 � Rulebases 187The parameters are unit ounts, that speify how many units of a spei� type areassigned to the fore. For the twenty ombat genes, the unit ounts are as follows:C01: soldiersC02: soldiers, shootersC03: soldiersC04: soldiersC05: soldiers, shooters, atapultsC06: soldiers, shootersC07: soldiersC08: soldiersC09: soldiers, shooters, atapultsC10: soldiers, shootersC11: soldiers, knightsC12: soldiers, shooters, atapults, knightsC13: soldiers, shooters, atapults, knightsC14: soldiers, shooters, atapults, knights, flyersC15: soldiers, shooters, atapults, knights, magesC16: soldiers, shooters, atapults, knightsC17: soldiers, shooters, atapults, knights, flyers, magesC18: soldiers, shooters, atapults, knights, flyersC19: soldiers, shooters, atapults, knights, magesC20: soldiers, shooters, atapults, knights, flyers, magesFor example, a gene with the value �C09,1,3,7,2,offensive� de�nes fore 1 asan o�ensive fore that onsists of three soldiers, seven shooters, and two atapults.C.5 RulebasesChapter 6 spei�ed two basi dynami-sripting rulebases, namely (i) an originalrulebase, used in Setion 6.2, and (ii) an improved rulebase, used in Setion 6.4.From the basi rulebases, separate rulebases for eah of the twenty states wereonstruted, by extrating those rules from the basi rulebases that are appliablein the orresponding states. The two basi rulebases are presented in this setion,in Subsetions C.5.1 and C.5.2, respetively.C.5.1 The Original RulebaseThe original Wargus rulebase, used in Setion 6.2, ontains �fty rules. The rulespei�ations use speial terms to indiate fores of �ve di�erent sizes. A `squadron'is a tiny fore (onsisting of 2 units), a `platoon' is a small fore (onsisting of 4units), a `battalion' is a medium-sized fore (onsisting of 6 units), a `ompany' is alarge fore (onsisting of 8 units), and a `division' is a huge fore (onsisting of 12units). The �fty rules are listed below, with a rule number, a rule name, and a shortexplanation of the rule ontents.



188 Wargus Game AI1. Townhall Construt townhall2. Barraks Construt barraks3. Lumbermill Construt lumbermill4. Blaksmith Construt blaksmith5. Keep Construt keep6. Stables Construt stables7. Castle Construt astle8. Airport Construt airport9. Magetower Construt mage tower10. Temple Construt temple11. Guardtower Construt guard tower12. Cannontower Construt annon tower13. MissileUpgrade Researh better missiles14. ArmorUpgrade Researh better armour15. WeaponUpgrade Researh better weapons16. CatapultUpgrade Researh better atapults17. MageUpgrade1 Researh mage spell 118. MageUpgrade2 Researh mage spell 219. MageUpgrade3 Researh mage spell 320. MageUpgrade4 Researh mage spell 421. MageUpgrade5 Researh mage spell 522. LightWorkers Train a few new workers23. NormalWorkers Train a several new workers24. HeavyWorkers Train a many new workers25. ExtremeWorkers Train a very many new workers26. DefenseSquadron Define a defensive squadron27. DefensePlatoon Define a defensive platoon28. DefenseBattalion Define a defensive battalion29. DefenseCompany Define a defensive ompany30. DefenseDivision Define a defensive division31. OffenseSquadron Define an offensive squadron32. OffensePlatoon Define an offensive platoon33. OffenseBattalion Define an offensive battalion34. OffenseCompany Define an offensive ompany35. OffenseDivision Define an offensive division36. SoldiersDefense Define a defensive fore of soldiers37. ShootersDefense Define a defensive fore of shooters38. CatapultDefense Define a defensive fore of atapults39. KnightsDefense Define a defensive fore of knights40. MagesDefense Define a defensive fore of mages41. SoldiersOffense Define an offensive fore of soldiers42. ShootersOffense Define an offensive fore of shooters43. CatapultOffense Define an offensive fore of atapults44. KnightsOffense Define an offensive fore of knights45. MagesOffense Define an offensive fore of mages



C.5 � Rulebases 18946. AirDefenseBattalion Define a defensive air battalion47. AirDefenseCompany Define a defensive air ompany48. AirOffenseBattalion Define an offensive air battalion49. AirOffenseCompany Define an offensive air ompany50. AirOffenseDivision Define an offensive air divisionAt the end of a game-AI sript generated from a rulebase, a ontinuous loop isadded that initiates onstant attaks.C.5.2 The Improved RulebaseThe improvedWargus rulebase, used in Setion 6.4, is based on the original rulebasepresented in Subsetion C.5.1. The di�erenes are the following.
• Rule 1 has been replaed by a new rule, that de�nes a defensive fore beforeonstruting a new `townhall'. The reason is that a new townhall will bequikly overrun by enemy units, if it is not defended.
• A new rule has been added, named AntiSoldierRush. The rule exists in therulebase for the state 1. It builds a `blaksmith' followed by researhing twoweapon upgrades and two armour upgrades. Then, two o�ensive fores arede�ned, one with four soldiers and one with eight soldiers. This rule is meantas a ounter-tati against the `soldier rush' tati. When exeuted, it stemsthe �rst wave of `soldier rush' attaks, and prepares a strong o�ense withsimple units.
• A new rule has been added, named AntiKnightRush. The rule exists in therulebases for states 7 to 11. In state 7 and 8, it builds `stables'. In state 9and 10, it builds a `blaksmith'. In state 11, it builds a `lumbermill'. In all�ve states, the onstrution of the new building is followed by de�ning twoo�ensive fores onsisting of soldiers and knights. The rule aims at quiklyswithing to a state that allows the onstrution of `knights', and exploits thisswith by setting up a strong attak using `knights'.
• A new rule has been added, named Chromosome. The rule is a literal opyof a suessful hromosome. The rule has implementations for states 3, 4, 8,12, and 14. The rule is strongly defensive in states 3, 4 and 8, and stronglyo�ensive in states 12 and 14.
• The parameters of rules 26 to 35 have been hanged. Four di�erent fore sizeshave been inreased. A `squadron' now onsists of 4 units, a `platoon' of 6units, a `battalion' of 8 units, and a `ompany' of 10 units. The size of a`division' remains at 12 units. Furthermore, the numbers of the units typeshave been redistributed, to give more weight to `atapults'.
• Rule 46 to 50, the `air fore' rules, have been removed, to make room for thenew rules.
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SummaryThe behaviour of agents in ommerial omputer games is determined by so-alled`game AI'. When enhaned with an adaptive mehanism, game AI may learn fromits mistakes (`self-orretion'), and may hange the agents' behaviour in response tounfamiliar situations (`reativity'). Suh enhaned game AI is alled `adaptive gameAI'. The fous of this thesis is on the design and implementation of mahine-learningtehniques that an be used to reate suessful adaptive game AI.The �rst hapter provides a motivation for the researh, and formulates a prob-lem statement and four researh questions. The researh is motivated by the fatthat game AI in state-of-the-art games laks sophistiation. While the audiovisualqualities of games have undergone onsiderable improvements in reent years, gameAI has been largely negleted by professional game developers. Usually, the suspen-sion of disbelief that modern games attempt to evoke is shattered by the inferiordeision-making apabilities of the omputer-ontrolled agents. Adaptive game AIhas the potential to extend the time span that a game is hallenging for the humanplayer, and to sale the level of di�ulty to the human player's level of skill. Im-plementation of these features may allow adaptive game AI to in�uene a game'ssuspension of disbelief positively. So far, aademi researh in adaptive game AI,small as it is, has foused on simple game AI.The problem statement derived from the motivation is: to what extent anmahine-learning tehniques be used to inrease the quality of omplex game AI?To answer the problem statement, four researh questions are formulated: (i) towhat extent an o�ine mahine-learning tehniques be used to inrease the e�e-tiveness of game AI? (ii) to what extent an online mahine-learning tehniques beused to inrease the e�etiveness of game AI? (iii) to what extent an mahine-learning tehniques be used to sale the di�ulty level of game AI to meet thehuman player's level of skill? and (iv) how an adaptive game AI be integrated inthe game-development proess of state-of-the-art games?The seond hapter provides bakground information. First, it disusses themahine-learning tehniques used in the thesis: evolutionary algorithms, arti�ialneural networks, evolutionary arti�ial neural networks, evolutionary ontrol, andreinforement learning. Then, it disusses modern games and state-of-the-art gameAI. Finally, it disusses how mahine-learning tehniques an be applied to gameAI, and gives an overview of related researh in this area. The three ways by whihmahine learning an be applied to game AI are (i) o�ine learning, (ii) supervised



198 Summarylearning (whih is exluded from this thesis), and (iii) online learning. O�ine adap-tive game AI is game AI that adapts using self-play, typially during the `qualityassurane' phase of game development. Online adaptive game AI is game AI thatadapts while the game is being played by a human player. Online adaptive game AImust meet four omputational and four funtional requirements to be appliable inpratie. The four omputational requirements are (i) speed, (ii) e�etiveness, (iii)robustness, and (iv) e�ieny. The four funtional requirements are (i) larity, (ii)variety, (iii) onsisteny, and (iv) salability.The third hapter disusses how to evolve suessful agent ontrollers in game-likeenvironments. When evolving agent ontrollers, the evolutionary algorithm tends toseek solutions in the searh spae in the neighbourhood of solutions to easy probleminstanes. Consequently, the solutions found tend to work well with easy instanes,but give inferior results with hard instanes. This is alled `the problem of hardinstanes'. To deal with this problem, a novel evolutionary algorithm is introdued,alled the Doping-driven Evolutionary Control Algorithm (DECA). DECA `dopes'the initial population of potential solutions with a very good solution to a singlehard instane. Through experiments with a box-pushing task and with a food-gathering task, the hapter empirially shows that DECA evolves agent ontrollersthat are signi�antly more e�etive than agent ontrollers evolved with a `regular'evolutionary algorithm.The fourth hapter explores evolutionary game AI, whih is game AI that employsevolutionary algorithms to adapt. The �rst part of the hapter disusses o�ineevolutionary game AI. By an experiment that ontrols the ations of a spaeshipin a strategy game with a neural network, it shows that o�ine evolutionary gameAI an be suessful in deteting exploits, and in disovering new tatis. However,the �rst part onludes with the observation that a neural network is not a suitablelearning struture for game AI. The seond part disusses online evolutionary gameAI. By an experiment that evolves team behaviour in the apture-the-�ag mode ofthe ation game Quake III Arena, it shows that online evolutionary game AI anbe used to reate suessful tatis. However, it is onluded that online evolutionarygame AI is only reasonably e�ient if the searh spae is small.The �fth hapter disusses a novel tehnique for online adaptive game AI alled`dynami sripting'. Dynami sripting maintains game-domain knowledge in theform of rules in an adaptive rulebase. Eah rule has a weight attahed to it, whihdetermines the probability that the assoiated rule is seleted for a game-AI sript.The weights adapt automatially to re�et the suess or failure of the game AI asobserved in the game. The hapter shows that dynami sripting meets by designall four omputational requirements, and two of the four funtional requirements(namely larity and variety). The hapter then explores (i) outlier-redution en-hanements to dynami sripting to allow it to meet the requirement of onsisteny,and (ii) di�ulty-saling enhanements to allow it to meet the requirement of sal-ability. With `penalty balaning' as an outlier-redution enhanement, and `topulling' as a di�ulty-saling enhanement, dynami sripting meets all four om-putational and all four funtional requirements. Therefore, it is onluded thatdynami sripting an be applied in pratie. The onlusion is supported by the



Summary 199suessful implementation of dynami sripting in the state-of-the-art roleplayinggame Neverwinter Nights.The sixth hapter disusses how adaptive game AI an be integrated in profes-sional game development. It shows that game developers and publishers will nothesitate to use o�ine adaptive game AI when they believe that they an bene�tfrom it. However, at present they are still suspiious of online adaptive game AI,and need to be onvined of its reliability to start onsidering applying it in theirgames. The reliability of online adaptive game AI an be improved by using o�ineadaptive game AI to disover new domain knowledge. A three-step proedure toexeute this improvement is illustrated by an experiment with the game AI in thereal-time strategy game Wargus. The experiment shows that a dynami-sriptingrulebase for Wargus an be improved by using o�ine evolutionary game AI to de-sign ounter-tatis against `super-tatis', whih are quite di�ult to defeat. Thehapter ends by disussing some generalisation issues, and by providing argumentsthat support the onjeture that adaptive game AI is bene�ial to the entertainmentvalue derived from games.The seventh hapter returns to the problem statement and researh questions.The answers to the researh questions are all given above. They provide the follow-ing, four-part answer to the problem statement:
• reliability of online adaptive game AI is guaranteed if it meets the four om-putational and four funtional requirements;
• o�ine mahine-learning tehniques an be used during the `quality assurane'phase of game development to inrease the e�etiveness of game AI by (i)deteting exploits, (ii) suggesting new tatis, and (iii) inreasing the reliabilityof online adaptive game AI by improving the quality of the domain knowledgeused;
• after a game's release, online mahine-learning tehniques an (i) improve thee�etiveness of game AI, and (ii) sale the di�ulty level of game AI to maththe playing strength of the human player; and
• game developers and publishers will onsider using online adaptive game AIwhen they are onvined that it is reliable.The onsensus amongst game developers and publishers seems to be that adap-tive game AI is something to be avoided. Still, adaptive game AI is an essentialelement for truly believable haraters in omputer games. This thesis shows thatadaptive game AI an be suessful, and be reliable, both in o�ine and online im-plementations. The question is therefore not if, but when adaptive game AI willbeome a standard element of games.





SamenvattingHet gedrag van agenten in ommeriële omputer games1 wordt bepaald door zo-geheten game AI. Als game AI wordt uitgebreid met een adaptief mehanisme, kanze leren van de eigen fouten (zelf-orretie), en het gedrag van de agenten aan-passen aan ongewone situaties (reativiteit). Een dergelijke game AI wordt adaptivegame AI genoemd. Dit proefshrift foust op het ontwerp en de implementatie vanmahine-learning tehnieken die suessvolle adaptive game AI mogelijk maken.Het eerste hoofdstuk geeft een motivatie voor het onderzoek, en formuleert eenprobleemstelling en vier onderzoeksvragen. Het onderzoek wordt sterk gemotiveerddoor een gebrek aan ra�nement bij de game AI van moderne games. Terwijl de au-diovisuele kwaliteiten van games de laatste jaren met sprongen vooruit zijn gegaan,hebben professionele game-ontwikkelaars de game AI grotendeels genegeerd. Game-ontwikkelaars trahten bij spelers de beleving op te roepen dat de wereld voorgesteldin een game werkelijkheid is (dit wordt aangeduid met de term `immersie'). Dezebeleving wordt meestal teniet gedaan door het inferieure gedrag van de omputer-gestuurde agenten. Adaptive game AI heeft de mogelijkheid de tijdsduur te verlen-gen dat een game uitdagend blijft voor een menselijke speler. Daarnaast kan ze demoeilijkheidsgraad van een game automatish aanpassen aan de speelsterkte vande menselijke speler. Implementatie van deze eigenshappen kan ervoor zorgen datadaptive game AI het gevoel van immersie bij de menselijke speler versterkt. Totvoor kort was aademish onderzoek naar adaptive game AI beperkt tot de game AIvoor eenvoudige games.De probleemstelling, diret afgeleid uit de bovengeshetste motivatie, luidt: Inhoeverre is het mogelijk om mahine-learning tehnieken te gebruiken om de kwaliteitvan omplexe game AI te verhogen? Om deze vraag te beantwoorden, zijn vier on-derzoeksvragen geformuleerd: (i) In hoeverre is het mogelijk om o�ine mahine-learning tehnieken te gebruiken om de e�etiviteit van game AI te vergroten? (ii)In hoeverre is het mogelijk om online mahine-learning tehnieken te gebruiken omde e�etiviteit van game AI te vergroten? (iii) In hoeverre kunnen mahine-learningtehnieken gebruikt worden om de moeilijkheidsgraad van game AI te shalen naarde speelsterkte van de menselijke speler? en (iv) Hoe kan adaptive game AI wordengeïntegreerd in het proes van game-ontwikkeling van moderne games?1De Nederlandse vertaling van `omputer games' is `omputerspelen', maar in het dagelijksgebruik geniet de Engelse benaming de voorkeur. Daarnaast worden ommeriële omputer gamesmeestal aangeduid met de verkorte term `games'. Dit gebruik is in het proefshrift overgenomen.



202 SamenvattingHet tweede hoofdstuk geeft enige ahtergrondinformatie bij het onderzoek. Hethoofdstuk begint met een bespreking van de mahine-learning tehnieken die in hetproefshrift gebruikt worden: evolutionaire algoritmen, neurale netwerken, evolutio-naire neurale netwerken, evolutionaire besturing, en reïnforement leren. Daarnavolgt een bespreking van moderne games en hun game AI. Tenslotte bespreekt hethoofdstuk de toepassing van mahine-learning tehnieken op game AI, en geeft heteen overziht van aanpalend onderzoek op dit gebied. De drie manieren waaropmahine learning kan worden toegepast op game AI zijn: (i) o�ine learning, (ii)supervised learning (die niet wordt behandeld in dit proefshrift), en (iii) onlinelearning. O�line adaptive game AI is game AI die zih aanpast door tegen zihzelfte spelen. Gewoonlijk gebeurt dit tijdens de testfase van een game. Online adaptivegame AI is game AI die zih aanpast tijdens het spelen van een game door een mens.Om praktish toepasbaar te zijn, moet online adaptive game AI voldoen aan vieromputationele eisen, en aan vier funtionele eisen. De vier omputationele eisen zijn:(i) snelheid, (ii) e�etiviteit, (iii) robuustheid, en (iv) e�iëntie. De vier funtioneleeisen zijn: (i) helderheid, (ii) variëteit, (iii) onsistentie, en (iv) shaalbaarheid.Het derde hoofdstuk bespreekt hoe suesvolle agent-besturing geëvolueerd kanworden in een spel-ahtige omgeving. Wanneer agentbesturing geëvolueerd wordt,zoekt een evolutionair algoritme over het algemeen in de zoekruimte een oplossingin de buurt van oplossingen voor een eenvoudige probleem-instantie. Het gevolg isdat de uiteindelijke oplossing vaak goed werkt op eenvoudige instanties, maar slehtop moeilijke instanties. Dit heet `het probleem van de moeilijke instanties'. Om ditprobleem op te lossen, introdueert het hoofdstuk een nieuw evolutionair algoritmedat het Doping-driven Evolutionary Control Algorithm (DECA) wordt genoemd.DECA voorziet een initiële populatie van mogelijke oplossingen van een zeer goedeoplossing voor een moeilijke instantie. Met behulp van twee experimenten met iedereen vershillende taak (namelijk het verplaatsen van een doos door een robot, en hetvergaren van voedsel door een agent) toont het hoofdstuk aan dat DECA agentbestu-ringen evolueert die signi�ant e�etiever zijn dan agentbesturingen die geëvolueerdzijn met reguliere evolutionaire algoritmen.Het vierde hoofdstuk handelt over evolutionaire game AI. Dit is game AI diezih aanpast middels evolutionaire algoritmen. Het eerste deel van het hoofdstukbespreekt o�ine evolutionaire game AI. Met behulp van een experiment waarbijeen neuraal netwerk wordt geëvolueerd voor de aansturing van een ruimteship ineen strategish spel, wordt aangetoond dat o�ine evolutionaire game AI suesvolkan zijn in het ontdekken van exploiteerbare zwakheden, en van nieuwe tatieken.Niettemin wordt geonludeerd dat neurale netwerken niet bijster geshikt zijn voorhet leren van game AI. Het tweede deel bespreekt online evolutionaire game AI.Met behulp van een experiment, waarbij groepsgedrag wordt geëvolueerd voor hetvlagveroveren in het atie-spelQuake III Arena, wordt aangetoond dat online evo-lutionaire game AI gebruikt kan worden voor het genereren van suesvolle tatieken.Er wordt ehter geonludeerd dat online evolutionaire game AI slehts redelijk ef-�iënt is indien de zoekruimte klein is.Het vijfde hoofdstuk bespreekt een nieuwe tehniek voor online adaptive gameAI, dynami sripting genaamd. Dynami sripting onderhoudt domeinkennis over



Samenvatting 203een game in de vorm van regels in een adaptieve kennisbank. Elke regel is voorzienvan een gewiht, dat de kans aangeeft dat de geassoieerde regel gebruikt wordt ineen game-AI sript. De gewihten passen zih automatish aan naar aanleiding vanhet geobserveerde sues of falen van de game AI tijdens het spelen. Het hoofdstuktoont aan dat dynami sripting voldoet aan alle vier de omputationele eisen, enaan twee van de vier funtionele eisen (namelijk helderheid en variëteit). Daarnawordt in het hoofdstuk onderzoek gedaan naar maatregelen ten behoeve van debevordering van onsistentie, en van de shaalbaarheid. Met penalty balaning alsonsistentie-bevorderende maatregel, en top ulling als shaalbaarheids-maatregel,voldoet dynami sripting aan alle vier de omputationele, en alle vier de funtioneleeisen. Er wordt daarom geonludeerd dat dynami sripting in de praktijk kanworden toegepast. Deze onlusie wordt gestaafd door de suesvolle implementatievan dynami sripting in het moderne omputer roleplaying game NeverwinterNights.Het zesde hoofdstuk bespreekt hoe adaptive game AI kan worden geïntegreerdin de praktijk van game-ontwikkeling. Het hoofdstuk laat zien dat ontwikkelaars enuitgevers van games niet zullen aarzelen om o�ine adaptive game AI toe te passenwanneer ze denken daarmee winst te kunnen behalen. Op dit moment staan ze ehterwantrouwend tegenover online adaptive game AI. Ze zullen overtuigd moeten wordenvan de betrouwbaarheid van online adaptive game AI, voordat ze zullen overwegenhet toe te passen in hun games. De betrouwbaarheid van online adaptive game AIkan worden vergroot door o�ine adaptive game AI in te zetten voor het ontdekkenvan nieuwe domeinkennis. Een drie-stappen proedure die dit bewerkstelligt, wordtgeïllustreerd aan de hand van een experiment met adaptive game AI in het real-time strategy game Wargus. Het experiment toont aan dat een dynami-sriptingkennisbank voor Wargus verbeterd kan worden door o�ine evolutionaire game AIte gebruiken voor de weerlegging van `super-tatieken', die slehts met veel moeiteverslagen kunnen worden. Het hoofdstuk sluit af met een disussie over generalisatie-mogelijkheden, en het geven van een argument waarom adaptive game AI positiefkan bijdragen aan de entertainment-waarde die mensen ervaren bij het spelen vaneen game.Het zevende hoofdstuk keert terug naar de probleemstelling en onderzoeksvragen.De antwoorden op de onderzoeksvragen zijn hierboven gegeven. Zij leiden diret tothet volgende antwoord op de probleemstelling, dat bestaat uit vier delen:
• De betrouwbaarheid van online adaptive game AI is gegarandeerd als de gameAI voldoet aan de vier omputationele eisen en aan de vier funtionele eisen.
• O�ine mahine-learning tehnieken kunnen worden gebruikt tijdens de test-fase van een game, om de e�etiviteit van de game AI te vergroten door (i)zwakheden bloot te leggen, (ii) nieuwe tatieken te suggereren, en (iii) de be-trouwbaarheid van online adaptive game AI te vergroten door de kwaliteit vande domeinkennis te verbeteren.
• Nadat een game op de markt is gekomen, kunnen online mahine-learningtehnieken gebruikt worden om (i) de e�etiviteit van game AI te vergroten,



204 Samenvattingen (ii) de moeilijkheidsgraad van de game AI te shalen naar de speelsterktevan de menselijke speler.
• Game-ontwikkelaars en uitgevers zullen het gebruik van online adaptive gameAI in overweging willen nemen als ze overtuigd zijn van de betrouwbaarheidervan.Onder game-ontwikkelaars en uitgevers lijkt de onsensus te zijn dat adaptivegame AI vermeden dient te worden. Toh is adaptive game AI een essentieel elementvoor de reatie van werkelijk geloofwaardige personages in een game. Dit proefshrifttoont aan dat adaptive game AI suesvol en betrouwbaar kan zijn, in zowel o�ineals online implementaties. De vraag is daarom niet zozeer of, maar wanneer adaptivegame AI een standaard element in games zal zijn.
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