UNIVERSITY OF WATERLOO

Faculty of Mathematics

An Application of Neural Networks in

Learning of RoboCup Soccer Playing Team Strategy

Date: Oct 1, 2002
Group Members: Kai-min Kevin Chang 99354459
Kevin Lai 98189912
Supervisor: Dr. Mohamed Kamel

Table of Contents

1. Problem Statement...........covuiiiiiiiiiiiieiiice e 1
2. Back@roUundcoouiiiiiiiiiie e e e e e e e e 2
2.1 PlatfOrmm...ceeiiiceeeceeeee e 2
2.2 LItETALUIE SUTVEY ..eeeeuiriiieeeiiiieeeeiiiieeeeitteeeeibeeeeesebeeeeesnbaeeeaenssaeeeennsneeeeennseeas 4

IR B 1) T4t DU UURRRPPR 7
3.1 SIMPLTICATION ...eeiieiiiiiie ettt e e et ee e s eaaraeees 7
3. 1.1 INfOTMALION ...eeiniiiiiiiii e 7
31,2 COMMIOL. it 7
31,3 ODBJECIVES ..eeeeiiiiiee ettt ettt ettt e ettt e e ettt e e e sttt e e e e enbaeeeeenbaeeeeennaeeens 8

3.2 Neural NetWOTKc..eeiiiiiiiiiiiiiiie e 9
3.2.1 Types OF NEtWOTK.......uiiiiiiiiiiieeiiie e 9
3.2.2 DeSIZN GOAIS.....eeiiiiiiiiieeeiiiiee ettt et e e e e as 11
3.2.3 MOARIS ..ottt 12

3.3 Data EXTrACtION ..cceeiuiiiiieeiiiiieeeeiiite e ettt e e et ee e e ettt e e e et e e e eiaaeeeeennaeeeeennees 16
3.4 Choice of Programming Language.............ccccuvereiriiiieeeniiiiee e 18

4. SOftWare ATCRILECTUIEcoiuuiiiiiiiiiiiit ettt 20
4.1 ATCRIEECEUTE ..ottt et ettt e sit e et e e es 20
4.2 CHENE = JAVA....eiiitiiiiiiii ettt et et et e s 22
4.3 Global Positioning System — CH.....cccviiiiiiiiiiieeiieeeeiee e 24
4.4 INtrOPEIaDILILYeeeiiiiiiieeiiiiie et ettt e 25

IR 03010) (5300153 11715101 o EO PRSPPI 27
S.TNEUral NetWOTK ..cooueviiiiiiiiiiiieee e 27
5.1.1 An Implementation of Neural Network Using Java...........ccoceeeviiiinnneene 27
5.1.2 Exported Code from Neural Wareccccoeevieiiiiiiiiiiiiiiieeeieee e, 29

6. EXPEITMENLeiiiiiiiiiiiiiiiiiie ettt e ettt e e ettt e e e e eabe e e e e sanbaeeesennsaeeeennnnes 30
6.1 ManIPUIAtIONcceeiiiiiieiiiiiiee ettt e e e e e e et e e e baae e e e 30
6.1.1 Autonomous Model — Varying Hidden Layers..........c.cccccvveeeeriiieeennnnnnn.. 30
6.1.2 Central Model — Varying Training Set Representationcc.cceeevuveene 31

0.2 MEEHOM ... e 32
6.2.1 Neural Ware SETUPcoeeeruiiieeiiiiie ettt e e et e e et e e e 32
6.2.2 TTAINING SO ...uiviiieeiiiiiee ettt e et e e e st e e e et e e e ennbaaeeeennaaeens 33
6.2.3 TEAM SELUP ...vvveeieeeeeeeeiieie ettt e ettt e e e e e e ettt e e e e e e e sttt reeeeeeeeennnns 34
0.2.4 MEASULEeeeiiiiiiieeiiiee ettt ettt e e ettt e e st e e e et e e e sareeeees 34

0.3 RESUIL ... 35
6.3.1 Original Game Play..........cccoeieiiiiiiiiiiiiiii e 35
0.3.2 NN CHENL ..ttt ettt e e e sbre e 37

0.4 DIEDUGZeeiieeiiiiie ettt e e e bb e e e e nbaeeeeennees 39

7. CONCIUSIONS 1.ttt ettt ettt e et e st e et e et e e bt eenabeeenabeeesabeeenas 40
8. REICIEIICES ...ttt 41
APPENdix A — GPS Lot e et eaeenes 42
GlobalMaPSEIVET.JAVAeeieeiiiiieeeiiiiee et e ettt e ettt e e e ettt e e e et eeeeebaeeeeeenees 42
GlobalMapServer.N..........uiiiiiiiiie e 44
GlobalMapServerImMpP.CC......couuiiiiiiiiiie ettt et e e e 46
GlobaIMAP.N .o 48
(€ 300] 021 11 2 s Ko SRR PR 49
APPendix B — NN ..ottt et e e et e e e et aeaeenes 55
RECUITENE.JAVA ..eeeeiiiiiieiiiiie ettt e e e e e et e e e et e e e e eneee 55
Backpropagation.Javacccuiiieeiiiiieeeriiieeeeiieee et e e et e e e e e e 61
Appendix C — NN WEIZILSooiiiiiiiiiiiiiiiiieeeiiee et e e e e e saaeee e 64
Col ABPO ettt ettt ettt e 64
G2 ABP T e ettt e 65
C.3 A3 P e ettt ettt e 67
O O) o P RUS U SRPRR R 69
L5 C3P T e ettt e 71
GO C3P2 ettt ettt 74
O A O) X T PSPPSR 76
Table 1 Comparison of the Mirosot and RoboCup platforms...........ccccceeeeveiieeennnneen.. 2
Table 2 Language CompariSOn MatliXccuveeeeriuiireeeniiiieeeeiiiieeeesiieeeeenieeeeeeenees 19
TabIE 3 SEIUCTUIES ...ceiuetiieiiie ettt ettt et e st esbeeeeas 32
Figure 1 Central processing model.............ooeeiiiiiiiiiiiiiiieeniiiee e 13
Figure 2 Autonomous, fully omniscient agent modelcccccvviiiiniiiiienniinnenn. 14
Figure 3 Autonomous, partially omniscient agentcccceeeevcuieieeeriiireeenineeeennnns 15

Figure 4 A snap shot of the visualization of RoboCup Simulation game through

SOCCEIMOMNITOT ...ttt 17
Figure 5 Central NN MoOdel........cooouiiiiiiiiiiiiiiiicccce e 21
Figure 6 Individual NN Modelcooouiiiiiiiiiiiiiiiiicee e 21
Fiure 7 Atan OVETVIEWceiiuiiiiiiiieiiiee ettt ettt ettt ettt e e s e 23
Figure 8 Java Virtual Machine and Soccer Server OVerview...........cceeeveeeeviveenieeenne 25
Figure 9 Field desCription..........coovuuieiiiiiiiniie ettt 35
Figure 10 Example of passing and solo attacking............ccccceeeviieiniiieiniieiniieennneenne 36
Figure 11 Player StICKINESSeieriiiiiiiiiiiiiie ettt 36

1. Problem Statement

The goal of this project is to investigate the application of neural networks (NN) in
learning a team strategy for the soccer-playing robots in the RoboCup competition.
Different models of NN clients will be investigated, namely the central processing
model and the autonomous agent model. Although not an explicit goal, the
application should be designed with the possibility of online learning in future

enhancement.

2. Background

2.1 Platform

RoboCup and Mirosot are the two most prominent platforms for the soccer-playing
robots. Although both platforms attempt to facilitate the advancement of robotics
through the simulation of a soccer game, they vary in terms of the modelling
complexities and the underlying assumptions. The chart below compares the two

platforms in their most generic settings.

Mirosot RoboCup Simulation

Accessibility Complete Incomplete
(Players can only sense

their surroundings)

Memory Shared Non-shared
Processor Central Autonomous agent
Number of agents ~3 ~11

Perceived information Simple Complex

(Coordinates, velocity and | (All of Mirosot, plus
direction of the ball, and | miscellaneous information
players of each team) such as wind, stamina,
head, and body direction,
etc.)

Control of the agent Simple Complex

(Left and right spins of the | (Built-in action command
robots) such as move(), dash(),
kick(), pass(), etc.)

Table 1 Comparison of the Mirosot and RoboCup platforms

Mirosot platform presents a simplified world to work on. Complete accessibility of

the world and the sharing of memory facilitate the possibility of a central processor.

The relative simple information perceived and ease of control further simplifies the

problem. In the early stage of the development, these simplifications enable fast

convergence of result. One disadvantage of the Mirosot platform is that it is less

well-known than the RoboCup platform. Relatively little documentation has been

published.

In contrast, RoboCup is the more complicated platform. Truly autonomous robot

agents are intended because of the incomplete accessibility and non-shared memory

assumptions. In addition, the types of information perceived by the agents and the

controls of agents are more complicated. Despite the challenging assumptions, the

RoboCup platform is the more developed platform among the two. Substantial

theories based on RoboCup have been published, in addition to the archived

descriptions, analysis and competition logs of all teams in previous competitions. A

full-scale simulator suite has also been developed for the official simulation league

and can be easily employed for the present research.

Currently, the PAMI Lab in University of Waterloo owns a set of Mirosot competition
equipments, which includes physical robots and a soccer field platform.
Nevertheless, because the present research focuses on strategic learning, a physical
platform can be omitted. In fact, a software simulator provides an easier interface to
the learning program because the complexities of the physical equipments are avoided.
Instead of dealing with mechanical matters, the research can focus on the

development of NN, which is already complicated in its own ways.

We decide to combine and adopt the advantages of the two platforms. In particular,
the simulator program of the RoboCup platform is employed, with the simplified
working assumptions of the Mirosot platform. The simplifications made will be

discussed in the following section.

2.2 Literature Survey
Because RoboCup Simulation League platform has been established for over a
number of years, many software packages already exist. In our literature survey, we

have found two packages on the Internet which can assist our research.

Atan Package

Atan is a Java implementation of the RoboCup client front end. A client front end

shields out the mundane details regarding the communication protocol with the server.

Thus, a native Java object such as “player” can be used to directly control a player.

URL: http://vsoc.sourceforge.net/atan/

Contact: Wolfgang Wagner wolfgang.wagner@iname.com

VSOC Package

VSOC is a hybrid approach to RoboCup simulation league. A combination of neural

network and genetic algorithm is employed. The idea underpinning VSOC is the use

of “training camp”; different training camps are created with different objectives.

For example, the “attacker camp” may have the objective to score, while the

“defender camp” emphasizes on driving the ball away from the home goal. When a

match is needed, a team will “recruit” different players from different camps,

accordingly to the preferable style of play (e.g. offensive vs. defensive style). After

a match, the winning team will then subject to a selection process by the genetic

algorithm. Thus, the optimal playing team is bound to objective machine selection,

instead of biased human selection. The idea of the training camp and the recruiting

process is very similar to the strategy adopted by the soccer teams in the real world.

However, the lack of training as a team is inconsistent with the present research.

Nonetheless, VSOC package presents a good starting point to the NN approach. In

particular, the VSOC project suggests, through experimentations, that the optimal

structure of the feed forward network is the network without any hidden layers.

URL: http://vsoc.sourceforge.net/index.html

Contact: Wolfgang Wagner wolfgang.wagner@iname.com

3. Design

3.1 Simpilification

3.1.1 Information

In general, three types of dynamic information can be perceived by a player, namely
the coordinates, velocities, and directions of any moving objects. Unfortunately, the
use of all information overwhelms NN learning. In order to facilitate the
convergence speed of NN learning, we decide to employ only the coordinates
information and discard the velocities and directions information. Nonetheless,
more information can be used if necessary. The amount of information perceived by

an agent is a parameter that can be manipulated.

3.1.2 Control

Intermediate control is assumed. In the Mirosot platform, the most basic operations
of left and right spins of the robot’s wheels are used. All actions of an agent are
composed by varying the spins of the wheels. However, such low level controls are
very difficult and inefficient to use. Thus, we take advantage of the RoboCup’s
action commands, namely move() and kick(). Abstraction at this level makes the

controls easier. The parameters of each function are specified as follows.

move (x,y)

kick (direction, power)

3.1.3 Objectives

A close examination of previous RoboCup competitions reveals one important factor
of success. Winning teams obtain better result because of the more effective passing
strategy. Since passing the ball by definition requires cooperation of at least two
players, the pass action presents a good testing bed for cooperative agents. Thus,

effective passing strategy of a team is to be investigated.

The emphasis on the passing action further simplifies the problem domain. On one
hand, concrete evaluation function of “an effective pass” can be composed. On the
other hand, the simplification facilitates the data collection process. Depending on
the evaluation function, a “training record” (unit of training data; NN learning may
consume thousands of records in order to converge) can be defined. For example, a
training record can be composed of the duration from the possession of the ball until

the loss of the possession.

Some ideas of the evaluation function of passing are brain-stormed.

J/; =Amount of time the ball is in possession
/> = Total distance the ball has been passed

/; = How close the ball is dribbled toward the enemy goal.

The final evaluation is then an aggregate function of weighted f,, f,and f; .

F=w - fi+w, fy+w;f,

Unfortunately, we are unable to apply the evaluation function in the current study.
As later experimentation reveals, temporal information is difficult to be encoded in a
back propagation NN. In our final experiment, one training record is simply a
“snapshot” of the state of game play, which includes coordinates of all moving objects

(e.g. players and the ball). More details will be provided in the following section.

3.2 Neural Network

3.2.1 Types of Network

There are many types of NNs designed with different objectives. In particular, three
most commonly used networks are reviewed in the present study: the back
propagation network by Hinton, Rumelhart & Williams (1986), the Hopfield net by

Hopfield (1982) and the Kohonen Feature Map by Kohonen (1982). A table

describing major features of each network is included as follows.

Back Propagation Hopfield Kohonen Feature Map

Diagram e
C

Type feed forward recurrent recurrent
Layers 1 input layer 1 matrix 1 input layer

1 or more hidden layers 1 map layer

1 output layer
Learning Rule delta rule Hebb Rule self organization
Learning Method | Supervised unsupervised unsupervised
Application complex logical operations pattern association pattern classification

pattern classification

behavior learning

optimization problems

optimization problems

simulation

* The table and diagrams are adopted from Frohlich, J. (1999)

After consulting Dr. Kamel and Nayer Wanas, we have decided to employ the back

propagation network because of the following reasons.

network is the most generic network among the three.

First, the back propagation

While Hopfield net and

Kohenen map are designed with specific applications in sight, the back propagation

provides a black box approach to any problem. As long as the input and output are

specified, the specific details of the network’s internal structure can be omitted.

[Note, later experimentation refutes the claim.]

Second, the back propagation

network is the most widely studied network and it is also the simplest to implement.

10

Extensive literature on back propagation network exists to aid the implementation.

3.2.2 Design Goals

There are two major goals in the design of the NN:

1. Weighted game
The idea of weighted games should be employed. When the NN is being trained,
each training trial will be weighted by a weighting function. For example, older,

inferior games are weighted less, while newer, superior games are weighted more.

1
+w, - rank

weight(game) = ——
1

game game

In particular, if online learning is made possible in the future, the current game

can be assigned to a huge weight, which helps the network to quickly adapt to the

present opponent. Although online learning in a single game may be extremely

difficult, improvement over a match (a series of games against the same opponent)

can certainly be foreseen.

Unfortunately, we never have the chance to experiment with the idea of weighted

game in the current research.

11

2. Efficient training
In order for fast convergence of learning, the NN must be designed with simplicity.
Fast convergence of learning is the only way to achieve online-learning.
Although online-learning is not an explicit goal of the project, this future

extensibility must be apparent during the design phase.

3.2.3 Models

In this section, three models of the network structure are proposed. We determine

the number of input and output nodes for the black-box NN module.

Let

p = number of players on a team =11

f =number of players in focus =4 (for autonomous, partially omniscient model)
I = coordinate — x + coordinate — y [+velocity + direction | = 2

O = coordinate — x + coordinate — y [+velocity + direction | = 2

12

1. Central processing model

With the assumption of complete accessibility and shared memory, one enormous NN

can be trained. Coordinates information of all players and the ball will be fed into

the network as the input. With complete information, the central processor will

compute the optimal team strategy and, as the output, determine the move commands

of each player in the team. In addition, the player with the ball possession will be

assigned the kick command. Theoretically, the full accessibility and shared memory

will help the network to find an optimal strategy. However, in reality, the huge

number of nodes may prevent the network from converging to any solution.

Input

= p playersx?2 teams x I +1 ball X I + possession

=11x2%x2+1x2+1
=44

Output

= p players X1 teamx I + kick (velocity,direction)

=11x1x2+2
=24

Hidden
Layers

Output |n| |n| |n| O

Figure 1 Central processing model

13

2. Autonomous, fully omniscient agent model

Although the assumption of complete accessibility and shared memory is appealing,

such assumption may be too strong for any autonomous agent. Hence, the present

model is characterized by incomplete accessibility and non-shared memory.

Because an agent is autonomous, each agent requires a NN of its own. Despite the

large number of networks, the number of output nodes per network is reduced because

a player only needs to decide one’s own action. Consequently, the size of each

network is reduced, which facilitates faster convergence speed. Unfortunately,

because all other players can theoretically cluster within a player’s view, a huge

number of input nodes are still associated with each player.

Input Output

= p playersx 2 teams x I +1 ball X I + possession | =1 playersx I + kick (possession,velocity, direction)
=11x2x2+1x2+1 =1x2+3

=44 =5

¥ O ¥ O F O

Figure 2 Autonomous, fully omniscient agent model

14

3. Autonomous, partially omniscient agent

To further reduce the size of the NN, this model is designed to enhance the previous
model by reducing the number of input nodes. The idea is apparent; players often
lock their views on certain objects. For example, strikers usually do not worry about
their goalie or defenders in the home court. Rather, knowledge about enemy
defenders and goalie may be sufficient to determine the strikers’ actions. As a
consequence, the number of input nodes can be greatly reduced. The model is
hypothesized to have the fastest convergence speed. However, the effectiveness of

the computed strategy awaits proof.

Input Output

= f players x I +1ball X I + possession | =1 playersx I + kick (possession,velocity, direction)
=4x2+1x2+1 =1x2+3

=11 =5

fivitii O Fitiio wiitito

O O - O

O O # O

Figure 3 Autonomous, partially omniscient agent

Notice, in later experiments, we further simplify the problem from eleven players per

team to three players per team. The simplification is justified in order to facilitate

15

the convergence of the NN learning. Because the number of players is greatly

reduced, there is no noticeable difference between the autonomous fully and partially

omniscient models. Thus, the two implemented models are referred as the central

model and the autonomous model. The number of input and output nodes will be

recalculated.

3.3 Data Extraction

As described earlier, the coordinates information of each player and the ball are the

only concerns for the data extraction process. There are several ways to obtain the

data needed. First of all, the RoboCup simulator program’s built-in log recording

feature can be used. The RoboCup log is “complete” in a sense that it includes every

action taken by every player in every time frame. The advantage of using the

well-established RoboCup simulation league platform is that many log files of

previous years’ competitions are archived and readily available on the Web.

However, a parser program may be difficult to write because how the coordinate

information can be extracted is unknown.

Another approach is to obtaining the data from the ServerMonitor of the RoboCup

simulator program. ServerMonitor is a program that enables the visualization of an

16

ongoing game play in the soccer server. In order to display a playing game, the

ServerMonitor protocol must encapsulate the coordinates for each player and the ball.

A program that understands the ServerMonitor protocol can be built to extract the

coordinates information. Thus, information of a live game can be extracted. In

order to obtain live games, two client teams, which are downloadable from the Web,

can be employed routinely to play against each other, while a data absorbing program

1s attached to the server.

Figure 4 A snap shot of the visualization of RoboCup Simulation game through SoccerMonitor

The third way of extracting data involves the commercial video games of soccer.

Unfortunately, this approach is difficult because of the proprietary source codes.

17

One possibility is to setup a camera shooting onto the screen and use image
recognition and processing techniques to extract the information. However, the
complexity of image processing restricts its use in present research. Furthermore,
this approach is valuable only if the Al engines in the video games are advanced

enough to be served as a superior source of input.

3.4 Choice of Programming Language

Learning (training) and recalling are the two components/phases regarding the
implementation of an offline learning NN. The structure of the network (such as the
connections of the nodes and the weight of each connection) is determined during the
offline learning phase. Once the structure of the network is determined, the network

structure remains fixed throughout the actual application, that is, the recalling phase.

The Pele Project by Stern et. al. implemented the learning component in Matlab and
the recalling component in C++. Although the NN module of Matlab is easy to use,
Matlab does not possess enough power to implement online learning. More

powerful programming languages must be chosen.

There are many choices of languages for implementation. A table describing

18

advantages and disadvantages of each language is included as follows.

Java C++ C Matlab
Design 00 010 Procedural Procedural
Expressiveness
Integration High Middle Low Low
with other
Components
Efficiency Middle High High High
Portability High Middle High Low

Table 2 Language Comparison Matrix

The language Java is chosen for two reasons. Firstly, Java is our primary choice

because of the programmers’ familiarity with the language. Secondly, various

open-source programs are already implemented in Java. For example, Ali’s Mirosot

simulator program and Atan’s RoboCup package are all implemented in Java. The

employment of existing packages prevents “reinventing the wheel” and reduces the

project overhead.

19

4. Software Architecture

4.1 Architecture
The overall architecture is comprised of five major components, namely the Soccer
Server, Soccer Monitor, Global Positioning System (GPS), player clients and the NN

module. The architecture depends on the adopted network model.

The responsibility of the Soccer Server is to simulate the soccer environment and
execute the game play. In each time step t, the Soccer Server collects commands
from each client and calculates the state of game play in the next time step t+1. The
state of game play consists of the coordinates of each object, as well as other
attributes (i.e. velocity and direction of a ball, etc.) The Soccer Monitor is then used

to visualize the state of the game play.

In the central model, one big NN is used to connect the GPS and the clients. At each
time step, the central NN obtains the players’ coordinates from GPS, calculates and
commands the action of each player. In the autonomous model, each player has its
own NN component, which is connected to the GPS and Soccer Server directly. The

following diagrams illustrate the software architecture for the two models.

20

Java Virtual Machine

Central NN

a $4/
Players’ Postions
A
T
%,
&
[]

N
l =

SM Protocol
’—f>
Soccer Server Players’ positions E

L L

Soccer Monitor

Figure 5 Central NN Model

Java Virtual Machine

Individual NN Individual NN Individual NN

Soccer Server SM I?rotoggl
Players’ positions

I I
S

Soccer Monitor

Figure 6 Individual NN Model

21

4.2 Client - Java

As described in the literature survey, Atan is a convenient Java package for

developing soccer clients. The Atan package is comprised of three types of object,

namely the player, controller and team. A team is a collection of players and a

controller determines the action of each player. Developers only have to extend the

controller object to perform the desirable actions.

In the central model, each client controller is implemented with a command queue,

which accepts “Command” from the central NN module. In every time step, the

client controller dequeues and executes one Command object. The design of

Command object is flexible because it can enclose a complex sequence of actions.

Complicated command objects, such as dribble and fetch ball, can be made available

for future extensions.

22

Controller

Player

Figure 7 Atan overview

In the autonomous model, the NN module is directly incorporated in the controller.

In every time step, the controller queries the GPS to obtain the current coordinates

and submits the information to the NN model to compute its own action.

One problem is sighted in the NN approach to computing actions.

instructed actions will be impossible to complete in one time step. For example, the

instruction of moving to opponent’s goal when a player is at its own goal is

impossible to complete.

Soccer Server

In this situation, the player will try its best to fulfill the

instructed action at the next time step.

23

Sometimes, the

4.3 Global Positioning System — C++

As described earlier, the input of the NN module requires the coordinates information
of each moving object. The Global Positioning System (GPS) is the module
providing this information. The official Soccer Server limits the players’ knowledge
of the environment to only their immediate surroundings. Thus, a player can only
determine its relative position via indirect cues, such as the approximate distance
between itself and the goal post. Such information can not be utilized since the input

of the NN requires the absolute coordinates, rather than the relative positions.

Fortunately, the Soccer Server and Soccer Monitor are connected via UDP/IP.
Because the information enclosed in the protocol is in the form of C struct, we are

able to write a C++ program to easily extract the coordinate information.

Upon initiation, the GPS establishes a network connection to the Soccer Server and
registers itself as a Soccer Monitor. During the process of the game play, the GPS
repeatedly parses the information sent by the Soccer Server and updates its internal
attributes at every time step. The detail of the Soccer Monitor protocol is described

in the RoboCup manual.

24

4.4 Interoperability

To make our Java code interoperable with the C++ code, we have adopted the tool
provided by the Java package, JNI. JNI allows Java code that runs within a Java
Virtual Machine to operate with other applications and libraries written in other
languages such as C, C++, and assembly. Thus, an intermediate interface will be

built between the Java code and C++ code, as can be seen in the following diagram.

Java Virtual Machine

Java Core Soccer Server

(Client)

UDP/IP
Network

Intermediate Component i
(JNI Implementation) *

v

C++ Core
(GPS)

Figure 8 Java Virtual Machine and Soccer Server overview

JNI requires the heterogeneous component to be initially written in Java, declared the

methods to be implemented in C++ to be “native methods” and compiled the Java file

using the standard Java compiler. Developer then uses the compiled Class file to

generate C++ header file for implementation. In the implementation phase, we will

25

connect the method calls from the intermediate component to GPS and perform type

transformation between Java and C++.

26

5. Implementation

5.1 Neural Network

5.1.1 An Implementation of Neural Network Using Java

For learning purposes, we decide to implement a back propagation network. The
structure of the network is implemented with matrices. JAMA package by National
Institute of Standards and Technology provides the necessary matrices
implementation. The package is extended to provide various matrix manipulations,

such as getRow(), sum(), etc.

In the matrix implementation, each layer corresponds to a 1X7 matrix, where n is
the number of nodes in the particular layer. In addition, a matrix defining the
connection weights connects every two layers. Suppose the i-th layer contains

nodes and the j-th layer contains " nodes, then the weight matrix has the dimension
of /X1, assuming the input layer is on the top. The network can be constructed with

any size. Any two layers can be connected. The weight matrices are initialized

with uniformly distributed random numbers between 0 and 1.

The standard delta rule of back propagation network is implemented, according to

27

Russell & Norvig, 1995.

Wi, W, ta-a; A,

A = g’(li)X(Tf -0,)

where on the output layer and

A = g’(li)XZW/,i A
i on each hidden layer

Because continuous outputs of real number are required for the coordinate

information, the sigmoid function is used for the transfer function g.

1
g 1+e™
g'=g(l-g)

The correctness of the implementation has been (roughly) verified against a

GreaterThan function. A GreaterThan function takes in two inputs *1,*2 and

outputs y=1 if > %2 otherwise y=0. Random training samples are generated.
The network consists of 2 inputs, 1 hidden layer of 4 hidden nodes, and 1 output.
Moreover, *is set to 0.5 on all layers and across all training samples. With a

training set of size 100, 300, and 500, the converged network achieves 93%, 95%, and

100% correctness, respectively.

28

5.1.2 Exported Code from Neural Ware

While a hands-on implementation of the back propagation network helps us to learn
NN, our implementation suffers from the following shortcomings. First of all, the
correctness of the implementation is difficult to verify. The correctness against a
simple function, such as GreaterThan does not warrant the correctness against
complex functions, such as the ball passing team strategy. Secondly, the
optimization of codes is limited by our undergraduate level of mathematical
knowledge. In particular, efficient matrix manipulations, advanced gradient descent

functions calculating the error surface are out of our capabilities.

Commercial NN package provides an easy solution to all of the above problems. As
a result of countless working hours, commercial software packages provide access to
all of the known networks, which are also thoroughly tested and optimized. In
particular, the PAMI lab has recently purchased a Neural Ware software package,
which is readily available for our use. Consequently, we decide to experiment with

the Neural Ware software package, in addition to our own implementation.

29

6. Experiment

6.1 Manipulation

Four networks need to be constructed: three autonomous models controlling each
player and one central model controlling all players. We decide to explore different
network structures for each of the three autonomous clients, as well as different

representations of the training data for the central model.

6.1.1 Autonomous Model — Varying Hidden Layers

To determine the NN’s optimal structure is an open question. While a network that
is too small is incapable of representing the desired function, a network that is too big
is subject to the over fitting problem. The only way to find the optimal structure is
through experiments. Thus, we have designed three different structures for each of
the three autonomous players and compared the performance of the networks against

the behaviour of the original clients (TsinghuAeolus).

First of all, we establish the base case structure for the first player. The base case
structure has one hidden layer of 11 nodes, where the number 11 is derived from the

“log (# records)” rule of thumb. The second player is designed to double the number

30

of hidden nodes of the base case. Therefore, it has one hidden layer of 22 nodes.
The third player is designed to have one more hidden layer than the base case. The
additional hidden layer has 8 hidden nodes, where the number 8 is derived from
doubling the size of output layer. A summarizing table will be included in later

sections.

6.1.2 Central Model — Varying Training Set Representation

For the central model, we experiment with different representations of the training set.
By filtering and manipulating the training set, we help the NN to extract and focus

learning only on useful information.

First of all, the base case training set is simply the raw representation as specified in
the project proposal. Secondly, we randomize the records in the base case. This
manipulation is suggested in readings from Neural Networks (Haykin, 1994).
Thirdly, we skip every 10 records in the base case. This manipulation is suggested
by Ali; his idea is to reduce the resolution of the movement. Instead of training for
every little movement, only the big moving trend is used to train the network.
Notice, through this manipulation, the size of the training set is also reduced by a

factor of 10. That is, we are testing the hypothesis that the original training set is too

31

big at the same time. Lastly, Ali suggests the conversion of coordinate information

in the output to direction and power information. The idea behind such manipulation

is that the coordinate information may be too difficult for the NN to compute.

Employing the same principle of reducing the resolution, direction and power

information are hypothesized to be more sensitive to actions.

The following table summarizes these structures.

Name ID Structure
Autonomous Player 1 A3P0O 14114

Autonomous Player 2 A3P1 14224

Autonomous Player 3 A3P2 141184
Central Raw C3P0 141189
Central Random C3P1 141189
Central Step C3p2 141189
Central Direction Power C3P3 141189

Table 3 Structures

6.2 Method

6.2.1 Neural Ware Setup

Because our implementation of the NN cannot correctly interpret the network
structures of the Neural Ware, all experiments are conducted on the Neural Ware
codes. In all of the following experiments, the default setup of the back propagation

network is applied, with the exceptions of setting the transfer function to sigmoid

32

function and deselecting the bipolar input check box.

The “save best” function of the neural ware is used to avoid the problem of over
training, which describes the symptom when network is performing well on the
training data, but poorly on independent test data. The “save best” function runs in

batches of Train/Test cycles and saves the network with the best test result during the

6.2.2 Training Set

The training set is obtained from a 3 on 3 log play of TsinghuAeolus vs. Trilearn.
There are 3032 records. Undesired duplicate records are removed by piping the log
through the “uniq” shell script. Duplicate records represent time out or dead lock
during the play, which is not part of any strategy. The training set can further be
divided into a “learning set” and “testing set”. On one hand, the learning set is used
the train the network and is derived from the top 2/3 of all records. On the other
hand, the testing set is used for immediate testing of convergence and is derived from

the remaining records.

33

6.2.3 Team Setup

2 TsinghuAelus clients + NN client vs. 3 Trilearn

Because the NN is learning from past competitions of TsinghuAeolus against Trilearn,
we first examine the behaviour of the NN in the exact context. In particular, we
replace one client in the TsinghuAeolus with our NN client and have the team play
against the original Trilearn client. —Unfortunately, the NN client is not too

responsive.

2 Fetchball clients + NN client vs. 3 Portugal

One reason to our NN’s lack of responsiveness is maybe due to the fact that the two
TsinghuAeolus players do not move all the time. In order to maximize the
movement of the other clients, fetchball clients are designed to simply chase the ball
at all time. Two fetchball clients are teamed up with 1 NN client. We use this

setup for all of the experiments.

6.2.4 Measure

The determination of how good our NN is performing is a difficult question.
Measures that we proposed earlier, such as game scores and evaluation function
cannot be carried out because the client is currently not capable of a competitive game

play. Therefore, we can only rely on the visualization of the competition. By

34

manually examine the behaviour of the NN client, we wish to gain insight into what
the network has learned. Furthermore, the standard Root Mean Squared error (RMS)

is used to measure how well the NN learning has converged.

6.3 Result
In this section, we will first discuss the behaviour of the original game play and then
compare the NN clients to the original clients. The trained weights are included in

Appendix C.

6.3.1 Original Game Play

We divide the court into four fields as follows:

C B
1N
N
D A

Figure 9 Field description

From the original game play, players tend to stay in certain areas in the court and

occasionally perform passing or solo dribbling. From the observation, player 2 and

3 usually cooperate to perform passing and attacking and player 1 usually does the

solo dribbling and attacking.

35

c GH C

B
D A D (WA L

Figure 10 Example of passing and solo attacking

To summarize the original game play, we come up with the following diagram of

“player stickiness” to give a visual aid of player distributions during the game play.

A player spends most of its time in the darker area and occasionally in the lighter area

throughout the game play.

Figure 11 Player stickiness

36

6.3.2 NN Client

Name

ID

Structure

RMS

Autonomous Player 1

A3P0O

14114

0.006931

Comment:

Only player 1 is using the NN, the other two players are dummies.

is placed at different corners of the court, player 1 changes its intended position in

certain ways.

When the ball

O
C B B
SP. SP.
b oy
O
o
C B
SP.
b ¥
(®)
Autonomous Player 2 A3P1 14224 0.102269

Comment:

Only player 2 is using the NN, the other two players are dummies.

Player 2 only

moves within the field B. Player 2 changes its intended position rapidly when the

ball is placed at different corners.

C

@ s

D

N
N
A

37

Autonomous Player 3 A3P2 141184 |0.004209

Comment:
Only player 3 is using the NN, the other two players are dummies. Player 3 only

moves within the field C, and reacts to the ball by moving away from it.

@ | s
N
N
D A

Central Raw C3P0 141189 |0.068973

Comment:

Player 1 presents a passive character for some reason; it spends most of the time on
the line between field C&D. In this model, the players move only within certain
invisible boundaries. Player 2 and 3 react slightly to the ball’s position by moving

toward it. In some circumstances, player 3 moves away from ball’s position.
@ |
a (N
N
oD A

Central Random C3P1 141189 | 0.068874

Comment:
In this model, the players have similar performance as in the Raw case. Player 2
responds to the position of the ball by moving toward the ball for a few time steps,

retracting and moving around randomly afterwards.

38

Central Step C3P2 141189 |0.068135

Comment:

Player 2 and 3 react more responsively to the ball positions. In this model, the
players have similar performance as in the Raw case. An interesting snapshot of
the test run is that when the ball is placed at their own goal, player 2 and 3 will react
rapidly and seem to fetch the ball or save the goal but only up to their invisible

boundaries.

N

O
S
C
)

Central DirectionPower C3P3 141189 |0.154538

Comment:

In this model, we modify the output from proposed absolute x, y positions for the
next time step into appropriate “turn angle” and “dash power” to get to those
positions. The result is disastrous because players tend to spin around in circles

and do not react according to the positions of the ball.

6.4 Debug

In order to verify that the NN is using the correct input and output vectors, these
vectors are outputted to the Atan logs and are subject to manual verification. In
order to verify the correctness of the move command, a radar screen is implemented.
In particular, the red dots on the radar display where the NN “wants” to go and the
black dots display where the player currently is. Animation of the radar helps

verifying the correct implementation of the move command.

39

7. Conclusions

In summary, although the NN clients are not competitive enough for a real game play;
the clients show responses to the placement of the ball and suggest some learning is at
work. In particular, small network and small training set appear to have the best
performance. The results suggest us to examine the original game log and parse out

useless records.

Moreover, another problem of the NN’s unresponsiveness is maybe due to the fact
that the back propagation network is only reacting to a “snap shot” of the moment.
Nayer Wanas suggests two additional algorithms that employ the idea of time duration,
namely the times series and hidden Markov model. Unfortunately, those two
algorithms were not included in the Neural Ware package and there was not enough

time to implement the two algorithms. More research is needed.

40

8. References

Frohlich, J. (1999). Neural Network with Java.
http://rths8012.th-regensburg.de/~saj39122/ifroehl/diplom/e-index.html

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York:
Macmillan College Publishing Company.

Russell, S. J., & Norvic, P. (1995). Artificial Intelligence: A Modern Approach. New
Jersey: Prentice-Hall.

41

Appendix A - GPS

GlobalMapServer.java

package Pami.client;

import java.util.*;

import java.lang.*;

public class GlobalMapServer extends Thread({

private

private

private

private

String host;

int port;

double[]1[]
double[]

player_info;

ball_info;

public static GlobalMapServer instance;

public GlobalMapServer (String h, int p) {

host

port

player_info =

h;

b

new double[22][5];

ball_info = new double[5];

}
public
public

public

public
public

public

native
native

native

native

native

native

void init();

void shutdown () ;

void start_server () ;

doublel[]
double[]

double[]

getPlayerInfo (int num) ;

getBallInfol() ;

getInput () ;

42

public double[] getOutput () {
double[] output = new double[9];

for (int i=0; i<3; i++) {
double[] p = getPlayerInfo(i);
output[2*1] = p[0];
output [2*i+1] = pl[1l];

double[] b = getBallInfo();

output[6] = 0;
output[7] = 0;
output[8] = 0;

return output;

}

public void run() {
init();
start_server () ;
shutdown () ;

}

static{

System.loadLibrary ("globalmap") ;
}

public static void main(String[] argv) {

GlobalMapServer gmap = new GlobalMapServer ("localhost", 6000);

gmap.run() ;

}

43

GlobalMapServer.h

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>

/* Header for class Pami_client_GlobalMapServer */

#ifndef _Included_Pami_client_GlobalMapServer
#define _Included_Pami_client_GlobalMapServer

#ifdef _ cplusplus

extern "C" {

#endif

/* Inaccessible static: threadInitNumber */

/* Inaccessible static: stopThreadPermission */
#undef Pami_client_GlobalMapServer_MIN_PRIORITY
#define Pami_client_GlobalMapServer MIN_PRIORITY 1L
#undef Pami_client_GlobalMapServer_ NORM_PRIORITY
#define Pami_client_GlobalMapServer_ NORM_PRIORITY 5L
#undef Pami_client_GlobalMapServer_MAX_PRIORITY
#define Pami_client_GlobalMapServer MAX_PRIORITY 10L

/* Inaccessible static: instance */

/*
* Class: Pami_client_GlobalMapServer
* Method: init
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Pami_client_GlobalMapServer_init

(INIEnv *, jobject);

/*
* Class: Pami_client_GlobalMapServer
* Method: shutdown
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Pami_client_GlobalMapServer_shutdown

(INIEnv *, jobject);

/*

44

* Class: Pami_client_GlobalMapServer

* Method: start_server
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Pami_client_GlobalMapServer_start_lserver

(INIEnv *, jobject);

/*
* Class: Pami_client_GlobalMapServer
* Method: getPlayerInfo

* Signature: (I)I[D

*/

JNIEXPORT jdoubleArray JNICALL
Java_Pami_client_GlobalMapServer_getPlayerInfo

(INIEnv *, jobject, jint);

/*
* Class: Pami_client_GlobalMapServer
* Method: getBalllInfo
* Signature: () [D
*/

JNIEXPORT jdoubleArray JNICALL
Java_Pami_client_GlobalMapServer_getBallInfo

(INIEnv *, jobject);

/*
* Class: Pami_client_GlobalMapServer
* Method: getInput
* Signature: () [D
*/

JNIEXPORT jdoubleArray JNICALL
Java_Pami_client_GlobalMapServer_getInput

(INIEnv *, jobject);

#ifdef _ cplusplus
}

#endif

#endif

45

GlobalMapServerimp.cc

#include <jni.h>

#include <iostream>

#include "GlobalMapServer.h"

#include "GlobalMap.h"

static GlobalMap *gmap_core;

JNIEXPORT void JNICALL Java_Pami_client_GlobalMapServer_init (IJNIEnv
*env, jobject obj) {

/* get parameters from java object */

jclass cls = env->GetObjectClass (obj);

jfieldID fid = env->GetFieldID(cls, "host", "Ljava/lang/String;");
jstring jhost = (jstring)env->GetObjectField(obj, fid);

fid = env->GetFieldID(cls, "port", "I");

jint port = (jint)env->GetIntField(obj, fid);

/* init native core */
const char* host = env->GetStringUTFChars (jhost, 0);

gmap_core = new GlobalMap (host, port);

JNIEXPORT void JNICALL

Java_Pami_client_GlobalMapServer_shutdown (JNIEnv *env, jobject obj) {

gmap_core->close() ;

delete gmap_core;

46

JNIEXPORT void JNICALL
Java_Pami_client_GlobalMapServer_start_lserver (JNIEnv *env, jobject
obj) {

gmap_core->start (env, obj);
JNIEXPORT jdoubleArray JNICALL
Java_Pami_client_GlobalMapServer_getPlayerInfo (JNIEnv *env, jobject
obj, jint num) {

double pos[5];

gmap_core->getPlayerInfo (num, pos);

jdoubleArray arr = env->NewDoubleArray (5) ;

env->SetDoubleArrayRegion(arr, 0, 5, pos);

return arr;

JNIEXPORT jdoubleArray JNICALL

Java_Pami_client_GlobalMapServer_getBallInfo (IJNIEnv *env, jobject

obj) {

double pos[5];

gmap_core->getBallInfo(pos) ;

jdoubleArray arr = env->NewDoubleArray (5) ;

env->SetDoubleArrayRegion(arr, 0, 5, pos);

return arr;

JNIEXPORT jdoubleArray JNICALL

Java_Pami_client_GlobalMapServer_getInput (INIEnv *env, jobject obj) {

47

double input[14];

gmap_core->getInput (input) ;

jdoubleArray arr = env->NewDoubleArray (14);
env->SetDoubleArrayRegion(arr, 0, 14, input);

return arr;

GlobalMap.h

#ifndef GLOBALMAP_H__

#define GLOBALMAP_H__

#include <string>
#include <stdio.h>
#include <jni.h>
#include <fstream>
#include "udpsocket.h"

#include "types.h"
#define FRAMEVIEW MODE 10
#define SHOWINFO_SCALE2 65536.0
#define INFO_NUM 5
class GlobalMap({
public:
GlobalMap (string host, int port);

~GlobalMap () ;

void start (JNIEnv *, jobject);

void close();

void getPlayerInfo(int num, double* pos);

48

Y

void getBallInfo(double* pos);

void getInput (double* pos);

private:

int server_msg_ type(void * ptr);
void process_positions (void *ptr,
void openPosFiles() ;
void closePosFiles();

void output_positions() ;

UDPsocket server;

char buf[10000];
int msg_len;
int msg_id;

ofstream *ofiles[MAX_PLAYER + 1];

JNIEnv *,

double player_info[MAX_ PLAYER*2] [INFO_NUM] ;

double ball_info[INFO_NUM] ;

showinfo_t2 prevState;

#endif

GlobalMap.cc

#include "GlobalMap.h"

GlobalMap: :GlobalMap (string host,

server.init_socket_fd();

server.init_serv_addr (host.c_str (),

jobject) ;

int port) :msg_id(0) {

49

port) ;

char msg[] = "(dispinit version 2)";

server.send_msg(msg, strlen(msg) + 1);

server.recv_msg (buf, msg_len);

void GlobalMap: :openPosFiles () {

for(int 1 = 0; 1 < MAX_PLAYER; i++)({

char num[10];

sprintf (num, "%d", 1i);

string file_name = "pos";

file_name += num;

ofiles[i] = new ofstream(file_name.c_str());

}

ofiles[MAX PLAYER] = new ofstream("ball");

void GlobalMap: :closePosFiles () {

for(int 1 = 0; 1 < MAX_PLAYER; 1i++)({
ofiles[i]->close();
delete ofiles[i];

}

ofiles[MAX_ PLAYER]->close() ;

delete ofiles[MAX_PLAYER];

void GlobalMap: :close() {

server.close_socket_fd();

GlobalMap: : ~GlobalMap () {

50

server.close_socket_fd();

for(int 1 = 0; 1 < MAX_PLAYER; i++)({
char num[10];

sprintf (num, "%d", 1i);

string file_name = "pos";

file_name += num;

remove (file_name.c_str());

cout << "remove " << file name << endl;

}

void GlobalMap: :getPlayerInfo(int num, double* pos) {

for(int i = 0; 1 < INFO_NUM; i++){

pos[i] = player_ info[num] [i];

}

void GlobalMap: :getBallInfo (double* pos) {

for(int i = 0; i < INFO_NUM; 1++)

pos[i] = ball_infol[il];

void GlobalMap: :getInput (double* pos) {

for(int i = 0; i < 3; 1i++){
pos[2*1] = player_info[i][0];
pos[2*i+1] = player infol[il[1l];

51

int j = 0;

for(int i = 3; 1 < 6; 1i++, J++){

pos[2*i] = player_info[MAX_PLAYER + j][0];
pos[2*i+1] = player_ info[MAX PLAYER + j]I[1];
}

pos[12] = ball_info[0];

pos[13] = ball_infol[l];

void GlobalMap: :start (JNIEnv *env, jobject obj) {
cout << "GlobalMapServer starting..." << endl;
int msg_type;
while (server.recv_msg (buf, msg _len, true)){

msg_type = server_msg_type (buf) ;

if (msg_type == SHOW_MODE) {

process_positions (buf, env, obj);

void GlobalMap: :output_positions () {
COU.t << "s> oon ;

for(int 1 = 0; 1 < MAX_PLAYER; 1i++){

cout << " (" << player_info[i][0] << "," << player_info[i][1l] << ")

}

cout << endl;

52

void GlobalMap: :process_positions (void *ptr, JNIEnv *env, jobject obj) {

dispinfo_t2 *disp = (dispinfo_t2*)ptr;

showinfo_t2 &showinfo = disp->body.show;

long 1_x, 1 vy, ldelta_x, ldelta_y, 1l_angle;

double d_x, d_y, ddelta_x, ddelta_y;

double d_angle;

for(int i = 0; 1 < MAX PLAYER*2; i++){

const player_t &info_pos = showinfo.pos[i];

1_x = ntohl(info_pos.x);
1_y = ntohl(info_pos.y);
d_x = (double)l_x / SHOWINFO_SCALE2;
d_y = (double)l_y / SHOWINFO_SCALE2;

ldelta_x = ntohl (info_pos.deltax) ;
ldelta_y = ntohl (info_pos.deltay) ;

ddelta_x = (double)ldelta_x / SHOWINFO_SCALE2;

ddelta_y = (double)ldelta_y / SHOWINFO_SCALE2;

1_angle = ntohl (info_pos.body_angle) ;

d_angle = - (double)l_angle / SHOWINFO_SCALE2;
player_info[i][0] = d_x;

player_infol[il[1] = d_y;

player_info[i][2] = ddelta_x;
player_info[i][3] = ddelta_y;
player_info[i][4] = d_angle;

53

1 x

ntohl (showinfo.ball.x) ;

1_y = ntohl (showinfo.ball.y);

d_x

1_x / SHOWINFO_SCALEZ2;

dy = 1.y / SHOWINFO_SCALE2;

ldelta_x ntohl (showinfo.ball.deltax) ;

ldelta_y

ntohl (showinfo.ball.deltay) ;

ddelta_x ldelta_x / SHOWINFO_SCALE2;

ddelta_y ldelta_y / SHOWINFO_SCALE2;

ball_info[0] = d_x;

ball_info[1l] d_y;

ball_info[2]

ddelta_x;
ball_infol[3]

ddelta_y;

prevState = showinfo;

int GlobalMap: :server_msg_type(void *ptr) {
if (*((char*)ptr) == '_"')

return FRAMEVIEW_ MODE;

dispinfo_t *dispinfo_dum= (dispinfo_t*)ptr;

dispinfo_t & dispinfo= *dispinfo_dum;

return (ntohs (dispinfo.mode));

54

Appendix B — NN

Recurrent.java

package Pami.nn;

import Jama.Matrix;
import java.io.*;

import java.util.*;
public class Recurrent implements NN {

public static void main(String[] args) {
Recurrent rc = new Recurrent (args[0]);

rc.print(3,3);

/*
Matrix 10 = new Matrix(1l,2);
Matrix 11 = new Matrix(1,3);
Matrix 12 = new Matrix(1l,2);
Vector 1 = new Vector();
1.add(10);

l.add(11);

l.add(12);

Matrix w0 = new Matrix(new double[][] { {1,2}, {3,4}, {5,6} });
Matrix wl = new Matrix(new double[][] { {1,3,5}, {2,4,6} });
Vector w = new Vector();

w.add (w0) ;

w.add (wl) ;

FeedForward ff = new FeedForward(l,w) ;
ff.update (new Matrix(new double[][] { {3,2} }));
ff.print(3,3);

Recurrent rc = new Recurrent (new int[] {2,3,2});

rc.connections[0][1] = new Matrix(new double[][] { {1,2}, {3,4},

55

(5.6} });

rc.connections[1][2] = new Matrix(new double[][] { {1,3,5},

{2,4,6} });
rc.update (new Matrix(new double[][] { {3,2} }));
rc.update (new Matrix(new double[][] { (3,2} }));
rc.print (3,3);
*/

/*
Recurrent nn = new Recurrent (new int[] { 14,1,17,4 });
nn.init(args[0]);
nn.update (new Matrix(new doublel[][]

{ {1,2,3,4,5,6,7,8,9,10,11,12,13,14} })) .print(3,3);
nn.update (new Matrix (new doublel[][]

{ {1,3,5,7,9,7,5,3,1,3,5,7,9,7} })).print(3,3);

*/
}

/********************************/

protected int height = 0;
protected Matrix[] layers = null;

public Matrix[][] connections = null;

protected Matrix[] next = null;

public Recurrent(int[] structure) {
init (structure) ;

}

public Recurrent (String path) {

try {

BufferedReader br = new BufferedReader (new

FileReader (path+"struct")) ;

int num_layers = Integer.parselnt (br.readLine());

String struct_layers = br.readLine();

56

StringTokenizer st = new StringTokenizer (struct_layers);
int[] structure = new int[num_layers];
for (int i=0; i<structure.length; i++)

structure[i] = Integer.parselnt (st.nextToken()) ;

init (structure);
load(path) ;
}
catch (IOException e) { System.err.println(e); };

}

public void init(int[] structure) {
this.height = structure.length;
this.layers = new Matrix[height];

this.connections = new Matrix[height] [height];

this.next = new Matrix[height];

for (int i=0; i<height; i++) {
this.layers[i] = new Matrix(1l, structurel[il]);

this.next[i] = new Matrix(l, structurelil);

for (int i=0; i<height; i++)
for (int j=0; j<height; Jj++)

this.connections[i][Jj] = null;

public void load(String path) {
try {
File dir = new File(path);

String[] 1ls = dir.list();

for (int i=0; i<ls.length; i++) {

if (1s[i].indexOf("_") != -1) {

StringTokenizer st = new StringTokenizer (ls[i], "_");

int from = Integer.parselInt(st.nextToken());

57

int to = Integer.parselnt(st.nextToken());

connections[from] [to] = Matrix.read(new BufferedReader (new
FileReader (path+1s[i])));
}
}
}
catch (IOException e) { System.out.println(e); }
}

/********************************/

public Matrix update (Matrix input) {

if (input!=null) setInput (input) ;

for (int i=0; i<height; i++)

next[i] = g(in(i));
next[0] = next[0].plus (input) ;
//next[height-1] = in(height-1);

System.arraycopy (next, 0, layers, 0, layers.length);

return getOutput () ;
}

* L0 =1 x 14
* w02 = 17 x 14
* L2 = 1 x 17

* N = L0 xwo2' =1 x 14 x 14 x 17 = 1 x 17
*/

public Matrix in(int 1) {

Matrix N = new Matrix(getL(l).getRowDimension(),

58

getL(l) .getColumnDimension());

for (int i=0; i<height; i++) {

if (getw(i,1l)!=null) {

Matrix in getL (i) ;

Matrix wt = getW(i,1l);

N = N.plus(in.times(wt.transpose()));

}

return Nj;

}

/********************************/

public double g(double x) {
return 1 / (1 + Math.pow(Math.E, -1 * x));

}

public Matrix g(Matrix A) {

int m A.getRowDimension() ;

int n = A.getColumnDimension() ;

double[][] r = A.getArrayCopy () ;
for (int 1=0; i<m; i++)
for (int j=0; j<n; Jj++)

r[i]1[3] = g(rli1[J]);

return new Matrix(r);

}

/********************************/

public void print(int m, int n) {

59

System.out.println("Layers: ");

for (int i=0; i<height; i++)

getL(i) .print (m,n) ;

System.out.println("Weights: ");

for (int i=0; i<height; i++) {
for (int 3j=0; j<height; j++) {
Matrix w = getW(i,3j);
if (w!=null) {
System.out.println("W("+i+","+j+") =
"+w.getRowDimension () +"x"+w.getColumnDimension()) ;

getW(i, j) .print (m,n) ;

/********************************/

public void setInput (Matrix m) {
setL (0, m);

}

public Matrix getInput () {
return getL(0);
}

public Matrix getOutput () {
return getL (height-1);
}

/********************************/

public Matrix getL(int i) {
return layers[i];

}

60

public void setL(int i, Matrix m) {

layers[i] = m;

}

public Matrix getW(int i, int j) {

return connections[i][Jj];

}

public void setW(int i, int j, Matrix m) {

connections[i][3j] = m;

}

Backpropagation.java

package Pami.nn;

import Jama.Matrix;

import java.util.Vector;

public class Backpropagation extends FeedForward {

public Backpropagation(Vector layers, Vector connections)

super (layers, connections);

}

public Backpropagation(int[] structure) {

super (structure) ;

}

/********************************/

public void backprop_update (Matrix examples,

//while (NETWORK_NOT_CONVERGED) {

int correct = 0;

while

(correct<examples.getRowDimension ())

61

{

double alpha)

{

int m = getInput().getColumnDimension/() ;

int n getOutput () .getColumnDimension () ;

int t = examples.getRowDimension () ;

for (int x=0; x<t; x++) {

Matrix e = examples.getMatrix(x,x, 0,m+n-1);
Matrix I = e.getMatrix (0,0, O0,m-1);

Matrix T = e.getMatrix (0,0, m,m+n-1);
Matrix O = update(I);

//System.out.println("Training Example " + X);
//e.print (3,3);
//print (3,3);

/********************************/

int i = height - 1;

int j =1 - 1;
Matrix A = getL(j);
Matrix W = getW(3j);

Matrix D = T.minus (O) ;

D = gP(in(i)) .arrayTimes(D);

setW(j, D.transpose().times(A).times (alpha) .plus(W));

/********************************/

for (i=i-1,j=j-1; Jj>=0; i--,3--) {

A = getL(J);

W = getW(]j);

D = gP(in(i)) .arrayTimes(D.times(getW(i)));

setW(j, D.transpose().times(A).times (alpha).plus (W));
}

62

/********************************/

O = update(null) ;

for (int c¢=0; c<n; c++) O.set(0,c, Math.round(O.get(0,c)));
//0.print (3,3);

//T.print (3,3);

if (T.equals(0)) correct++;

else { System.out.println(correct); correct = 0; }

System.out.println("Training Complete");

}

/********************************/

public double gP(double x) {
return g(l - g(x));
}

public Matrix gP(Matrix A) {

int m A.getRowDimension() ;
int n = A.getColumnDimension() ;

double[][] r = A.getArrayCopy () ;
for (int 1=0; i<m; i++)
for (int j=0; j<n; Jj++)

r[il[3] = gP(rl[i][3]);

return new Matrix(r);

}

63

Appendix C — NN Weights

C.1 A3PO

Input to Hidden1
0.222 -0.642 -0.120 -0.154 -0.314 -0.152 0.245 -0.093 0.109 -0.364 0.183 -0.126 -0.064 0.021
0.143 0.022 -0.193 0.081 0.057 0.127 0.154 -0.235 0.083 -0.055 0.006 0.237 -0.118 -0.093
-0.683 0.065 0.068 0.014 0.105 0.183 0.043 -0.004 -0.119 0.017 -0.078 0.122 0.255 0.004
0.028 -0.378 -0.260 -0.219 0.114 0.053 0.199 -0.223 -0.101 -0.265 -0.222 0.039 0.166 -0.023
0.030 -0.383 -0.244 -0.156 -0.040 -0.159 0.069 0.138 -0.187 -0.262 -0.336 -0.059 -0.228 0.073
0.169 0.360 0.097 -0.039 -0.239 0.172 -0.224 0.068 0.186 -0.142 0.192 0.233 -0.162 0.182
-0.612 0275 -0.129 -0.090 -0.123 -0.199 0.137 -0.157 0.204 -0.005 0.097 -0.217 0.106 -0.329
-0.308 0.539 -0.141 -0.188 -0.071 -0.068 -0.230 0.294 -0.046 0.282 -0.283 -0.131 0.247 0.249
0.019 -0.240 0.130 0.084 -0.149 -0.160 0.093 0.226 0.090 -0.201 0.256 -0.027 -0.005 -0.165
-0.130 -0.224 -0.096 -0.222 -0.141 0.088 -0.204 -0.024 -0.025 0.044 -0.312 -0.191 0.088 0.226
-0.155 0.180 -0.073 0.127 -0.018 -0.110 -0.096 0.021 -0.154 -0.030 -0.038 0.098 -0.194 0.205
Input to Output
2,162 -0.075 0.001 -0.109 0.087 0.001 -0.286 -0.030 0.001 0.041 0.095 0.011 0.024 0.071
-0.092 2.038 -0.018 -0.037 0.007 -0.044 -0.267 -0.045 -0.006 -0.137 0.013 -0.048 0.029 0.037
0.000 -0.014 -0.028 -0.101 -0.068 0.008 -0.266 -0.006 0.010 -0.091 -0.091 -0.062 0.004 0.008
-0.100 -0.113 0.007 -0.062 -0.024 0.005 -0.112 -0.071 0.047 -0.080 0.034 0.003 -0.003 -0.009
Bias to Hiddenl
0.144
-0.033
-0.125
0.106
-0.032
0.115
-0.032
-0.388
-0.061
0.201
-0.282
Bias to Output
-0.288
-0.199

64

-0.299
-0.403

Hidden1 to Output
0.182 0.019 -0.545
-0.561 0.022 0.117
-0.381 0.196 -0.297
-0.199 0.065 -0.236

C.2 A3P1

Input to Hidden1
-0.448 -0.078 -0.898 -0.035 -0.619
<0312 0.052 -1.077 0.093 -0.430
-0.133 -0.277 -0.325 -0.394 0.022
<0422 0.184 -0.967 -0.089 -0.256
0336 -0.117 -0.162 -0.520 0.142
-0.146 0.119 -0236 0.190 -0.705
-0.703 0440 -1.305 0.002 -0.734
0.141 0195 -0.174 -0.694 -0.039
-0.052 -0.153 0238 -0.209 -0.280
0386 -0.397 0378 -0.536 0.090
0.148 -0.111 0.023 -0.155 0.124
-0.176 -0.051 -0.425 -0.233 0.168
0.113 -0.224 -0.504 -0.159 -0.153
-0.393 -0.229 0215 0.162 -0.231
0.004 0089 -0.189 -0.129 -0.113
0264 -0443 -0.251 0.051 0.227
-0.287 -0.102 -0.677 -0.159 -0.131
-0.661 -0.027 -0.654 0.142 -0.535
-0.309 0.057 -0312 0.257 -0.233
0358 -0.122 0.777 -0.553 0.310
0.051 -0237 0440 -0.255 0.034
0233 -0271 0.183 -0297 0.144
Input to Output
-0.090 0.056 1972 0.032 -0.023
-0.084 -0.075 0.006 1.809 -0.023

-0.151 0001 -0.152 -0.068 -0.126

-0.017
-0.510
-0.311
-0.434

0.007

0.095

0.103

0.174

-0.129

0.135

-0.065

-0.190

-0.305

-0.038

-0.205

0.104

-0.158

-0.284

0.098

-0.181

-0.040

-0.331

-0.288

-0.148

-0.202

-0.247

-0.024

-0.068

-0.079

0.019

-0.028

-0.111

-0.121

-0.121

-0.491

-0.061

-0.218

-0.140

-0.340

-0.133

-0.184

-0.243

-0.343

-0.351

-0.391

-0.045

-0.102

-0.300

-0.260

0.100

0.038

-0.299

-0.053

-0.276

-0.162
-0.466
-0.361
-0.063

0.026
-0.242
-0.104
-0.187

0.025
-0.052
-0.064

0.233

0.155
-0.148
-0.045

0.234

0.080
-0.100

0.089

0.187
-0.053
-0.215
-0.133
-0.313

0.123

-0.268

0.014
-0.052

0.131

0.024
0.168
-0.205
-0.289

0.389

0415

-0.187

0.224

-0.414

0.344

0.797

-0.168

0.102

-0.410

-0.443

-0.040

0.029

0.265

-0.016

-0.558

-0.049

0.147

0.133

-0.444

-0.579

-0.359

0.044

-0.136

0.032

-0.420

-0.304

-0.038

-0.337

-0.157

-0.328

-0.297

0.261

-0.220

0.196

0.034

0.252

-0.061

-0.203

-0.175

-0.156

0.038

0.066

0.048

0.281

0.301

0.296

-0.043

0.057

-0.063

-0.458

0.036
-0.223
-0.333

0.582
0474
-0.160
0.284
-0.518
0.606
0918
-0.474
0.210
-0.838
-0.513
-0.728
0.170
0.09
-0.148
-0.679
-0.267
0493
-0.038
-0.730
-0.635

-0.521

0.001

0.015

-0.110

65

-0.264
0.286
0.080
0.219

-0.342

-0.120

-0.034

-0.249

-0.058

-0.037

-0.624

-0.180

-0.123

-0.044

0.119

0.177

-0.111

0.027

-0.293

-0.079

-0.324

-0.364

-0.017

-0.013

0.098

-0.154

-0.111

0.005

-0.117

-0.114

-0.034

0.148

0.208

-0.354

-0.134

0.197

0.173

-0.053

-0.134

-0.402

-0.003

-0.064

0.208

-0.264

-0.343

-0.328

0.296

-0.280

-0.279

-0.239

-0.282

-0.045

-0.081

0.147

-0.039
-0.203

0.135
-0.188

-0.017
-0.425
0.083
-0.043
0.231
-0.003
-0.327
0.300
-0.242
0.381
0.249
-0.156
-0.242
-0.346
-0.393
0.254
0.137
-0.482
-0.202
0.334
-0.112

0.138

-0.033
0.188

0.007

-0.131
-0.174
-0.249
-0.162

-0.077
0.076
-0.022
0.051

1.399

Bias to Hiddenl

-0.171

-0.318

-0.300

-0.333

-0.207

-0.260

-0.400

-0.349

-0.338

0.122

-0.272

-0.155

0.024

-0.271

-0.385

0.040

0.044

-0.334

-0.331

-0.009

-0.068

-0.034

Bias to Output

-0.036

-0.106

-0.145

0.051

Hidden1 to Output

-0.289

-0.097

-0.262

-0.442

-0.981

-0.222

-0.083

-0.050

-0.463

2171

-0.228

-0.269

-0.145

0.058

-0.597

-0.230

-0.057

-0.031

-0.385

1.388

-0.138

-0.280

0.086

0.302

-0.443

0.188

0.132

-0.335

-0.311

-0.263

-0.351

-0.191

-0.206

-0.805

0.214

-0.124

-0.457

-0.179

0.150

-L118 0758 -2.525

0242 0.068 -0.159
-0.142 -0.186 -0.129
-0.187 -0.105 -0.274

0023 0510 0331

66

0.883

-0.382

-0.186

-0.135

0.154

-0.766

-0.279

-0.113

-0.173

-0.095

0.839

0.043

0.128

-0.273

-0.131

-0.122

-0.140

0.094

-0.030

-0.292

0.189

0.074

0.321

-0.376

-0.009

-0.088

-0.013

0.033

-0.111

-0.018

-0.442

-0.096

0.148

-0.049

-0.064

0.266

-0.106

0.115

0.551

0.118

-0.160

-0.233

0.448

-0.137

-0.101

-0.090

0.370

C.3 A3P2

Input to Hidden1

-0.062 -0.151
0.143 -0.148
-0.004 -0.186
0.026 0.036
0.296 0.050
0.241 0.026
-0.086 0.135
0.144 0.329
0.113 -0.120
0.086 -0.087
0.050 0.198

Input to Hidden2

-0.238 0.201
0.110 0.080
0.234 -0.022

-0.251 0.003

-0.190 -0.202

-0.098 -0.236
0.282 -0.283
0.079 0.106

Input to Output

0.075 0.006
0.079 0.001
-0.019 -0.058
0.100 0.083

Bias to Hiddenl

0.056
-0.010
-0.102
-0.042
-0.021

0.106
-0.100
-0.213

-0.015
-0.083

0.020
-0.263
-0.154

0.170
-0.063
-0.216

0.213
-0.157
-0.137

0.054
-0.157
-0.061
-0.013

0.158

0.032

0.001

0.253

0.008
-0.066
-0.006
-0.058

-0.104
0.152
0.014

-0.215

-0.048

-0.035

-0.164

-0.208
0.097

-0.303
0.138

0.129
-0.048
-0.244

0.163
-0.087

0.116

0.294
-0.165

0.086
-0.066
0.047
-0.002

-0.726
-0.700
-0.248
0.307
-0.437
-0.648
-0.328
0.242
-0.735
0.323
0.207

-0.086
-0.140
-0.006
-0.375
0.145
0.090
0.172
0.312

1.908
0.088
-0.024
0.077

0.079
0.425
-0.459
-0.024
-0.513
0.128
-0.432
-0.630
-0.486
0.042
-0.589

0.432
-0.138
-0.343

0.051
-0.057

0.099
-0.554

0.409

-0.016
2.010
0.031

-0.218

0.183
0.191
0.064
0.068
0.083
-0.223
0.076
-0.093
0.120
-0.244
0.021

0.002
0.028
-0.208
0.116
-0.293
-0.110
0.071
0.198

0.189
-0.267
-0.210

0.153

67

-0.087
-0.156
-0.036
-0.122
0.107
0.143
-0.095
0.258
0.300
-0.147
-0.064

0.227
-0.040
0.181
-0.229
-0.220
0.058
0.102
-0.125

0.053
0.036
0.009
-0.018

0.125
0.114
-0.197
-0.088
-0.250
0.229
0.172
-0.129
0.089
-0.018
-0.198

0.196
0.081
0.125
-0.246
-0.144
0.205
0.200
-0.247

0.054
-0.091
0.027
-0.112

-0.310
-0.091
-0.033
-0.098
-0.256
-0.098

0.051

0.223
-0.199

0.040
-0.110

0.241
-0.290
-0.233
-0.270

0.139
-0.141
-0.188
-0.241

-0.094
-0.011
-0.012
-0.062

0.232
-0.045
-0.180
-0.138
-0.287

0.180

0.142
-0.303

0.151
-0.209
-0.085

-0.295
-0.214
-0.290
0.079
0.122
0.031
-0.208
0.174

0.033
-0.073
0.031
-0.122

-0.093
0.297
0.047
0.065

-0.085
0.239

-0.275

-0.197

-0.031

-0.239
0.057

0.278
-0.015
-0.020
-0.036
-0.044

0.257
-0.160
-0.082

0.060
-0.121
0.035
-0.092

-0.116
-0.107
0.181
0.200
-0.276
-0.075
0.100
0.231
0.010
0.073
-0.213

0.243
0.272
0.150
-0.299
0.060
0.281
0.243
-0.078

-0.081
0.030
0.020

-0.029

0.043
-0.132
0.152
0.026
0.283
0.139
-0.285
0.250
-0.118
0.224
0.230

-0.184
-0.026
-0.189
-0.084
-0.196
-0.310
-0.039
-0.155

-0.048
0.158
-0.047
0.103

-0.038
0.159
-0.135
Bias to Hidden2
0.010
0.130
-0.218
-0.142
-0.280
0.094
-0.106
-0.146
Bias to Hidden3
-0.322
-0.231
-0.063
0.264

Hidden] to Hidden2

0.309
-0.166
-0.314
0.003
-0.216
0.198
0.213
0.235
Hidden1 to Output
-0.414
0.090
0.174
0.053
Hidden?2 to Output
-0.276
0.372
0.169
0.248

0.156
0.217
0.224
0.252
0.131
-0.143
-0.194
0.007

-0.521
0.362
-0.205
0.262

-0.005

0.093
-0.041
-0.305

-0.209
0.270
-0.290
-0.097
0.008
0.016
0.313
0.243

-0.327
-0.451

0.082
-0.223

0.104
-0.151
-0.094
-0.066

0.138
-0.247
-0.242
-0.311

0.156
-0.059
-0.047

0.225

0.087
-0.128
-0.194
-0.005

-0.427

0.150
-0.239
-0.196

-0.101
-0.222
-0.282

0.101

0.108
-0.250
-0.210
-0.184

-0.366
-0.414

0.157
-0.354

0.045
0.005
0.161
0.004

0.111
0.233
-0.178
-0.128
-0.289
0.117
-0.286
-0.112

-0.401
-0.033
-0.100

0.205

0.132
0.284
0.003
0.343

-0.143
0.110
-0.178
-0.167
0.114
0.040
-0.251
-0.330

-0.226
-0.230
-0.059

0.218

-0.051
-0.479
-0.255
-0.151

68

-0.129
0.262
0.147
0.282
0.052

-0.056

-0.115
0.128

0.199
-0.608
0.102
-0.212

0.387
0.183
0.151
-0.178

0.127
0.022
0.220
-0.035
-0.078
0.079
-0.005
-0.320

-0.499
-0.276

0.105
-0.031

0.000

0.087
-0.205
-0.052
-0.206
-0.040
-0.031
-0.108

0.350
-0.146
0.285
-0.125

0.030
0.166
0.008
0.198
0.012
0.004
0.144
0.209

0.151
-0.518
0.282
-0.389

C.4 C3P0

Input to Hidden1

-0.970 0.209
-0.794 0.248
-0.445 -0.375
0.205 -0.478
0.243 -0.237
0.385 -0.329
-0.915 0.517
0.244 0.136
0.093 -0.398
0.173 -0.265
-0.145 -0.054

Input to Hidden2

-0.680 0.385
0.243 0.060
0.122 -0.052

-0.603 0.005

-0.089 -0.311

-0.279 -0.144
0.518 -0.607
0.184 0.077

Input to Output

1.758 -0.429
-0.205 1.774
-0.143 0.047

0.212 -0.104

0.093 0.036

0.141 0.109

0.105 -0.195
-0.059 0.011

0.988 -0.957

Bias to Hiddenl

-0.356
-0.210
-0.312

-1.232
-1.357
-0.718
-0.063

0.044

0.627
-1.628
-0.541

0.779
-0.447
-0.502

-0.153
-0.023
-0.393
-0.240
0.529
-0.273
0.237
0.218

-0.114
0.188
2.061
0.092

-0.066

-0.032
0.245

-0.031
1.875

0.407

0.787
-0.200
-0.648
-0.706
-0.270

0.584
-0.630
-0.206
-0.432
-0.179

0.298
-0.404
-0.260
-0.043
-0.254

0.400

0.028
-0.357

0.059
-0.172
0.150
1.866
0.018
-0.182
0.464
-0.070
-0.418

-1.287
-0.722
-0.262

0.209

0.690
-0.495
-0.441
-0.346

0.066
-0.402
-0.408

-0.095
-0.295
-0.413
-0.063
0.336
-0.458
0.176
0.155

0.079
0.223
-0.043
0.044
1.889
-0.046
0.108
-0.194
1.152

-0.349

0.374
-0.226

0.280
-0.144

0.003
-0.013
-0.660
-0.552
-0.029
-0.082

0.194
-0.592
-0.168
-0.109
-0.098
-0.089
-0.393

0.136

-0.026
-0.051
-0.077
-0.231
0.078
1.975
-0.583
0.016
-0.346

-0.021
0.137
-0.054
-0.091
0.072
-0.450
0.006
-0.171
0.065
-0.390
-0.185

-0.131
0.037
-0.271
0.064
-0.374
-0.199
0.033
0.162

0.144
-0.331
-0.359
-0.023
-0.431
-0.322

0.561
-0.425
-0.306

69

0.087
-0.083
-0.140
-0.151

0.032

0.114
-0.062

0.139

0.273
-0.222
-0.246

0.202
0.019
0.113
-0.205
-0.204
0.047
0.075
-0.171

-0.050
0.068
0.013

-0.118
0.110
0.002

-0.060
0.120
0.274

0.813
0.580
0.023
-0.661
-0.610
-0.394
0.992
-0.080
-0.299
0.097
-0.016

0.252
-0.100
0.191
-0.362
-0.372
0.298
-0.038
-0.299

0.091
-0.192
0.025
-0.227
0.126
-0.050
0.024
0.023
-1.022

-0.755
-0.290
-0.283
0.140
-0.133
0.156
-0.491
0.115
0.014
-0.081
-0.272

0.130
-0.153
-0.305
-0.229

0.235
-0.224
-0.048
-0.260

-0.044
-0.028
-0.018
-0.071
-0.117
-0.029

0.186
-0.084

0.801

1.181
0.624
0.266
-1.118
-0.755
-0.808
1.235
-0.126
-0.546
0.125
0.367

-0.170
-0.510
-0.114
-0.197
-0.271

0.223
-0.688

0.148

0.255
-0.079

0.097
-0.210
-0.048
-0.048
-0.294
-0.260
-2.139

-0.519
-0.113
-0.203
0.214
0.056
0.435
-0.714
-0.373
0.215
-0.411
-0.256

0.119
0.050
-0.155
-0.028
0.117
0.070
-0.007
-0.138

0.043
-0.085
0.022
-0.060
0.031
-0.064
-0.036
-0.067
0.684

-0.081
0.070
0.264

-0.234

-0.422

-0.565
0.223
0.229

-0.270
0.151

-0.124

0.241
0.140
0.184
-0.422
-0.106
0.290
0.030
-0.088

-0.034
0.088
-0.005
-0.145
0.034
-0.049
0.165
0.230
-0.689

-0.205
-0.372
-0.282
0.183
0.257
0.279
-0.496
0.009
-0.092
-0.004
-0.159

-0.284

0.008
-0.262
-0.090
-0.100
-0.378

0.000
-0.235

0.112
0.140
-0.078
0.156
-0.181
0.122
0.163
0.067
0.658

-0.133
0.029
-0.034
-0.348
-0.334
-0.022
-0.049
-0.446
Bias to Hidden2
-0.172
0.174
-0.331
-0.188
-0.311
-0.051
-0.098
-0.184
Bias to Hidden3
-0.390
-0.274
-0.229
0.073
-0.038
-0.209
-0.015
-0.451
0.296

Hidden] to Hidden2

0.306
-0.218
-0.257
-0.052
-0.369
0.267
0.076
0.199
Hidden1 to Output
-0.311

0.087
0.123
0.257
0.199
0.016
-0.126
-0.289
-0.055

-0.392

-0.249
0.269
-0.296
-0.099
-0.039
-0.009
0.271
0.236

-0.329

0.036
-0.192
-0.290
-0.265

0.198
-0.174

0.032

0.231

-0.023

-0.226
-0.123
-0.353

0.115

0.161
-0.355
-0.148
-0.133

-0.235

-0.016

0.316
-0.213
-0.170
-0.265

0.053
-0.215
-0.084

-0.168

-0.129

0.031
-0.155
-0.200
-0.047

0.084
-0.452
-0.368

-0.217

70

-0.171
0.360
0.115
0.311
0.019

-0.073

-0.142
0.151

0.192

0.029
0.113
0.164
-0.082
-0.076
0.028
0.023
-0.278

-0.323

-0.087

0.125
-0.217
-0.056
-0.231
-0.095
-0.010
-0.125

0.363

0.017
0.179
-0.014
0.201
-0.012
0.000
0.089
0.196

0.105

0.104
-0.040
-0.049
-0.339
-0.476
-0.142
-0.123
-0.952

Hidden?2 to Output

-0.431
0.318
0.092
0.212

-0.114
0.094
0.159

-0.083

-0.252

C.5 C3P1

Input to Hidden1
-0.881
-0.907
-0.479
0.271
0.251
0.369
-0.958
0.196
0.099
0.087
-0.129
Input to Hidden2
-0.678
0.214
0.122

0.179
-0.507
0.285
-0.298
0.294
0.286
-0.323
-0.750

0.087
0.206
-0.209
-0.526
-0.380
-0.574
0.405
-0.262
0.336

0.232
0.301
-0.393
-0.504
-0.236
-0.361
0.552
0.149
-0.411
-0.266
-0.074

0.374
0.077
-0.059

-0.438
-0.087
-0.307
-0.009
-0.171

0.104

0.241
-0.374

0.158
-0.051
-0.173
-0.174
-0.349

0.170
-0.064
-0.070
-0.227

-1.267
-1.434
-0.728
-0.069

0.036

0.619
-1.754
-0.589

0.763
-0.441
-0.542

-0.166
-0.087
-0.386

-0.239
-0.361
-0.222
-0.220

0.226
-0.066
-0.218

0.678

-0.516
0.137
-0.387
-0.242
-0.018
-0.030
0.150
0.110
0.144

0.336

0.782
-0.204
-0.674
-0.752
-0.199

0.581
-0.597
-0.273
-0.437
-0.176

0.325
-0.453
-0.248

-0.302
-0.025
-0.563
0.377
0.019
0.287
0.153
0.508

-0.073
-0.005
0.194
-0.091
0.123
0.102
0.030
0.240
0.601

-1.190
-0.717
-0.274

0.247

0.688
-0.503
-0.390
-0.359

0.074
-0.398
-0.413

-0.125
-0.348
-0.407

-0.133
-0.088

0.088
-0.411
-0.033
-0.086
-0.365

0.677

0.040
0.187
-0.077
0.373
-0.512
-0.020
0.035
-0.397
-0.363

-0.489

0.360
-0.207

0.341
-0.110
-0.045

0.010
-0.607
-0.524
-0.055
-0.066

0.179
-0.600
-0.191

0.014
-0.330
0.104
0.295
0.030
0.109
0.062
-1.057

-0.031
-0.459
-0.280
-0.116
-0.231
-0.265

0.105
-0.113

0.567

-0.003

0.089
-0.110
-0.067

0.060
-0.410
-0.192
-0.168

0.002
-0.406
-0.207

-0.151

0.019
-0.298

71

-0.304
-0.072
-0.430
-0.127
-0.480

0.141
-0.154
-0.047

0.287
0.031
0.149
-0.348
0.181
-0.083
0.414
0.082
0.136

0.007
-0.143
-0.096
-0.154

0.065

0.060
-0.076

0.142

0.283
-0.232
-0.231

0.188
0.029
0.100

-0.210
0.148
-0.111
0.026
-0.279
0.388
0.129
0.515

0.692
0.622
0.027
-0.641
-0.512
-0.357
1.011
-0.025
-0.261
0.091
-0.010

0.250
-0.072
0.186

-0.227
0.108
-0.304
-0.104
-0.094
0.134
0.271
-0.080

-0.666
-0.271
-0.275

0.146
-0.190

0.174
-0.404

0.111
-0.037
-0.010
-0.216

0.133
-0.159
-0.300

-0.305
0.172
-0.405
-0.123
0.069
0.077
-0.287
-0.254

1.155
0.656
0.203
-1.094
-0.712
-0.740
1.239
-0.109
-0.509
0.000
0.268

-0.153
-0.463
-0.131

-0.531
-0.178
-0.150
0.187
0.117
0.394
-0.827
-0.366
0.201
-0.432
-0.257

0.093
0.041
-0.158

-0.020
0.082
0.255

-0.240

-0.437

-0.542
0.306
0.201

-0.347
0.104

-0.128

0.246
0.136
0.184

-0.171
-0.263
-0.299
0.170
0.269
0.305
-0.317
0.083
-0.067
0.034
-0.159

-0.257
0.046
-0.276

-0.580
-0.074
-0.282
0.534
0.194
Input to Output
1.762
-0.198
-0.159
0.204
0.089
0.140
0.104
-0.045
1.167
Bias to Hiddenl
-0.319
-0.268
-0.370
-0.096
0.031
-0.009
-0.596
-0.331
-0.085
-0.075
-0.464
Bias to Hidden2
-0.199
0.155
-0.351
-0.203
-0.292
-0.077
-0.075
-0.211
Bias to Hidden3
-0.384

-0.032
-0.302
-0.147
-0.662

0.054

-0.414
1.760
0.058

-0.108
0.049
0.100

-0.169

-0.007

-0.898

-0.219
0.534
-0.225
0.210
0.230

-0.130
0.175
2.030
0.075

-0.075

-0.048
0.246

-0.023
1.891

-0.079
-0.305

0.414
-0.027
-0.411

0.046
-0.176
0.138
1.848
0.028
-0.190
0.454
-0.055
-0.575

-0.059
0.343
-0.478
0.197
0.184

0.068
0.210
-0.075
0.049
1.891
-0.044
0.096
-0.186
1.265

-0.117
-0.111
-0.111
-0.389

0.127

-0.031
-0.031
-0.075
-0.229
0.074
1.976
-0.587
0.009
-0.265

0.049
-0.356
-0.228

0.033

0.135

0.141
-0.322
-0.346
-0.026
-0.438
-0.324

0.568
-0.420
-0.267

72

-0.200
-0.199
0.038
0.101
-0.181

-0.068
0.078
-0.007
-0.103
0.092
0.002
-0.053
0.089
0.216

-0.371
-0.367

0.268
-0.017
-0.314

0.084
-0.167
0.052
-0.211
0.124
-0.052
-0.006
0.026
-1.030

-0.231

0.232
-0.202
-0.033
-0.261

-0.040
-0.021
-0.020
-0.069
-0.104
-0.015

0.199
-0.073

0.758

-0.227
-0.315
0.224
-0.677
0.094

0.258
-0.084

0.102
-0.218
-0.045
-0.042
-0.283
-0.244
-2.139

-0.008
0.105
0.050
0.005

-0.129

0.040
-0.073
0.011
-0.047
0.019
-0.054
-0.006
-0.085
0.627

-0.439
-0.131
0.296
0.014
-0.127

-0.037
0.069
0.012

-0.158
0.030

-0.048
0.155
0.181

-0.756

-0.071
-0.089
-0.372

0.006
-0.215

0.129
0.125
-0.056
0.166
-0.186
0.122
0.134
0.084
0.813

-0.252
-0.219
0.062
-0.052
-0.220
0.013
-0.445
0.229

Hidden] to Hidden2

0.279
-0.186
-0.268
-0.051
-0.355

0.256

0.108

0.175

Hidden1 to Output

-0.305

0.076
-0.073
-0.039
-0.330
-0.484
-0.131
-0.116
-0.898

Hidden?2 to Output

-0.439
0.308
0.078
0.231

-0.128
0.088
0.137

-0.099

-0.316

0.087
0.138
0.245
0.196
0.022
-0.148
-0.292
-0.073

-0.421
0.213
-0.552
0.288
-0.279
0.303
0.266
-0.329
-0.839

0.079
0.226
-0.231
-0.538
-0.378
-0.566
0.397
-0.254
0.241

-0.268
0.273
-0.311
-0.093
-0.021
-0.016
0.301
0.218

-0.331
-0.451
-0.092
-0.303
-0.006
-0.172

0.099

0.252
-0.388

0.160
-0.049
-0.162
-0.164
-0.338

0.176
-0.070
-0.065
-0.241

0.012
-0.198
-0.300
-0.270

0.191
-0.193

0.032

0.234

-0.006
-0.250
-0.374
-0.207
-0.223

0.231
-0.051
-0.230

0.656

-0.526
0.107
-0.393
-0.241
-0.013
-0.028
0.154
0.111
0.179

-0.251
-0.140
-0.360

0.111

0.170
-0.372
-0.146
-0.128

-0.237
-0.293
-0.031
-0.570
0.382
0.020
0.274
0.149
0.459

-0.077
-0.007
0.203
-0.107
0.117
0.099
0.039
0.237
0.652

-0.022

0.295
-0.223
-0.174
-0.271

0.064
-0.225
-0.096

-0.191
-0.133
-0.077

0.132
-0.430
-0.054
-0.075
-0.375

0.616

0.036
0.206
-0.069
0.396
-0.508
-0.022
0.033
-0.390
-0.390

-0.151

0.056
-0.144
-0.206
-0.023

0.076
-0.429
-0.390

-0.214
-0.019
-0.352
0.103
0.300
0.043
0.090
0.072
-1.089

-0.034
-0.465
-0.291
-0.114
-0.227
-0.263

0.125
-0.113

0.571

73

-0.188
0.353
0.108
0.311
0.036

-0.092

-0.130
0.137

0.195
-0.305
-0.085
-0.429
-0.128
-0.471

0.142
-0.151
-0.116

0.279
0.022
0.160
-0.352
0.183
-0.074
0.427
0.092
0.213

0.023
0.091
0.154
-0.081
-0.066
0.020
0.011
-0.283

-0.322
-0.203
0.169
-0.112
0.025
-0.266
0.381
0.130
0.545

-0.097

0.126
-0.231
-0.043
-0.221
-0.111

0.008
-0.136

0.326
-0.218
0.113
-0.296
-0.107
-0.103
0.140
0.294
-0.096

0.001
0.186
-0.025
0.207
-0.017
-0.005
0.108
0.180

0.109
-0.337
0.148
-0.402
-0.132
0.075
0.077
-0.271
-0.230

C.6 C3P2

Input to Hidden2

-0.875 0.215
-0.844 0.336
-0433 -0.331
0.339 -0.572
0.237 -0.254
0414 -0.393
-0.844 0.451
0.238 0.097
0.043 -0.363
0.152 -0.291
-0.087 -0.061

Input to Hidden2

-0.639 0.405
0.222 0.091
0.137 -0.046

-0.558 0.014

-0.102 -0.294

-0.263 -0.126
0.519 -0.683
0.197 0.067

Input to Output

1.765 -0.413
-0.219 1.691
-0.129 0.053

0.216 -0.102

0.088 0.036

0.126 0.099

0.102 -0.193
-0.125 0.008

1.011 -0.845

Bias to Hiddenl

-0.280
-0.143
-0.320

-1.083
-1.301
-0.640
-0.107

0.060

0.590
-1.463
-0.420

0.650
-0.389
-0.432

-0.078
-0.064
-0.382
-0.169
0.479
-0.218
0.171
0.268

-0.111
0.192
2.016
0.076

-0.072

-0.044
0.264

-0.069
1.658

0.388

0.704
-0.193
-0.597
-0.650
-0.219

0.552
-0.662
-0.193
-0.465
-0.185

0.293
-0.398
-0.241
-0.055
-0.271

0.415

0.033
-0.390

0.067
-0.176
0.157
1.841
0.012
-0.181
0.435
-0.102
-0.372

-1.225
-0.569
-0.244

0.280

0.684
-0.444
-0.471
-0.271

0.020
-0.342
-0.350

-0.050
-0.299
-0.397
-0.045
0.331
-0.429
0.186
0.195

0.075
0.213
-0.025
0.029
1.915
-0.043
0.068
-0.206
1.164

-0.409

0.368
-0.186

0.315
-0.114

0.030
-0.008
-0.626
-0.491
-0.051
-0.091

0.175
-0.596
-0.185
-0.098
-0.086
-0.104
-0.357

0.135

-0.025
-0.049
-0.077
-0.227

0.079

1.994
-0.548
-0.022
-0.248

-0.005

0.172
-0.062
-0.079

0.024
-0.354
-0.147
-0.128

0.053
-0.429
-0.173

-0.147
0.093
-0.272
0.110
-0.340
-0.204
0.058
0.162

0.164
-0.315
-0.322
-0.014
-0.397
-0.320

0.572
-0.404
-0.221

74

0.021
-0.166
-0.113
-0.118

0.098

0.108
-0.090

0.175

0.301
-0.173
-0.255

0.177
0.003
0.117
-0.219
-0.193
0.020
0.121
-0.182

-0.042
0.083
-0.005
-0.115
0.080
0.000
-0.050
0.112
0.203

0.778
0.539
0.062
-0.631
-0.522
-0.419
1.011
-0.069
-0.206
0.079
-0.004

0.258
-0.068
0.211
-0.381
-0.356
0.292
0.000
-0.320

0.088
-0.176
0.031
-0.219
0.130
-0.040
-0.006
0.019
-1.040

-0.692
-0.234
-0.271

0.180
-0.144

0.213
-0.436

0.138
-0.055
-0.021
-0.231

0.153
-0.166
-0.301
-0.220

0.239
-0.216
-0.045
-0.251

-0.055
-0.019
-0.020
-0.064
-0.123
-0.028

0.198
-0.099

0.894

1.115
0.633
0.205
-1.070
-0.725
-0.817
1.380
-0.184
-0.391
0.018
0.312

-0.188
-0.416
-0.079
-0.231
-0.296

0.267
-0.638

0.118

0.238
-0.072

0.118
-0.196
-0.056
-0.034
-0.354
-0.283
-2.105

-0.380
0.013
-0.165
0.258
0.039
0.424
-0.620
-0.333
0.113
-0.418
-0.234

0.136
0.030
-0.135
-0.005
0.077
0.074
0.028
-0.155

0.039
-0.076
0.027
-0.060
0.030
-0.064
-0.003
-0.066
0.688

-0.155
0.050
0.199

-0.162

-0.348

-0.566
0.257
0.194

-0.187
0.152

-0.150

0.234
0.177
0.197
-0.406
-0.095
0.259
0.083
-0.077

-0.010
0.081
-0.015
-0.137
0.035
-0.037
0.132
0.344
-0.603

-0.229
-0.441
-0.307
0.241
0.312
0.284
-0.306
0.069
-0.075
0.027
-0.158

-0.275

0.000
-0.270
-0.083
-0.060
-0.386

0.007
-0.204

0.119
0.157
-0.068
0.171
-0.191
0.113
0.178
0.132
0.680

-0.102
-0.013
0.077
-0.560
-0.283
-0.042
-0.096
-0.431
Bias to Hidden2
-0.188
0.243
-0.326
-0.132
-0.278
-0.054
-0.084
-0.181
Bias to Hidden3
-0.369
-0.261
-0.203
0.077
-0.001
-0.213
-0.006
-0.423
0.391

Hidden] to Hidden2

0.273
-0.171
-0.255
-0.040
-0.361
0.269
0.104
0.185
Hidden1 to Output
-0.319

0.072
0.164
0.263
0.218
0.019
-0.135
-0.271
-0.070

-0.413

-0.272
0.293
-0.307
-0.086
-0.025
-0.007
0.289
0.228

-0.315

0.023
-0.180
-0.294
-0.248

0.200
-0.176

0.036

0.232

0.014

-0.221
-0.118
-0.356

0.138

0.155
-0.340
-0.149
-0.123

-0.243

-0.019

0.310
-0.215
-0.151
-0.267

0.054
-0.208
-0.090

-0.175

-0.151

0.082
-0.135
-0.195
-0.042

0.094
-0.421
-0.381

-0.218

75

-0.180
0.378
0.109
0.329
0.046

-0.087

-0.127
0.151

0.190

0.026
0.114
0.163
-0.067
-0.079
0.036
0.002
-0.274

-0.324

-0.097

0.147
-0.223
-0.026
-0.215
-0.104

0.015
-0.123

0.356

0.000
0.204
-0.016
0.216
-0.015
0.009
0.104
0.195

0.113

0.095
-0.050
-0.041
-0.341
-0.472
-0.159
-0.105
-0.956

Hidden?2 to Output

-0.440
0.342
0.104
0.230

-0.100
0.096
0.152

-0.074

-0.267

C.7 C3P3

Input to Hidden1
-0.285
-0.233
-0.269
-0.206
0.011
0.137
-0.728
-0.164
-0.093
-0.237
0.100
Input to Hidden2
-0.490
0.208
0.079

0.230
-0.544
0.271
-0.268
0.324
0.271
-0.305
-0.745

0.088
0.218
-0.205
-0.528
-0.374
-0.561
0.393
-0.225
0.251

-0.088
-0.566
-0.004
-0.254
-0.242
-0.228

0.089

0.520
-0.415
-0.280

0.449

-0.214
-0.215
-0.167

-0.452
-0.080
-0.297
-0.004
-0.166

0.098

0.251
-0.350

0.162
-0.059
-0.163
-0.168
-0.347

0.167
-0.077
-0.055
-0.233

-0.936
-0.191
-1.288
-0.352
-0.746

0.199
-0.264
-1.210
-0.212
-0.699
-1.527

-0.072
-0.746
-0.364

-0.257
-0.376
-0.220
-0.206

0.243
-0.065
-0.209

0.699

-0.528
0.141
-0.385
-0.243
-0.044
-0.032
0.171
0.113
0.194

0.125
-0.409
0.383
-0.382
-0.167
-0.146
-0.210
0.182
-0.026
-0.360
0.874

-0.170
-0.220
-0.311

-0.318
-0.034
-0.546
0.385
0.024
0.280
0.159
0.488

-0.074
-0.003
0.197
-0.106
0.127
0.092
0.027
0.236
0.634

-1.368

0.738
-1.423
-0.188
-0.405
-0.819
-0.142
-1.401
-0.729
-0.464
-1.488

0.333
-0.767
-0.315

-0.138
-0.075

0.109
-0.415
-0.030
-0.072
-0.379

0.720

0.049
0.194
-0.059
0.400
-0.499
-0.026
0.014
-0.382
-0.380

-0.359

0.208
-0.383
-0.011
-0.295
-0.130
-0.141
-0.501
-0.510

0.014
-0.626

0.112
-0.557
-0.339

0.003
-0.335
0.082
0.296
0.037
0.081
0.068
-1.115

-0.023
-0.491
-0.288
-0.097
-0.220
-0.256

0.110
-0.110

0.569

-0.057
-0.088
-0.285
-0.215
-0.409
-0.585
-0.300
-0.523
-0.400
-0.619
-0.172

-0.375

-0.414
-0.381

76

-0.321
-0.056
-0.429
-0.132
-0.473

0.151
-0.133

0.008

0.305
0.035
0.173
-0.360
0.197
-0.080
0.421
0.084
0.206

-0.149
-0.236
-0.426
-0.643
-0.191
-0.135
-0.140

0.005

0.104
-0.312
-1.199

0.087
-0.165
-0.048

-0.204
0.165
-0.104
0.035
-0.270
0.345
0.125
0.446

0.450
-0.304
0.083
-0.394
-0.362
-0.108
0.096
0.218
-0.091
-0.044
0.225

-0.104
0.015
0.073

-0.244
0.116
-0.298
-0.100
-0.101
0.138
0.293
-0.030

-0.439

0.074
-0.657
-0.315
-0.588
-0.157
-0.049
-0.220
-0.424
-0.096
-1.068

0.258
-0.401
-0.331

-0.322
0.167
-0.405
-0.126
0.064
0.075
-0.283
-0.222

0.601
-0.735
0.711
-0.436
-0.186
-0.182
-0.081
0.441
-0.057
-0.131
1.567

-0.724
-0.271
-0.293

-0.281
-0.072
-0.264
-0.278
-0.243
-0.021
-0.570
-0.409
-0.128
-0.429
-0.586

-0.092
-0.104
-0.246

-0.198
-0.983

0.668
-0.262
-0.417
-0.483
-0.190

0.834
-0.239
-0.085

0.841

-0.306
0.206
-0.036

0.260
-0.259
-0.624
-0.213
-0.351

0.313
-0.465
-0.310
-0.301

0.154
-1.292

-0.199
0.040
-0.328

-0.243
-0.303
-0.265
0.203
-0.192
Input to Output
-0.228
1.188
-0.176
-0.588
-0.140
-0.230
-0.422
0.172
0.302
Bias to Hiddenl
-0.261
-0.272
-0.578
-0.379
-0.610
-0.2711
-0.552
-0.797
-0.651
-0.291
-0.416
Bias to Hidden2
-0.422
-0.391
-0.423
-0.498
-0.524
-0.240
-0.499
-0.660
Bias to Hidden3
-0.169

-0.274
-0.505
-0.511
-0.400
-0.200

0.172
-1.081
-0.219
-0.068
-0.123
-0.207

0.096
-0.171
-0.433

-0.355

0.040
-0.202
-0.371
-0.180

0.068
-0.317
-0.160

2.092

0.017

0.122

0.561

0.496

0.821

-0.024
-0.273
-0.038

0.245
-0.408

-0.112
-1.177

0.418
-0.059

0.025
-0.496
-0.088
-0.297
-0.138

-0.351

0.062
-0.109
-0.557
-0.103

0.235
1.106
0.233
1.153
-0.028
1.114
1.451
0.302
0.475

-0.160
-0.178
-0.181
-0.586

0.193

-0.028
-0.058
-0.032
-0.340
0.253
1.133
0.095
0.005
-0.288

-0.196
-0.514
-0.415
-0.275
-0.245

0.350
-0.009
-0.147

0.126
-0.331

0.114

0.023
-0.395
-0.391

77

-0.356
-0.333
-0.064
-0.271
-0.193

-0.072
0.394
0.172
0.153
0.318

-0.415
0.253
0.060

-0.004

-0.378
-0.365
0.041
0.104
-0.428

0.052
-0.355

0.003
-0.615
-0.005
-0.336
-0.171
-0.066
-0.368

-0.344

0.093
-0.079
-0.487
-0.313

-0.004
0.383
0.008
0.476
0.089

-0.212

-0.120

-0.034
0.103

-0.025
-0.149
-0.303
-0.185
-0.058

-0.172
-0.852

0.228
-1.894

0.032
-0.239
-1.235
-0.515
-0.791

-0.112
-0.136
-0.080
-0.288
-0.272

-0.029
0.007
-0.011
-0.340
0.269
-0.470
0.224
-0.064
0.273

-0.488
-0.250
-0.160

0.238
-0.306

-0.075
-0.884
-0.077
-1.082

0.281
-1.343

0.022
-0.141
-0.165

-0.136
-0.157
-0.161
-0.286
-0.262

0.058
1.583
0.074
0.563
-0.480
-0.285
-0.573
-0.027
0.303

0.199
-0.019
0.336
0.004
0.360
-0.567
-0.390
-0.002

Hidden] to Hidden2

0.095
-0.238
-0.315
-0.098
-0.271

0.105

0.181

0.121

Hidden1 to Output

-0.155
0.127
0.142

-0.289

-0.054

-0.212

-0.616

-0.196

-0.447

Hidden?2 to Output

-0.131
0.357
0.142
0.489

-0.072
0.189
0.218
0.004

-0.271

0.022
0.038
0.147
0.118
0.089
-0.249
-0.314
-0.115

-0.239
0.475
-0.215
0.489
-0.147
0.248
0.500
-0.198
-0.153

0.125
0.271
-0.092
-0.456
-0.118
-0.258
-0.221
-0.296
0.055

-0.376
0.197
-0.296
-0.173
-0.062
-0.066
0.268
0.111

-0.276
-0.473
0.050
-0.562
0.106
-0.114
-0.414
0.108
-0.599

0.146
0.061
-0.102
-0.029
-0.186
0.144
-0.175
-0.046
-0.269

0.051
-0.371
-0.306
-0.399

0.096
-0.145
-0.162

0.096

0.068
-0.020
-0.160

0.025
-0.127

0.174
-0.321
-0.195

0.297

-0.262
0.117
-0.220
-0.142
0.112
0.115
-0.152
0.092
0.100

-0.175
-0.298
-0.310

0.023

0.061
-0.267
-0.302
-0.269

-0.228
-0.125
0.142
-0.330
0.288
0.130
-0.079
0.169
-0.005

0.044
0.133
0.155
0.136
0.118
0.243
-0.188
0.293
0.335

-0.066

0.110
-0.248
-0.255
-0.358

0.026
-0.372
-0.244

-0.180
0.076
-0.131
0.143
-0.188
0.006
-0.507
-0.324
0.368

0.174
0.347
0.024
0.266
-0.270
0.104
-0.128
-0.336
-0.215

-0.278
-0.024
-0.217
-0.291

0.034
-0.039
-0.360
-0.447

0.005
-0.196
-0.080

0.219

0.291

0.153

0.131

0.041
-0.425

-0.138
-0.217
-0.245
-0.263
-0.168
-0.089
-0.470
-0.139

0.187

78

-0.249
0.193
0.123
0.220

-0.030

-0.116

-0.199

-0.008

0.154
-0.374
0.060
-0.432
0.003
-0.269
-0.364
-0.278
-0.399

0.363
0.089
0.124
-0.074
0.243
0.129
0.203
0.153
-0.135

-0.003
-0.056

0.190
-0.145
-0.133

0.033
-0.086
-0.405

-0.250
-0.106
0.094
-0.140
0.159
-0.080
-0.166
0.134
0.157

-0.083
-0.014
-0.233
-0.114
-0.242
-0.081
-0.111
-0.234

0.356
0.102
0.287
-0.093
0.033
0.063
-0.152
0.296
-0.258

-0.218
0.147
-0.017
0.128
-0.118
-0.122
0.175
0.024

0.025
-0.692
0.128
-1.107
0.101
-0.016
-0.740
-0.516
-0.718

