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Abstract 
This paper describes the virtual humans developed as part of the 

Mission Rehearsal Exercise project, a virtual reality based training 
system.   This project is an ambitious exercise in integration, both 
in the sense of integrating technology with entertainment industry 
content, but also in that we have joined a number of component 
technologies that have not been integrated before. This integration 
has not only raised new research issues, but it has also suggested 
some new approaches to difficult problems.  We describe the key 
capabilities of the virtual humans, including task representation 
and reasoning, natural language dialogue, and emotion reasoning, 
and show how these capabilities are integrated to provide more 
human-level intelligence than would otherwise be possible. 

 Introduction 
Achieving human-level intelligence in virtual charac-
ters requires a number of core capabilities, including 
planning, belief representation, communication abil-
ity, emotional reasoning, and most importantly, a 
way to integrate these capabilities. For many re-
searchers, software integration is often regarded as a 
kind of necessary evil – something to make sure that 
all the research components of a large system fit to-
gether and interoperate properly – but not something 
that is likely to contribute new research insights or 
suggest new solutions. We have found, on the con-
trary, that the conventional wisdom about integration 
does not hold: as we describe in this paper, the 
integration process has raised new research issues 
and at the same time has suggested new approaches 
to long-standing issues.    We begin with a brief 
description of the background behind our work in 
training and the approach we have taken to im-
proving training.  We then describe the technology 
components we have developed, the system architec-
ture we use, and we conclude with some of the in-
sights we have gained from the integration process. 

Virtual Humans for Training 
Virtual humans are software artifacts that look like, 
act like and interact with humans but exist in virtual 
environments. We have been exploring the use of 
virtual humans to create social training environments, 
environments where a learner can explore stressful 
social situations in the safety of a virtual world. 

For example, we designed the Mission Rehearsal 
Exercise (MRE) system to demonstrate the use of 
virtual human technology to teach leadership skills in 
high–stakes social situations. MRE places the trainee 
in an environment populated with virtual humans. 
The training scenario we are currently using is situ-
ated in a small town in Bosnia. It opens with a lieu-
tenant (the trainee) in his Humvee. Over the radio, he 
gets orders to proceed to a rendezvous point to meet 
up with his soldiers to plan a mission to assist in 
quelling a civil disturbance. When he arrives at the 
rendezvous point, he discovers a surprise (see Figure 
1). One of his platoon’s Humvees has been involved 
in an accident with a civilian car. There’s a small boy 
on the ground with serious injuries, a frantic mother, 
and a crowd is starting to form. A TV camera crew 
shows up and starts taping. What should the lieuten-
ant do? Should he stop and render aid? Or should he 
continue on with his mission? Depending on deci-
sions he makes, different outcomes will occur. 
Our virtual humans build on prior work in the areas 
of embodied conversational agents (Cassell, Sullivan, 
Prevost, & Churchill, 2000) and animated pedagogi-
cal agents (Johnson, Rickel, & Lester, 2000), but they 
integrate a broader set of capabilities than any prior 
work.  For the types of training scenarios we are tar-

geting, the virtual humans must integrate three broad 
influences on their behavior: they must perceive and 

Figure 1: The Mission Rehearsal Exercise System, 
showing, from the left, the platoon sergeant, the in-
jured boy and his mother, a medic, and a crowd. 

    

  



act in a 3D virtual world, they must engage in face-
to-face spoken dialogues with people and other vir-
tual humans in such worlds, and they must exhibit 
human-like emotions.  Classic work on virtual hu-
mans in the computer graphics community focused 
on perception and action in 3D worlds (Badler, Phil-
lips, & Webber, 1993; Thalmann, 1993), but largely 
ignored dialogue and emotions.  Several systems 
have carefully modeled the interplay between speech 
and nonverbal behavior in face-to-face dialogue 
(Cassell, et al, 2000; Pelachaud, Badler, & Steedman, 
1996) but these virtual humans did not include emo-
tions and could not participate in physical tasks in 3D 
worlds.  Some work has begun to explore the integra-
tion of conversational capabilities with emotions 
(Lester, et al 2000; Marsella, Johnson, & LaBore, 
2000; Poggi & Pelachaud, 2000), but still does not 
address physical tasks in 3D worlds.  Likewise, prior 
work on Steve addressed the issues of integrating 
face-to-face dialogue with collaboration on physical 
tasks in a 3D virtual world (Rickel & Johnson, 2000), 
but Steve did not include emotions and had far less 
sophisticated dialogue capabilities than our current 
virtual humans.  The tight integration of all these 
capabilities is one of  the most novel aspects of our 
current work. 

The virtual humans, which include the sergeant, 
medic, and mother in the scenario described in the 
previous section, are implemented in Soar, a general 
architecture for building intelligent agents (Newell, 
1990) and build on the earlier Steve system. As such, 
their behavior is not scripted; rather, it is driven by a 
set of general, domain-independent capabilities dis-
cussed below. The virtual humans perceive events in 
the simulation, reason about the tasks they are per-
forming, and they control the bodies and faces of the 
characters to which they have been assigned. They 
send messages to one another, to the character bod-
ies, and to the audio system via the Communications 
Bus shown in Figure 2. 

 Architecture 
In order for virtual humans to collaborate with people 
and each other in scenarios like the peacekeeping 
mission, they must include a wide variety of capabili-
ties, such as perception, planning, spoken dialogue, 
and emotions. Thus, we desired a flexible architec-
ture for our virtual humans that would allow us to 
easily experiment with the connections between the 
individual components. 

A blackboard architecture, in which individual 
components have access to the intermediate and final 
results of other components by default, provides such 
flexibility.  The alternative, in which each module 
would explicitly pass specific information to other 
components, would require constant revision as we 

made progress understanding the interdependencies 
among components. 

 
Figure 2: Virtual Human architecture 

For our integrated architecture, we chose Soar, 
because it allows each component to be implemented 
with production rules that read from and write to a 
common working memory, which acts as the desired 
blackboard.  Soar further breaks computation into a 
sequence of intermediate operators that are proposed 
in parallel but selected sequentially via an arbitration 
mechanism.  This allows for tight interleaving of 
operators from individual components and flexible 
control over their priority. 

All components of the virtual humans are imple-
mented in Soar, with several exceptions: speech rec-
ognition, natural language understanding (syntactic 
and semantic analysis), synchronization of verbal and 
nonverbal components of output utterances, and 
speech synthesis.  It was less practical to implement 
these four components in Soar because each was built 
on top of existing software that would have been dif-
ficult to reimplement. These modules also work more 
or less as pipe-lines, with well-defined inputs and 
outputs, and do not require as much detailed interac-
tion as the core reasoning components implemented 
within Soar. 

 Task Representation and Reasoning 
To collaborate with humans and other synthetic 
teammates, virtual humans need to understand how 
past events, present circumstances, and future possi-
bilities impact team tasks and goals.  For example, 
the platoon sergeant agent in Figure 1 must be able to 
brief the trainee on past events that led to the accident 
as well as how the victim’s current injuries impact 
the platoon’s future mission. More generally, agents 
must understand task goals and how to assess 
whether they are currently satisfied, the actions that 
can achieve them, how the team must coordinate the 
selection and execution of those actions, and how to 
adapt execution to unexpected events.   



   

To provide this understanding, agents use do-
main-independent reasoning algorithms operating 
over a domain-specific declarative representation of 
team tasks. The representation incorporates elements 
of decision-theoretic plan representations (allowing 
agents to reason about the value and likelihood of 
future possibilities) with an explicit representation of 
beliefs and intentions (important for multi-agent rea-
soning). This representation is divided into explicit 
representations of past episodes, present state and 
future task-related information:  The causal history 
maintains a sequence of past observed steps (includ-
ing unexpected and non-task events) and interde-
pendencies between past steps and present or future 
states (e.g., causal links). The current world descrip-
tion represents the current state of the world through 
a list of propositions. The task description includes of 
a set of possible future steps, each of which is either a 
primitive action (e.g., a physical or sensing action in 
the virtual world) or an abstract action which must 
itself be further decomposed.  Abstract actions give 
tasks a hierarchical structure. Interdependencies are 
represented as a set of ordering constraints, causal 
links and threat relations. 

In addition to understanding the structure of tasks, 
agents must understand the roles of each team mem-
ber.  Each task step is associated with the team mem-
ber that is responsible for performing it as well as a 
possibly different agent that has authority over its 
execution; that is, the teammate responsible for a task 
step cannot perform it until authorization is given by 
the specified teammate with authority (Traum, 
Rickel, Gratch & Marsella 2003). This is required to 
model the hierarchical organizational structure of 
some teams, such as in the military.     

An agent's task model represents its understand-
ing of the task in general, independent of the current 
scenario conditions (different agents may have dif-
ferent representations of the same task).  Agents con-
tinually monitor the state of the virtual world via 
messages from the simulator that are filtered to re-
flect perceptual limitations (Rickel et al., 2002) and 
update their plans accordingly.  The result of this 
planning algorithm specifies how the agent privately 
believes that the team can collectively complete the 
task, with some causal links specifying the interde-
pendencies among team members' actions.  

A key aspect of collaborative planning is negoti-
ating about alternative ways to achieve team goals 
(Traum, Rickel, Gratch & Marsella, 2003).  To sup-
port such negotiation, the decision-theoretic planner 
can reason about alternative, mutually exclusive 
courses of action (recipes) for achieving tasks, their 
likelihood, and the utility of certain consequences, 
allowing the system to assess the relative strengths 
and weaknesses of different alternatives. These 

courses of action are self-contained hierarchical tasks 
in the sense defined above, and subject to the same 
dynamic task reasoning. For example, one might 
evacuate someone to a hospital by using either a 
medevac helicopter or an ambulance. Depending on 
the circumstances, only one option might be possible 
(e.g., the medevac may be unavailable or the injuries 
may be too severe for an ambulance), but if both are 
valid options, they must be ranked through some rea-
soned analysis of their relative costs and benefits.  

 Natural Language Dialogue 
In many ways, our natural language processing com-
ponents and architecture mirror fairly traditional dia-
logue systems. There is a speech recognizer, semantic 
parser, dialogue manager, NL generator, and speech 
synthesizer. However, the challenges of the MRE 
project, including integration within an immersive 
story environment as well as with the other virtual 
human components required innovations in most ar-
eas. Here we briefly describe the natural language 
processing components and capabilities; we will re-
turn later to some of the specific innovations moti-
vated by this integration. 

The Speech recognizer was built using Sonic 
(Pellom, 2001), with a domain specific n-gram lan-
guage model and with locally trained acoustic models 
(Wang & Narayanan, 2002). Output is currently the 
single best interpretation, as well as indications of 
when the user starts and stops speaking, to manage 
gaze control and turn-taking behavior of agents.  

Speech recognition output is processed by the 
semantic parser module, which produces a semantic 
representation of the utterances.  The parser uses a 
hybrid between finite-state transducers and statistical 
processing to produce a best-guess at semantic in-
formation from the input word stream (Feng 2003). 
In cases in which imperfect input is given, it will 
robustly produce representations which may possibly 
be incomplete or partially incorrect. The module will 
provide addressee information (if vocatives were 
present), sentence mood, and semantic information 
corresponding to states and actions related to the task 
model (Traum, 2003). 

The Soar-module for each agent receives the out-
put of the speech recognizer and semantic parser. 
This information is then matched against the agent's 
internal representation of the context, including the 
actions and states in the task model, current expecta-
tions, and focus to determine a set of candidate inter-
pretations. Some of these interpretations may be un-
derspecified, due to impoverished input, or over-
specified in cases of incorrect input (either an out of 
domain utterance by the user, or an error in the 
speech recognizer or semantic parser). In some cases, 
underspecified elements can be filled in with refer-



ence to the agent's knowledge; if not, the representa-
tion is left underspecified and processing continues. 
The dialogue component of the Soar agent also pro-
duces a set of dialogue act interpretations of the ut-
terance. Some of these are traditional speech acts 
(e.g., assert, request, info-request) with content being 
the semantic interpretation, while others represent 
other levels of action that have been performed, such 
as turn-taking, grounding, and negotiation (Traum & 
Rickel, 2002). 

Dialogue management follows the approach of 
the TRINDI Project (Larsson & 
Traum, 2000), and specifically 
the EDIS system (Matheson, 
Poesio, & Traum, 2000). Dia-
logue acts are used to update an 
Information State that is also 
used as context for other aspects 
of agent reasoning (Traum & 
Rickel, 2002). Decisions of how 
to act in dialogue are tightly 
coupled with other action selec-
tion decisions in the agent. The 
agent can choose to speak, 
choose to listen, choose to act 
related to a task, etc. Aspects of 
the information state provide 
motivations to speak, including 
answering questions, negotiating 
with respect to a request or or-
der, giving feedback of under-
standing (acknowledgements, 
repairs, and repair requests), and 
making suggestions and issuing 
orders, when appropriate according 

Once a decision is made to spe
eral phases involved in the language
ess, including content selection, se
and realization. The final sentence i
with communicative gestures and s
sizer and rendering modules to pro
Meanwhile, messages are sent to oth
them know what the agent is sayin
Hovy, 2002). The speech synthesi
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are responsible (R) for seeing that an action is per-
formed (either doing it themselves or acting as team 
leader making sure the subtasks are carried out), and 
which agents have authority (A) to have the action 
performed. With reference to this piece of the task 
model, consider the dialogue fragment on the right. 
Initially the focus is on the render aid task. When the 
lieutenant issues the command to secure the area (ut-
terance U11), the sergeant recognizes the command 
as referring to a subaction of Render Aid in the cur-
rent task model (Task 2). As a direct effect of the 

 

Focus=1
Lt: U11“secure the area ”
Commited (lt,2), 2 authorized, Obl(sgt,U11)
Sgt: U12 “yes sir ”
Committed(sgt,2), Push(2,focus)
Goal7:Announce(2,{1sldr,2sldr,3sldr,4sldr})
Goal8: Start-conversation(sgt, ,{1sldr,2sldr, …},2)
Goal8 -> Sgt: U21 “Squad leaders listen up! ”
Goal7 -> U22 “I want 360 degree security ”
Push(3, focus)
Goal9:authorize 3
Goal9 -> u23 “1st squad take 12-4 ”
Committed(sgt,3), 3 authorized
Pop(3), Push(4)
Goal10: authorize 4
Goal10 -> u24 “2nd squad take 4-8 ”
Committed(sgt,4), 4 authorized
Pop(4)
…
A10: Squads move
A10: grounds U21-U26, …
       ends conversation about 2, realizes 2

Secure Area

Secure 12-4

Secure 8-12 Secure Accident

Secure 4-8

Squads in area

A=Lt,R=Sgt

A=Sgt,R=1sldr

A=Sgt,R=2sldr

A=Sgt,R=4sldrA=Sgt,R=3sldr

Area Secure

1

2

3
4

5 6

Decomposition

Decomposition

Render Aid

Figure 3: Sample task model and dialogue interaction 
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lieutenant issuing a command to perform this task, 
the lieutenant has committed himself to the task, the 
sergeant has an obligation to perform the task, and 
the task becomes authorized. Because the sergeant 
already agrees that this is an appropriate next step, he 
is able to accept it with utterance U12, which also 
commits him to perform the action. The sergeant then 
pushes this task into his task model focus and begins 
execution. In this case, because it is a team task re-
quiring actions of other teammates, the sergeant, as 
team leader, must announce the task to the other team 
members.  Thus, the system forms a communicative 
goal to make this announcement. Before the sergeant 
can issue this announcement, he must make sure he 
has the squad leaders' attention and has them engaged 
in conversation. He forms a goal to open a new con-
versation so that he can produce the announcement. 
Then his focus can turn to the individual tasks for 
each squad leader. As each one enters the sergeant's 
focus, he issues the command that commits the ser-
geant and authorizes the troops to carry it out. When 
the sergeant observes the troops move into action, he 
can infer that they have understood his order and 



   

adopted his plan. When the task completes, the con-
versation between sergeant and squad leaders finishes 
and the sergeant turns his attention to other matters.  

Emotion 
As our agents attempt to realistically model the be-
havior of humans in high-stress scenarios, it is impor-
tant to model the role emotion plays in influencing 
decision-making and behavior.  Our work on model-
ing emotion is motivated by appraisal theory, a psy-
chological theory of emotion that emphasizes the 
relationship between emotion and cognition (Lazarus, 
1991). The theory posits two basic processes: Ap-
praisal generates emotion by assessing the person-
environment relationship (did an event facilitate or 
inhibit the agent’s goals; who deserves blame or 
credit). Coping is the process of dealing with emo-
tion, either by acting externally on the world (prob-
lem-focused coping), or by acting internally to 
change beliefs or attention (emotion-focused coping). 
Coping and appraisal interact and unfold over time, 
modeling the temporal character of emotion noted by 
several emotion researchers (Lazarus, 1991; Scherer, 
1984): an agent may “feel” distress for an event (ap-
praisal), which motivates the shifting of blame (cop-
ing), which leads to anger (re-appraisal). 

In re-casting this theory as a computational 
model, we have tied appraisals and coping to the 
agent’s task knowledge and reasoning (Gratch & 
Marsella, 2004). This representation has several ad-
vantages for modeling emotion.  It makes a clean 
separation between domain-specific knowledge, it 
acts as a blackboard architecture, simplifying com-
munication between appraisal and coping to other 
mechanisms (like planning) that operate on the task 
knowledge, it facilitates reasoning about blame and 
indirect consequences of action (e.g., a threat to a 
sub-goal might be distressing, not because the sub-
goal is intrinsically important, but because it facili-
tates a larger goal), and it provides a uniform repre-
sentation of past and future actions.  

Our approach to appraisal assesses the agent-
environment relationship via features of this explicit 
task representation (Gratch, 2000). Speaking loosely, 
we treat appraisal as a set of feature detectors that 
map features of this representation into appraisal 
variables that characterize the consequences of an 
event from the agent’s perspective. These variables 
include the desirability of those consequences, the 
likelihood of them occurring, who deserves credit or 
blame and a measure of the agent’s ability to alter 
those consequences. The result is one or more ap-
praisal frames that characterize the agent's emotional 
reactions to an event.  

Our computational model of coping (Marsella & 
Gratch, 2002) similarly exploits the task representa-

tion to uncover which features led to the appraised 
emotion, and what potential there may be for altering 
these features. In essence, coping is the inverse of 
appraisal.  To discharge a strong emotion about some 
situation, one obvious strategy is to change one or 
more of the factors that contributed to the emotion.  
Coping operates on the same representations as the 
appraisals, the agent’s beliefs, goals and plans, but in 
reverse, seeking to make a change, directly or indi-
rectly, that would have the desired impact on ap-
praisal.  Coping could impact the agent’s beliefs 
about the situation, such as the importance of a 
threatened goal, the likelihood of the threat, responsi-
bility for the threat, etc. Further, the agent might form 
intentions to change external factors, for example, by 
performing some action that removes the threat.  In-
deed, our coping strategies can involve a combination 
of such approaches. This mirrors how coping proc-
esses are understood to operate in human behavior 
whereby people may employ a mix of problem-
focused coping and emotion-focused coping to deal 
with stress. 

Action and Body Movements 
Internally, the virtual humans are perceiving events, 
understanding utterances, updating their beliefs, for-
mulating and revising plans, generating emotional 
appraisals, and choosing actions.  Agents manifest 
the rich dynamics of their cognitive and emotional 
inner state through external behavior using the same 
verbal and nonverbal cues that people use to under-
stand one another and these behaviors must be seam-
lessly integrated across modality and across time. 

Here we summarize the model discussed in 
(Marsella, Gratch, & Rickel, 2003), which drives 
gaze, facial expressions, and body gestures based on 
features of the agent’s dynamic cognitive state. Gaze 
indicates a character's focus of attention and is syn-
chronized to the character's inner thoughts. For ex-
ample, task-related behaviors (e.g., monitoring for an 
expected effect or action) trigger a corresponding 
gaze shift, and gaze during social interactions is 
driven by the dialogue state and the state of the vir-
tual human's own processing (e.g., gaze at an inter-
locutor who is speaking, gaze aversion during utter-
ance planning to hold the turn). Facial expressions 
both convey emotion and augment verbal communi-
cation. In humans, these behaviors can be used inten-
tionally by an individual to inform or deceive but can 
also unintentionally reveal information about the in-
dividual's mental state and our work integrates these 
aspects: by tying some expressive behavior to emo-
tional appraisal we reveal “true” mental state, 
whereas tying other behaviors to coping strategies, 
we inform intentional displays.  Finally, a wide range 
of body movements emphasize and augment speech. 



Our approach plans the utterance, annotates it with 
nonverbal behavior, then passes it to a text-to-speech 
system that schedules both the verbal and nonverbal 
behavior, using BEAT (Cassell, Vilhjálmsson, & 
Bickmore, 2001), although we augment this to ex-
press not only the syntactic, semantic and pragmatic 
structure of the utterance, emotional appraisal and 
coping information as well.  

Putting it together: the value of integration 
We have described the major technical components 
of the virtual humans. As we pointed out in the intro-
duction, software integration is necessary to make 
sure that all the various pieces in a system work to-
gether properly, but one usually expects that the real 
research takes place in building the individual com-
ponents. One doesn’t expect to learn much from inte-
gration (except perhaps to find that some components 
don’t interface properly). However, in integrating the 
Mission Rehearsal Exercise system, we have been 
surprised: we have uncovered new research issues 
and some new approaches to existing problems have 
been suggested. In this section we outline some of the 
things we learned as we brought all the pieces to-
gether. 

Socially Embedded Multi-speaker Dialogue 
The Bosnian scenario of MRE, with a cast of 

many characters occupying various roles in a rich 
social fabric, is quite different from the usual case of 
natural language dialogue with a single human and 
single computer system interacting. While some as-
pects of dialogue as social interaction had already 
been addressed in previous work (e.g,  discourse ob-
ligations in (Traum & Allen, 1994)), many new is-
sues must be confronted, such as:  

• Is the intended addressee paying attention?  
• Is he already engaged in conversation?  
• How will hearers recognize the addressee?  
• How are vocatives and gaze as well as con-

text reasoning used to help this process? 
• How are multiple, interleaved, conversations 

managed (e.g., talking face to face with one 
character while on the radio to another)? 

These issues have implications for agents in both 
understanding and producing communications, and 
for representing the dialogue state. Furthermore, 
there are differences depending on whether the con-
versation is between virtual humans or between the 
human trainee and a virtual human, because more 
limited information is available in the second case.  

We have begun to address these issues in several 
ways.  First, the dialogue model has been extended so 
that who is being addressed is captured as well as the 
content to be conveyed.  Second, we have introduced 
conventions for marking the start and termination of 

a conversation with an agent.  A conversation begins 
by addressing the character either by name or by his 
role.  For example the lieutenant might give the ser-
geant an order by saying: “Sergeant, send first squad 
to Celic!” Once a conversation has been started, it is 
assumed to continue until it is terminated, either by 
the purpose having been fulfilled (for a short task-
specific conversation like securing the area), or by an 
explicit closing (e.g., "out" on the radio). 

For conversations between the human trainee and 
the virtual humans we rely on these conventions to 
determine who is addressing whom. For conversa-
tions between virtual humans, the problem of deter-
mining who is being addressed is easier, because it is 
all represented internally.  However, the virtual hu-
mans use the same reasoning methods when talking 
among themselves as they use for interacting with the 
trainee so their behavior is consistent.  We feel this is 
an important constraint to achieve consistency in in-
terface behavior (Traum & Rickel, 2002). We have 
also begun to make use of head-tracking data to de-
termine who the trainee is looking at when he speaks.     

The Pervasive Effect of Emotion 
In humans, emotion has a broad effect on behavior.  
It affects how we speak, how we gesture, our posture, 
and even how we reason.  And, of course, emotion is 
indispensable for creating good story and compelling 
characters. In integrating emotion into our virtual 
humans, we have found that we need to deal with a 
similarly broad range of issues.  Models of emotion 
can both affect the behavior of other components of 
the virtual human, and they can provide additional 
knowledge that the system can use in reasoning.  Be-
low we give an example of each. 
Emotionally Appropriate Natural Language Gen-
eration. A big challenge for Natural Language Gen-
eration in MRE is the generation of emotionally ap-
propriate language, which expresses both the desired 
information and the desired emotional attitude to-
wards that information. Each expressive variant casts 
an emotional shade on each representational item it 
contains (for example, the phrase governed by the 
verb “ram” as in “They rammed into us, sir” casts the 
subject in a negative and the object in a positive 
light).  Prior work on the generation of variation ex-
pressions, such as (Bateman & Paris, 1989; Hovy, 
1990), uses quite simplistic emotional models of the 
speaker and hearer.  In general, these systems simply 
had to choose among a small set of phrases, and 
within the phrase from a small set of lexical fillers for 
certain positions of the phrase, where each alternative 
phrase and lexical item was pre-annotated with an 
affective value such as good or bad.   

The presence in MRE of an emotion model pro-
vides a considerably finer-grain level of control, ena-



   

bling principled realization decisions over a far more 
nuanced set of expressive alternatives.  Given many 
representational items, a rich set of emotional values 
potentially holding for them, and numerous phrases, 
each with its own combination of positive and nega-
tive fields, the problem was to design a system that 
can reliably and quickly find the optimal phrasing 
without dropping content.    To compute shades of 
connotation more accurately and quickly, we created 
a vector space in which we can represent the desired 
attitudes of the speaker (as specified by the emotion 
model) as well as the overall emotional value of each 
candidate expression (whether noun phrase or whole 
sentence).  Using a standard Euclidean distance 
measure we can then determine which variant expres-
sion most closely matches the desired effect. See 
(Fleischman & Hovy, 2002) for details.  
Using Emotion to Determine Linguistic Focus. In 
natural language, we often refer to things in impre-
cise ways. To correctly interpret such referents in a 
natural language utterance, one needs to understand 
what is in linguistic focus.  Loosely speaking, one 
needs to understand what is the main subject of dis-
cussion.  For example, when the lieutenant trainee 
arrives at the accident scene in the MRE scenario, he 
might ask the sergeant, “What happened here?”  In 
principle many things have happened: the lieutenant 
just drove up, the soldiers assembled at the meeting 
point, an accident occurred, a crowd formed, and so 
forth.  The sergeant could talk about any one of these 
and be factually correct, but not necessarily prag-
matically appropriate. A number of heuristics have 
been developed to model linguistic focus.  One such 
heuristic is based on the idea of recency. It holds that 
the entity that is in linguistic focus is whatever was 
most recently discussed, or occurred most recently.  
In this case, recency doesn’t work, since the Sergeant 
would sound quite silly if he responded: “Well, you 
just drove up, sir.” On the other hand, people are of-
ten focused most strongly on the things that upset 
them emotionally, which suggests an emotion-based 
heuristic for determining linguistic focus.  Because 
we have modeled the sergeant’s emotions in MRE, 
the dialogue planning modules  have access to the 
fact that he is upset about the accident can use that 
information to give the most appropriate answer: 
describing the accident and how it occurred. 

Status and Evaluation 
An initial version of the MRE system described in 
this paper has been implemented and applied to the 
peacekeeping training scenario described earlier.  The 
system allows the trainee, playing the role of the lieu-
tenant, to interact freely (through speech) with the 
three virtual humans (sergeant, medic, and mother).    

The trainee takes action in the virtual world through 
commands to the sergeant, who in turn commands the 
squads.  Ultimately, the experience terminates with 
one of four possible endings, depending on the 
trainee's actions.  However, unlike interactive narra-
tive models based on an explicit branching structure, 
the system does not force the trainee through a prede-
termined sequence of decision points, each with a 
limited set of options; the trainee's interactions with 
the characters is unconstrained and limited only by 
the characters' understanding and capabilities. 

The understanding and capabilities of the virtual 
humans is limited by the coverage of their spoken 
dialogue models and their models of the domain 
tasks.  The sergeant's speech recognizer currently has 
a vocabulary of a few hundred words, with a gram-
mar allowing recognition of 16000 distinct utter-
ances.  His natural language understanding module 
can currently produce semantic representation frames 
for all of these sentences as well as providing (some-
times partial) results for different or ill-formed input.  
His natural language generation module currently 
expresses all communicative goals formed by the 
dialog module, modulating some of them for affec-
tive appropriateness.  His speech synthesis module 
currently has a vocabulary of over 1000 words.  The 
sergeant's domain task knowledge, which is the most 
complex among all the virtual humans in the sce-
nario, includes about 40 tasks, and about 150 proper-
ties of the world.  While the tasks represent the full 
range of actions that the sergeant can understand and 
carry out, his ability to talk about these tasks and 
properties (e.g., answer questions and give advice) is 
broad, limited only by the coverage of the spoken 
dialogue modules as described above. 

Despite its complexity, real-time performance of 
the system is good, although we are continuing to 
improve latencies.  Given an utterance by the user, a 
virtual human typically responds within 3 seconds, 
including speech recognition, natural language un-
derstanding, updating dialogue and emotional states, 
choosing how to respond, natural language genera-
tion, planning the voice output and accompanying 
gestures and visemes, and finally producing the 
speech.  As is typical of humans, the virtual humans 
are producing communicative behaviors throughout 
this time delay, including averting gaze from the user 
during the utterance planning phases to indicate that 
they are formulating a response (Kendon 1967).  

We have tested the system with a variety of users 
acting as trainees, including subjects with with and 
without prior knowledge of the military domain.  Not 
surprisingly, subjects with military knowledge were 
substantially more successful, since they understood 
the context and how to proceed. Initial evaluation 
results and metrics of dialogue interaction using mili-



tary cadets are presented in (Traum, Robinson, and 
Stephan, 2004) 

 Human-level intelligence requires a number of 
core capabilities, including planning, belief represen-
tation, communication ability, emotional reasoning, 
and most importantly, a way to integrate these capa-
bilities. The virtual humans in the MRE project rep-
resent a significant step along this path. 
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