
AN EXPERIMENTAL TESTBED TO ENABLE AUTO-DYNAMIC DIFFICULTY
IN MODERN VIDEO GAMES

Christine Bailey and Michael Katchabaw

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada
E-mail: cdbailey@csd.uwo.ca, katchab@csd.uwo.ca

KEYWORDS

 Auto-dynamic difficulty, difficulty adjustment in games

ABSTRACT

 Providing gameplay that is satisfying to a broad player
audience is an appealing goal to game developers.
Considering the wide range of player skill, emotional
motivators, and tolerance for frustration, it is simply
impossible for developers to deliver a game with an
appropriate level of challenge and difficulty to satisfy all
players using conventional techniques. Auto-dynamic
difficulty, however, is a technique for adjusting gameplay
to better suit player needs and expectations that holds
promise to overcome this problem.

 This paper presents an experimental testbed to enable
auto-dynamic difficulty adjustment in games. Not only
does this testbed environment provide facilities for
conducting user studies to investigate the factors involved
in auto-dynamic difficulty, but this testbed also provides
support for developers to build new algorithms and
technologies that use auto-dynamic difficulty adjustment to
improve gameplay. Initial experiences in using this auto-
dynamic difficulty testbed have been quite promising, and
have demonstrated its suitability for the task at hand.

INTRODUCTION

 The goal of producing a game is to provide many things
to players, including entertainment, challenge, and an
experience of altered state. Ultimately, however, a game
must be fun. One major source of polarization among
players on this issue is the level of difficulty in a game.
There is a great degree of variation in players with respect
to skill levels, reflex speeds, hand-eye coordination,
tolerance for frustration, and motivations.

 In (Csikszentmihalyi 1996), the concept of “flow” is used
to refer to an individual’s “optimal experience”. In a state
of flow, the individual experiences intrinsic enjoyment
from undertaking a task that feels almost effortless and
natural, while also causing the individual to feel focussed
and challenged. One facet of flow is that there is a balance
between the challenge presented by the task and the
increasing skill of the individual, as discussed in (Falstein
2004). This closely resembles the concept of a zone of

proximal development as discussed in (Woolfolk et al.
2003), in which a balance between skill and challenge is
needed in educational settings in order for learning to take
place. This zone of proximal development was found to be
different for each student, and that tasks considered easy by
some may be too difficult for others. Assigning difficulty
levels in games must address this problem so as to hit the
“optimal experience” for as many players as possible, each
of which may have very different zones of proximal
development. These issues are important because, as noted
in (Miller 2004) and (Rouse 2004), a game must balance
challenging and frustrating the player to provide the best
overall level of satisfaction and enjoyment.

 Several approaches have been used in the past to attempt
to provide appropriate difficulty levels in a variety of
different ways, such as having a single static difficulty level
(chosen either by the designer or through play-testing of the
target audience), having several different static difficulty
levels to choose from at the start of the game, or providing
cheat-codes. However, each method has its drawbacks and
limitations, and ultimately cannot provide an appropriate
difficulty level to all players, particularly as their skills
improve as they play and learn. In the end, this can
drastically limit the success of a game.

 Auto-dynamic difficulty refers to the ability of a game to
automatically adapt the difficulty level of gameplay to
match the skills and tolerances of a player. If done
properly, this can provide a satisfying experience to a wider
variety of players. The concept of auto-dynamic difficulty
is not new; it has been used in early arcade games such as
Xevious to more recent titles such as Max Payne (Miller
2004). Typically, however, this technique is used in an ad
hoc and unrepeatable fashion, applied to a particular game
or gameplay element within a game. Often, there is little
regard or understanding for the various factors that
influence player experience and how these factors interact
with one another; as long as the current game is improved,
that is all that matters.

 In this paper, we discuss the development of an
experimental testbed to facilitate the development of auto-
dynamic difficulty enabling technologies for games. This
testbed serves two key purposes. The first is to support
experimentation to better understand what shapes player
experience and how gameplay and difficulty can be altered
to produce the best experience possible. The second is to

serve as a vehicle for testing new algorithms and
methodologies for supporting auto-dynamic difficulty
developed as part of this work. The goal is that this work
will provide both a better understanding of how to create
more enjoyable and satisfying gameplay experiences for a
wider range of players, and that it will deliver enabling
technologies to make use of this new understanding in a
wide variety of games and gameplay scenarios.

 The remainder of this paper is organized as follows. We
begin in the next section with a background discussion of
auto-dynamic difficulty adjustment, describing what
adjustments are possible, and the deciding factors in
determining when and how such adjustments should be
made. We then present the architecture and implementation
of our auto-dynamic difficulty experimental testbed
environment. We then provide a brief discussion of our
experiences to date in using this experimental testbed.
Finally, we conclude this paper with a summary and
discussion of potential future work in this area.

AUTO-DYNAMIC DIFFICULTY ADJUSTMENT

 Before discussing our experimental testbed environment,
it is first important to further explore the key issues behind
auto-dynamic difficulty adjustment. Of critical importance
is to recognize what adjustments can and should be made,
as well as when and how to make these adjustments. Any
adjustments must be made with care in such a way that they
enhance the satisfaction and enjoyability of the game,
without disrupting the game in a negative fashion. (For
example, changes that are too abrupt could disrupt the
immersion of the player, causing a negative effect on the
overall experience.)

What to Adjust

 Designed properly, a good portion of a game’s gameplay
elements can have difficulty that is adjustable dynamically
(Bailey 2005). This includes the following:

 Player character attributes. The attributes of the player’s
character can be tuned according to the desired level of
difficulty in a game. As examples, to make a game easier,
the player could be made stronger, move faster, jump
higher and farther, have more health, have better armour,
attack with more damage, attack more frequently, and so
on. To make a game harder, these attributed can be
adjusted in the opposite directions.

 Non-player character attributes. Likewise, the attributes
of non-player characters controlled by the game’s artificial
intelligence can change. Not only does this include the
attributes affecting the actions they take as above, but this
also includes the decision making processes used. To make
a game less difficult, non-player characters can make
poorer decisions, provided that these decisions do not make
the characters appear artificially stupid. As examples, path-
finding can be adjusted to make the player harder to find,
aiming can be adjusted so that attacks are less successful,
and so on. Similarly, steps can be taken to make better
decisions that make the game more difficult.

 Game world and level attributes. Various elements of
how the game world and its levels are designed can affect
game difficulty, including both the structure of the levels,
and their contents (Bates 2004). With advancements in
game engine technologies, it is now possible to do this
dynamically from within the game. Adjusting level
structure depends heavily on the gameplay occurring within
the gameplay. For example, in a platformer-genre game
involving a lot of jumping puzzles, level geometry can be
adjusted dynamically to make gaps smaller or larger to
make the game easier or more difficult. In a shooter game,
as another example, the amount of cover can be adjusted
appropriately to make the game easier or more difficult as
well. Level contents can also be tuned dynamically to
adjust difficulty. By adding or removing items such as
ammunition, health upgrades, and so on, a game can be
made easier or more difficult. Varying the quantity and
spawning locations of enemy non-player characters can also
affect difficulty.

 Puzzle and obstacle attributes. As discussed in (Bates
2004), there are several ways of adjusting the level of
difficulty provided by puzzles and obstacles within a game.
Fortunately, many of these techniques can be applied
dynamically. While it might not always be possible to
dynamically adjust the attributes of the current puzzle or
obstacle faced by the player (for consistency and other
reasons), it might be possible to instead adjust the difficulty
in puzzles faced in the future. For example, if a player is
finding one type of puzzle to be difficult to solve, in the
future, the solution to that same type of puzzle can be
placed closer to the puzzle itself, making it inherently easier
to solve (Bates 2004).

 As discussed in (Miller 2004), most earlier attempts at
auto-dynamic difficulty focussed on a restricted subset of
gameplay, typically in the adjustment of player or non-
player character attributes. With this rationale applied
throughout the game, as discussed above, it is possible to
create a better overall player experience.

When and How to Adjust

 To determine when to adjust game difficulty and how to
do so, data must be collected on players and their
progression through the game. To provide the best level of
challenge, we must have a measure of the current skill level
of the player, as well as their success and failure rates at the
various elements of gameplay encountered to date in the
game. Since different players will tolerate and accept
different levels of challenge at different times, we must also
have a sense of the player’s general type, motivations,
frustration tolerance, and emotional state.

 Measuring a player’s level of skill in a game, as well as
their success and failure rates, is inherently tied to the
particular game or game genre. Typically, however, there
are multiple metrics that are applicable and can be
measured from within the game itself. For example, in a
platformer game with a sequence of jumping puzzles, the
number of attempts before success and time to completion
could be useful metrics. In a shooter game, the percentage

of enemies eliminated per level, the amount of damage
taken per level, and time to completion could be useful
metrics. One must give careful thought to the metrics
selected, however, as they could indicate unanticipated
styles of play or other player activity, and not the skill of
the player. For example, tracking the number of game
saves and loads might be problematic. One might think that
a high frequency of saves and loads is indicative of an
unskilled player, but this pattern of activity could also be
encountered by a player playing the game during short
coffee breaks (Bailey 2005). Counting the number of
player character deaths might also be misleading, as an
unskilled player could get frustrated after a single death and
quit the game with a relatively low death count only to
return later. So, while there might be multiple methods of
tracking player progression through a game, care and
thought must be put into the process.

 Determining a player’s type and internal factors is more
difficult to do within a game, but not impossible. For
example, (Sykes and Brown 2003) found that the pressure
of button and key presses correlated strongly to frustration
and difficulty levels within a game. The work in (IP and
Adams 2002) examined ways of quantitatively measuring
levels of “core” and “casual” in a given player. As
discussed in (Bailey 2005), elements of player types
identified in (Bartle 1996) and (Lazzaro 2004) could be
identified by tracking player movement and progress
through a game. For example, the explorer type identified
in (Bartle 1996) could be detected by observing players
lingering in areas of the game world for extended periods of
time without paying attention to game goals, while the
achiever type could be detected by observing a linear and
timely progression through game goals. As pointed out in
(Bailey 2005), however, there are ultimately some internal
factors that are not easily measurable from within a game
world, and we must rely upon external studies and
experimentation to calibrate the game and assist in
correlating observed player behaviour and emotion state.

 Using measurements of player skill, as well as success
and failure rates, it is not hard to determine when a player is
encountering difficulty with a certain element of gameplay.
While these measurements are important, we must be
careful to also take into consideration player type and
internal factors; otherwise, we again fall into a “one-size-
fits-all” mentality that does not produce appealing results to
a broad audience. It is also important to consider the
impact of characteristics of the gameplay on the motivation
of the player, including whether the necessity of the
gameplay element, the rewards for success, the
consequences of failure, and so on (Bailey 2005).

 In the end, it is possible to develop rudimentary rules to
guide when difficulty adjustments should be made and how,
based on this information. For example, if a player is
encountering a challenging task, but is exhibiting
characteristics of the achiever type, then difficulty should
not be adjusted as this player type is more likely to enjoy
the challenge than not (Bartle 1996). However, to assist in
the formulation and validation of these rules and decision
models, experimentation is necessary. A thorough

investigation in this area is clearly warranted. This reality,
in part, motivated developing the experimental testbed
discussed in this paper.

AUTO-DYNAMIC DIFFICULTY EXPERIMENTAL
TESTBED

 To facilitate the study of auto-dynamic difficulty, our
current work focuses on the construction of an experimental
testbed that will enable experimentation with players and
development of new technologies to better tune game
difficulty automatically to meet their needs. This testbed is
depicted in Figure 1, and discussed in more detail in the
sections below.

Figure 1: Auto-Dynamic Difficulty Experimental Testbed
Architecture

Game Engine Core

 The game engine core is used to provide all of the
fundamental technologies required to drive a game or
gameplay scenario. This includes graphics, audio,
animation, artificial intelligence, networking, physics, and
so on. One could then layer new gameplay logic and
content on top of this engine to have a complete game,
without the burden of developing all of the underlying
technologies. This saves considerable development time in
building the testbed, and also allows the use of
professional-grade tools to produce a gameplay experience
of very high quality.

 At the core of our testbed is Epic’s Unreal engine (Epic
Games 2004). The Unreal engine is a modern, state-of-the-
art game engine that can be used to support a wide variety
of game genres and gameplay elements. It also supports
rendering in both first and third person views, which makes
it easier to support more varied gameplay. The Unreal
engine itself is written in C and C++, but provides a flexible
object-oriented scripting language, UnrealScript, to make it
easy to extend the engine and deliver new functionality.
Since this engine is based on leading edge technologies and
still in use commercially today, there are no concerns of
confounding that could have arisen from using older,

obsolete technologies. (For example, in such a case, one
would have to determine if a player had an unsatisfactory
experience because of game difficulty or because the
game’s graphics were not up to the standards set by modern
games.) In the end, the Unreal engine was a natural choice
of foundation on which to build our testbed.

Monitoring, Analysis, and Control

 Monitoring, analysis, and control services are used in the
testbed to support both auto-dynamic difficulty
experimentation and software developed to implement new
auto-dynamic difficulty algorithms and methodologies.
These services are used by gameplay scenarios, and directly
make use of the game engine core.

 To conduct experimentation within a particular gameplay
scenario, the experimental environment must monitor and
collect the appropriate player and progression data, as
discussed in the previous section. The analysis service is
used to provide support in the aggregation and correlation
of data collected through monitoring. The control service is
used to manipulate the experiment in the gameplay
scenario, including starting, suspending, resuming, and
halting a particular experiment. It is important to note that
some aspects of monitoring, analysis, and control may need
to be completed offline outside of the testbed software.
(For example, augmenting recorded data with audio and
video recordings, as well as surveys and interviews
currently must be done offline. In the future, it is hoped to
add these elements to the testbed software as well for a
more integrated solution. Analyses of these elements
would still likely require manual intervention, however.)

 To support new auto-dynamic difficulty algorithms and
methodologies, the monitoring service still collects player
and progression data as before. The analysis service in this
case is now focussed more on analysing this data to
formulate decisions on when and how to adjust game
difficulty using rules and decision models formulated based
on experience and experimentation conducted using the
testbed. The control service in this case still manipulates
the gameplay scenario, but is focussed this time on the
relevant attributes of the player character, non-player
characters, the game world, or game puzzles and obstacles
to adjust the game’s difficulty according to the decisions
developed by the analysis service.

 In our testbed, the monitoring, analysis, and control
services are written in UnrealScript. All three services are
integrated into a single new Unreal game type derived from
the base Unreal game type class. This new game type
provides instrumentation suitable for embedding in
gameplay scenarios to enable monitoring, analysis, and
control activities. This facilitates the development of new
gameplay scenarios and entire games using these auto-
dynamic difficulty services, as these new games would
simply need to derive their own game type from this new
type, instead of the base class.

 At present, rudimentary monitoring, analysis, and control
services are provided; more sophisticated facilities are

currently under development. Currently, the monitoring
service can collect time to completion, success and failure
rates, and other metrics, the analysis service can support
simple correlations and decision rules, and the control
service can control experiment operation, and tune certain
player and non-player character attributes, as well as
selected game world attributes.

Gameplay Scenarios

 Gameplay scenarios are used to contain playable elements
of games and game content. These can range in scale from
mini-games depicting as few as one game activity for the
player, all the way up to complete entire games.

 In the current version of the testbed, we have
implemented a variety of mini-game gameplay scenarios
using UnrealScript and UnrealEd (Busby et al. 2005).
These include two jumping mini-games (one with fatal
consequences, the other with no failure consequences), a
timed maze navigation mini-game, a turret mini-game
requiring the player to navigate a short hallway lined with
automated, indestructible gun turrets, and a fighting mini-
game requiring the player to make their way through a
room full of heavily armed enemy non-player characters. A
screenshot from one of these scenarios is given below in
Figure 2. Recognizing the limitations of experimenting with
mini-games, as discussed in the next section, we are also
building the Neomancer project (Katchabaw 2005) based
on our new game type, to provide a complete
action/adventure/role-playing game experience for
experimentation and development activities.

Figure 2: Screenshot from Turret Hallway Mini-Game

EXPERIENCES AND DISCUSSION

 Initial user studies and testing using the auto-dynamic
difficulty experimental testbed were conducted with a small
number of family members and co-workers of researchers
at Western. Results of this early experimentation have been
rather positive, indicating that the testbed is suitable for the
task at hand. While the initial version of the testbed can
only monitor a small number of player and progression
metrics, analyse through simple correlations and a restricted
rule set, and control through only simple operations, we
have been able to gather interesting results from
experimentation and implement several auto-dynamic

difficulty algorithms. It is clear, however, that more
thorough experimentation using a large study group is
necessary, both to better understand the interplay of the
factors involved in auto-dynamic difficulty, and to develop
better algorithms and technologies for games (Bailey 2005).

 During initial experimentation using the mini-game game
scenarios, it also became apparent that mini-games on their
own might not be sufficient for investigating auto-dynamic
difficulty fully. Mini-games, by their very nature, do not
have a broader story, context, or reward system, which was
found to produce a different emotional state in the player
than playing a full game. Repetition of mini-games was
also found to grow tedious, resulting in a negative
impression of the mini-game independent of its challenge
or difficulty. Consequently, it is necessary to have a
complete gaming experience to fully explore auto-dynamic
difficulty. Fortunately, through our development efforts in
the Neomancer project (Katchabaw 2005), we have access
to a commercial scale action/adventure/role-playing game
that will fill this need nicely.

 Game performance is a crucial factor to game players and
game developers alike. Consequently, it is critical to ensure
that there be minimal overhead imposed by auto-dynamic
difficulty on the game as it plays. During initial
experimentation, frame rate tests were conducted using the
Unreal engine’s own frame rate monitors, with and without
the use of auto-dynamic difficulty and the instrumentation
required for monitoring and control. This testing found that
there was no measurable difference between frame rates
delivered with and without auto-dynamic difficulty in
place, and so performance was deemed acceptable.

 The approach to auto-dynamic difficulty currently taken
in this work is reactive. In other words, once measurements
indicate that a game is too easy or too difficult for the
player, gameplay can be adjusted to produce a more
favourable experience. Unfortunately, a reactive approach
means that a player must encounter such problems before
any corrective actions are taken, and that the player could
lose patience with the game before auto-dynamic difficulty
has a chance to become active. It was found during initial
experimentation that some mini-game scenarios could be
made so easy or so difficult that the player is turned off
almost instantaneously, sharply reducing the benefits of
reactive auto-dynamic difficulty in these extreme situations.
Proactive auto-dynamic difficulty, on the other hand,
attempts to adjust game difficulty before a player
encounters the above problems through an analysis of non-
critical gameplay tasks. Doing so, however, would likely
require calibration through more user studies to develop an
appropriate predictive model, and introduces other
problems if predictions are inaccurate. It would seem,
however, that investigating proactive adjustments, perhaps
in conjunction with reactive techniques, would be a
worthwhile endeavour.

CONCLUDING REMARKS

 Delivering satisfying gameplay experiences to a variety
of players is a challenging task. To do so, gameplay

difficulty must be tuned to suit player needs, as in auto-
dynamic difficulty. Our current work is aimed at
addressing this, by providing an experimental environment
for studying this problem and assisting in the formulation of
acceptable solutions. Initial experience through using this
auto-dynamic difficulty experimental testbed has been quite
positive, showing much promise for the future.

 In the future, there are many interesting avenues for
continuing research to take. We plan to refine the
monitoring, analysis, and control capabilities of the testbed,
to enable more thorough user studies. Using this enhanced
testbed, we intend to expand experimentation to include a
larger, more diverse player population. Based on the results
of this experimentation, we will develop additional rules
and decisions models for use in the testbed’s analysis
service to better support a wider variety of auto-dynamic
difficulty algorithms. At the same time, we will continue
work on the Neomancer project to provide a full length,
feature rich gameplay scenario for studies with the testbed.
Finally, we plan to continue investigating other open
research issues in auto-dynamic difficulty adjustment,
including reactive versus proactive techniques.

REFERENCES

C. Bailey. “Auto-Dynamic Difficulty in Video Games”.

Undergraduate Thesis. Department of Computer Science, The
University of Western Ontario. April 2005.

R. Bartle. “Hearts, Clubs, Diamonds, Spades: Players who Suit
MUDs”. Journal of MUD Research, 1(1). 1996.

B. Bates. Game Design. Second Edition. Thomson Course
Technology. 2004.

J. Busby, Z. Parrish, and J. Van Eenwyk. Mastering Unreal
Technology: The Art of Level Design. Sams Publishing.
2005.

M. Csikszentmihalyi. Creativity: Flow and the Psychology of
Discovery and Invention. New York, NY: HarperCollins
Publishers. 1996.

Epic Games. Unreal Engine 2, Patch-level 3339. Nov. 2004.
N. Falstein. “The Flow Channel”. Appeared in Game Developer

Magazine. May 2004.
B. Ip and E. Adams. “From Casual to Core: A Statistical

Mechanism for Studying Gamer Dedication”. Article
published in Gamasutra and is available online at
http://www.gamasutra.com/features/20020605/ip_pfv.htm.
June 2002.

M. Katchabaw, D. Elliott, and S. Danton. “Neomancer: An
Exercise in Interdisciplinary Academic Game Development”.
In the Proceedings of the DiGRA 2005 Conference: Changing
Views – Worlds in Play. Vancouver, Canada, June 2005.

N. Lazzaro. “Why We Play Games: Four Keys to More Emotion
without Story”. Presented at the 2004 Game Developers
Conference. San Francisco, California, March 2004.

S. Miller. Auto-Dynamic Difficulty. Published in Scott Miller’s
Game Matters Blog (http://dukenukem.typepad.com/game_
matters/2004/01/autoadjusting_g.html). January, 2004.

R. Rouse III. Game Design: Theory and Practice. Second
Edition. Wordware Publishing, Inc. 2004.

J. Sykes and S. Brown, S. “Affective Gaming: Measuring Emotion
through the Gamepad”. Proceedings of the CHI 2003
Conference on Human Factors in Computing Systems. Fort
Lauderdale, Florida, April 2003.

A. Woolfolk, P. H. Winne, and N. E. Perry. Educational
Psychology. Toronto, Ontario: Pearson Education. 2003.

