
 

 

 

 

 

 

 

An Emergent Approach to Game Design – 

Development and Play 

 
 

 

Penelope Sweetser 

B. InfoTech (Hons), G.C.Ed. 

 

 

 

 

 
A thesis submitted for the degree of Doctor of Philosophy 

 

 

 

 
School of Information Technology and Electrical Engineering 

The University of Queensland 

 

 

 
June 17, 2005 

 



 ii  

 



 iii  

 

 

Statement of Originality 
 
 

 

 

 

The work presented in this thesis is, to the best of my knowledge and belief, original, 

except as acknowledged in the text, and the material has not been submitted, either in 

whole or in part, for a degree at this or any other university. 

 

 

 

 

Penelope Sweetser 

 



 iv  

 

 

Abstract 
 
 

 

 

 

Player enjoyment is the single-most important goal of games. Games that are not 

enjoyable are not bought or played. Within games, enjoyment of the gameplay hinges 

on the game world. However, game worlds are often static and highly scripted, which 

leads to restricted and shallow gameplay that can detract from player enjoyment. It is 

possible that player enjoyment could be improved by the creation of more flexible 

game worlds that give players more freedom and control. One way to create more 

flexible game worlds is through the use of an emergent approach to designing game 

worlds. This thesis investigates an emergent approach to designing game worlds, as 

well as the issues, considerations and implications for game players and developers. 

 

The research reported in this thesis consisted of three main components. The first 

component involved conducting a focus group and questionnaire with players to 

identify the aspects of current game worlds that affect their enjoyment. The second 

component of the research involved investigating an emergent approach to designing 

game worlds, in which the Emergent Games Engine Technology (EmerGEnT) system 

was developed. The test-bed for the EmerGEnT system was a strategy game world 

that was developed using a 3D games engine, the Auran Jet. The EmerGEnT system 

consists of three main components: the environment, objects and agents. The third 

component of the research involved evaluating the EmerGEnT system against a set of 

criteria for player enjoyment in games, which allowed the system’s role in facilitating 

player enjoyment to be defined.  

 

In the player-centred studies, it was found that players are dissatisfied with the static, 

inconsistent and unrealistic elements of current games and that they desire more 

interactivity, realism and control. The development and testing of the EmerGEnT 

system showed that an emergent game world design, based on cellular automata, can 



 v  

facilitate emergent behaviour in a limited domain. The domain modelled by the 

EmerGEnT system was heat, fire, rain, fluid flow, pressure and explosions in a 

strategy game world. The EmerGEnT system displayed advantages relating to its 

ability to dynamically determine and accommodate the specific state of the game 

world due to the underlying properties of the cells, objects and agents. It also provided 

a model for emergent game worlds, which allowed more complexity than emergent 

objects alone. Finally, the evaluation of enjoyment revealed that incorporating an 

emergent game world (such as the EmerGEnT system) into a game could improve 

player enjoyment in terms of concentration, challenge, player skills, control and 

feedback by allowing more intuitive, consistent and emergent interactions with the 

game world.  

 

The implications of this research are that cellular automata can facilitate emergence in 

games, at least in a limited domain. Also, emergence in games has the potential to 

enhance player enjoyment in areas where current game worlds are weak. Finally, the 

EmerGEnT system serves as a proof of concept of using emergence in games, 

provides a model for simulating environmental systems in games and was used to 

identify core issues and considerations for future development and research of 

emergent game worlds. 

 

 



 vi  

 

 

List of Publications 
 
 

 

 

 

**Sweetser, P. & Wyeth, P. (in press) GameFlow: A Method for Evaluating Player 

Enjoyment in Games. ACM Computers in Entertainment 3 (3).  

 

**Sweetser, P. & Wiles, J. (in press) Combining Influence Maps and Cellular 

Automata for Reactive Game Agents. 6
th

 International Conference on Intelligent 

Data Engineering and Automated Learning. 

 

**Sweetser, P. & Wiles, J. (in press) Using Cellular Automata to Facilitate 

Emergence in Game Environments. 4
th

 International Conference on 

Entertainment Computing. 

 

**Sweetser, P. & Wiles, J. (2005) Scripting versus Emergence: Issues for Game 

Developers and Players in Game Environment Design. International Journal of 

Intelligent Games and Simulations 4 (1), pp. 1-9. 

 

**Sweetser, P. & Johnson, D. (2004) Player-Centred Game Environments: Assessing 

Playing Opinions, Experiences and Issues. Entertainment Computing - ICEC 

2004: Third International Conference, Lecture Notes in Computer Science, 3166, 

pp. 321-332. 

 

Sweetser, P. (2004). How to Build Neural Networks for Games. In Rabin, S. (Ed.), AI 

Game Programming Wisdom 2. Hingham, MA: Charles River Media, Inc. 

 

Sweetser, P. (2004). How to Build Evolutionary Algorithms for Games. In Rabin, S. 

(Ed.), AI Game Programming Wisdom 2. Hingham, MA: Charles River Media, 

Inc. 



 vii  

 

Sweetser, P. (2004). Strategic Decision-Making with Neural Networks and Influence 

Maps. To be published in Rabin, S. (Ed.), AI Game Programming Wisdom 2. 

Hingham, MA: Charles River Media, Inc. 

 

Sweetser, P., Johnson, D., Sweetser, J., & Wiles, J. (2003) Creating Engaging 

Artificial Characters for Games. Proceedings of the Second International 

Conference on Entertainment Computing. Pittsburgh, PA: Carnegie Mellon 

University. 

 

Sweetser, P. & Dennis, S. (2003). Facilitating Learning in a Real Time Strategy 

Computer Game. Entertainment Computing: Technologies and Applications (eds. 

Ryohei Nakatsu and Junichi Hoshino). Kluwer Academic Publishers, Boston. 

 

Johnson, D., Gardner, J., Wiles, J., Sweetser, P. & Hollingsworth, K. (2003). The 

Inherent Appeal of Physically Controlled Peripherals. Entertainment Computing: 

Technologies and Applications (eds. Ryohei Nakatsu and Junichi Hoshino). 

Kluwer Academic Publishers, Boston. 

 

 

 

** Publications related specifically to this thesis. 

 

 



 viii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my partner, Peter Surawski. 

 



 ix  

 

 

Acknowledgements 
 
 

 

 

 

I would like to acknowledge several sources for funding throughout my PhD. Firstly, 

the School of ITEE for a departmental scholarship for my first year, as well as 

ongoing tutoring and lecturing throughout my studies. Second, the UQ Graduate 

School for providing my UQGSS scholarship for two years. Also, I would like to 

acknowledge the Key Centre for Human Factors and Applied Cognitive Psychology 

and the Australasian CRC for Interaction Design for research work that supported my 

study. 

 

I would like to thank my advisor, Janet Wiles, for teaching me about research and 

helping to bring the best out of my work. Also, I thank my associate advisor, Peta 

Wyeth, for her expertise in human-computer interaction and feedback on my thesis. 

Also, Daniel Johnson acted as an advisor on many occasions, giving me support with 

experimental design and statistical analysis. I also thank my sister, Jane Sweetser, for 

her help and advice on psychological data and analysis.  

 

I would like to thank my friend and colleague, Penny Drennan, for her support, 

feedback and friendship throughout this period. 

 

Finally, and most importantly, I would like to thank my family. Firstly, I thank my 

partner, Peter Surawski, for his ongoing support, understanding and encouragement 

throughout my study. I would also like to thank my parents, Bill and Gay Sweetser, 

for their support and encouragement throughout my study, as well as instilling me 

with the desire to reach for the stars and making the sacrifices that allowed me to do 

so. 

 

 



 x  

 

 

Contents 
 
 

 

 

CHAPTER 1 INTRODUCTION TO EMERENCE IN GAME WORLDS  1 
 

1.1 Narrative versus Gameplay        1 

1.2 Scripted Gameplay          3 

1.3 Open Gameplay          4 

1.4 Emergent Game Worlds         6 

1.5 Cellular Automata in Games         7 

1.6 Thesis Overview          8 

1.6.1 Part I           9 

1.6.2 Part II           9 

1.6.3 Part III          10 

1.7 Contribution           10 

 

 

CHAPTER 2 SCRIPTING VERSUS EMERGENCE     13 
 

2.1 Current Approach to Game Design       14 

2.1.1 Issues for Players        14 

2.1.1.1 Consistency        15 

2.1.1.2 Intuitiveness and Learning      15 

2.1.1.3 Emergent Gameplay and Player Expression    16 

2.1.2 Issues for Developers        16 

2.1.2.1 Effort in Designing, Implementing and Testing   16 

2.1.2.2 Effort in Modifying and Extending     17 

2.1.2.3 Level of Creative Control      17 

2.1.2.4 Uncertainty and Quality Assurance     17 

2.1.2.5 Ease of Feedback and Direction     17 

2.1.3 Techniques for Scripting Games      18 

2.1.3.1 Finite State Machines       18 

2.1.3.2 Scripting        18 

2.2 Emergence as an Alternative Approach      19 

2.2.1 Complex Systems        20 

2.2.2 Emergence         20 

2.2.3 Emergence in Games        21 

2.2.4 Issues for Game Developers       22 

2.2.4.1 Effort in Designing, Implementing and Testing   22 

2.2.4.2 Effort in Modifying and Extending     23 

2.2.4.3 Level of Creative Control      23 

2.2.4.4 Uncertainty and Quality Assurance     23 

2.2.4.5 Ease of Feedback and Direction     23 



 xi  

2.2.5 Issues for Game Players       24 

2.2.5.1 Consistency        24 

2.2.5.2 Intuitiveness and Learning      24 

2.2.5.3 Emergent Gameplay and Player Expression    25 

2.2.6 Techniques for Emergent Games      26 

2.2.6.1 Flocking        26 

2.2.6.2 Cellular Automata       27 

2.2.6.3 Neural Networks       28 

2.2.6.4 Evolutionary Algorithms      28 

2.3 Scripting-Emergence Continuum       29 

 

 

PART I: IDENTIFYING THE PLAYER-CENTRED ISSUES OF 

INTERACTING IN GAME WORLDS 
 

 

CHAPTER 3 PLAYER-CENTRED GAME WORLDS     33 
 

3.1 Defining the Player-Centred Issues       34 

3.1.1 Consistency         35 

3.1.2 Immersion and Suspension of Disbelief     35 

3.1.3 Freedom of Player Expression      36 

3.1.4 Intuitiveness         36 

3.1.5 Physics         37 

3.1.6 Focus Group Summary       38 

3.2 Investigating the Player-Centred Issues      38 

3.2.1 Method         39 

3.2.2 Results         42 

3.2.3 Discussion         45 

3.3 Discussion and Conclusions        46 

 

 

PART II: DESIGNING, IMPLEMENTING AND TESTING THE 

EMERGENT SYSTEM 
 

 

CHAPTER 4 CELLULAR AUTOMATA IN GAME ENVIRONMENTS  51 
 

4.1 Strategy Games as a Modelling Environment     52 

4.2 Physical Modelling with Cellular Automata      53 

4.2.1 Heat          53 

4.2.2 Pressure         54 

4.2.3 Fluid Flow         55 

4.2.4 Fire          55 

4.2.4 Limitations         56 

4.3 EmerGEnT System Structure        56 

4.4 Properties          58 

4.5 Rules for Interactions between Cells       59 

4.5.1 Get Neighbours and Update       59 



 xii  

4.5.2 Heat          59 

4.5.3 Fluid Flow         61 

4.5.4 Pressure         62 

4.6 Rules for Interactions within Cells       63 

4.6.1 Fire          63 

4.6.2 Wind          64 

4.6.3 Rain          65 

4.7 Visualisation of the EmerGEnT System      65 

4.8 Observable Behaviour        66 

4.8.1 Scenario 1: Heat & Fire       67 

4.8.2 Scenario 2: Rain & Water Flow      69 

4.8.3 Scenario 3: Pressure & Explosions      70 

4.8.4 Scenario 4: Integrated System: Heat, Fluid & Pressure   72 

4.9 Discussion and Conclusions        73 

 

 

CHAPTER 5 PROPERTY-BASED GAME OBJECTS     77 
 

5.1 Object Structure         78 

5.2 Object Design         79 

5.3 Low-Level Properties        80 

5.3.1 Heat          81 

5.3.2 Fluid Flow and Wetness       83 

5.3.2.1 Flow from Cell to Object      83 

5.3.2.2 Flow from Object to Cell      83 

5.3.3 Pressure         84 

5.3.4 Fire          86 

5.3.5 Wind and Rain        87 

5.4 High-Level Properties        87 

5.4.1 Heat and Fire         88 

5.4.2 Fluid Flow and Wetness       89 

5.4.3 Pressure         89 

5.5 Observable Behaviour        90 

5.5.1 Scenario 1: Heat & Fire       91 

5.5.2 Scenario 2: Fluid & Wetness       92 

5.5.3 Scenario 3: Pressure & Explosions      94 

5.5.4 Scenario 4: Integrated System: Heat, Fluid & Pressure   96 

5.6 Discussion and Conclusions        97 

 

 

CHAPTER 6 REACTIVE AGENTS       101 
 

6.1 Reactive Agents in Current Games       102 

6.1.1 Influence Maps        104 

6.2 Agent Structure         106 

6.3 Agent Design          107 

6.3.1 Comfort Function        108 

6.3.2 Level of Reaction        108 

6.3.3 Choosing a Destination       109 

6.4 Agent Experiments         109 



 xiii  

6.4.1 Method         110 

6.4.2 Experiment 1: Determining Neighbourhood Size    111 

6.4.2.1 Results and Discussion      111 

6.4.3 Experiment 2: Optimising Agent Navigation    113 

6.4.3.1 Results and Discussion      113 

6.4.4 Experiment 3: Combining Comfort and Desire    114 

6.4.4.1 Results and Discussion      116 

6.4.5 Outcomes of Agent Experiments      118 

6.5 Scripting versus Emergence        119 

6.5.1 Scenario 1: Heat & Fire       120 

6.5.2 Scenario 2: Fluid & Wetness       121 

6.5.3 Scenario 3: Pressure & Explosions      123 

6.5.4 Scenario 4: Integrated System: Heat, Fluid & Pressure   124 

6.6 Discussion and Conclusions        126 

 

 

PART III: EVALUATING THE FACILITATION OF PLAYER 

ENJOYMENT IN THE EMERGENT SYSTEM 
 

 

CHAPTER 7 EVALUATION OF PLAYER ENJOYMENT    131 

 

7.1 Enjoyment and Flow         132 

7.2 GameFlow: A Model of Player Enjoyment in Games    133 

7.2.1 Concentration         136 

7.2.2 Challenge         136 

7.2.3 Player Skills         137 

7.2.4 Control         137 

7.2.5 Clear Goals         138 

7.2.6 Feedback         139 

7.2.7 Immersion         139 

7.2.8 Social Interaction        139 

7.3 Evaluating EmerGEnT with GameFlow      140 

7.3.1 Concentration         140 

7.3.2 Challenge         141 

7.3.3 Player Skills         142 

7.3.4 Control         143 

7.3.5 Clear Goals         144 

7.3.6 Feedback         145 

7.3.7 Immersion         145 

7.3.8 Social Interaction        146 

7.4 Discussion and Conclusions        146 

 

 

CHAPTER 8 GENERAL DISCUSSION AND CONCLUSIONS   151 
 

8.1 Part I           151 

8.2 Part II           153 

8.2.1 Implications for Cellular Automata in Games    154 

8.2.2 Emergence as an Approach to Game Design     154 



 xiv  

8.2.2.1 Level of Creative Control      155 

8.2.2.2 Effort in Designing, Implementing and Testing   155 

8.2.2.3 Effort in Modifying and Extending     156 

8.2.2.4 Uncertainty and Quality Assurance     157 

8.2.2.5 Ease of Feedback and Direction to Players    157 

8.2.3 Levels of Emergence – the Scripting-Emergence Continuum  158 

8.2.4 Narrative in Emergent Game Worlds – A New Genre   159 

8.3 Part III          160 

8.3.1 Gameplay versus Game Design      161 

 

CONCLUSIONS          162 

 

FURTHER WORK          163 

 

REFERENCES          165 

 

 

APPENDICES  
 

Appendix A: Questionnaire on Interaction in Games     171 

Appendix B: Pseudo-Code for Environment in EmerGEnT System    179 

Appendix C: Pseudo-Code for Objects in EmerGEnT System    185 

Appendix D: Pseudo-Code for Agents in EmerGEnT System    191 

Appendix E: Contents of Accompanying CD      197 

 

 



 xv  

 

 

LIST OF TABLES 
 
 

 

Table 1.1. Gameplay and narrative        3 

Table 3.1. Descriptive data for dependent measures      44 

Table 3.2. Multiple Regression Analysis       46 

Table 4.1. Cell material properties        62 

Table 5.1. Object material properties        83 

Table 6.1. Agent material properties        111 

Table 6.2. Agent reaction levels        113 

Table 7.1. Elements of flow         142 

Table 7.2. GameFlow criteria for player enjoyment in games    143 

Table 7.3. Concentration in EmerGEnT       149 

Table 7.4. Challenge in EmerGEnT        149 

Table 7.5. Player Skills in EmerGEnT       150 

Table 7.6. Control in EmerGEnT        152 

Table 7.7. Clear Goals in EmerGEnT       153 

Table 7.8. Feedback in EmerGEnT        153 

Table 7.9. Immersion in EmerGEnT        154 

Table 7.10. Social Interaction in EmerGEnT      154 

Table 7.11. GameFlow in EmerGEnT       155 

 

 

LIST OF FIGURES 
 

 

Figure 3.1. Participant Demographics       42 

Figure 3.2. Independent Measures        43 

Figure 4.1. Equations for heat        58 

Figure 4.2. Equations for pressure diffusion       58 

Figure 4.3. Equations for fluid flow        59 



 xvi  

Figure 4.4. Equations for burning        60 

Figure 4.5. EmerGEnT system structure       61 

Figure 4.6. 2D EmerGEnT system        70 

Figure 4.7. 3D EmerGEnT system        70 

Figure 4.8. Heat and fire scenario in the EmerGEnT system    71 

Figure 4.9. Rain and water flow scenario in the EmerGEnT system    73 

Figure 4.10. Pressure and explosions scenario in the EmerGEnT system   75 

Figure 4.11. Integrated scenario in the EmerGEnT system     76 

Figure 5.1. Heat and fire scenario in the EmerGEnT system    95 

Figure 5.2. Fluid and wetness scenario in the EmerGEnT system    97 

Figure 5.3. Pressure and explosions scenario in the EmerGEnT system   99 

Figure 5.4. Integrated scenario in the EmerGEnT system     100 

Figure 6.1. Core sensory logic in Half-Life       107 

Figure 6.2. Neighbourhood sizes        115 

Figure 6.3. Finding a destination        116 

Figure 6.4. Optimising agent navigation       118 

Figure 6.5. Desirability visualisation        119 

Figure 6.6. Combining comfort and desire       120 

Figure 6.7. Reactive agent model        123 

Figure 6.8. Heat and fire scenario in the EmerGEnT system    125 

Figure 6.9. Fluid and wetness scenario in the EmerGEnT system    126 

Figure 6.10. Pressure and explosions scenario in the EmerGEnT system   128 

Figure 6.11. Integrated scenario in the EmerGEnT system     129 

 

 

 

 



 1  

 

 

 

 

1 
Introduction to  

Emergence in  

Game Worlds 
 

 

 

 

The future of game development is towards more flexible, realistic and interactive 

game worlds. Games have become increasingly more realistic visually, with 

graphically lifelike and detailed characters, creatures and game worlds. However, the 

environments, objects and agents in these game worlds are often static, lifeless and 

afford limited interaction. There has been no research into how these game worlds 

affect player enjoyment and players are now seeking more realistic and interactive 

behaviour from these game elements. However, the current methods of game design 

are unable to accommodate this type of behaviour. Consequently, it is now necessary 

to assess the issues that players have in current game worlds and to search for a new 

approach to game design that will allow game worlds to accommodate the needs of 

the players, affording more flexible and interesting behaviour and gameplay.  

 

1.1 Narrative versus Gameplay 

Computer games can be broken down into two fundamental elements, the gameplay 

and the narrative. The question of free and open gameplay versus controlled, scripted 

narrative in games has aroused much debate by game developers and researchers in 

recent years. One side of the argument, often referred to as “ludology”, claims that the 

enjoyment of games hinges on rules and gameplay and that games should not be 

designed to be stories (Juul, 2000). The other side, called “narratology” or 



 2  

“narrativism”, believes that narrative and stories should be the foundation of games 

(Mateas, 2002). However, neither element constitutes a satisfying gaming experience 

alone. Without gameplay, games are simply stories that are created by the game 

developers. Similarly, with no narrative, games are virtual sandboxes without goals or 

motivation.  

 

Narrative is the story that is told by the game, through cutscenes (movies), quests, 

characters, problems and the flow of the game. Narrative provides the “why” for the 

game, giving the player background and motivation to become involved with the 

game world and its inhabitants. Narrative also provides the “what” for the game, 

leading the player through the game, giving them specific quests, objectives, goals 

and problems to solve, making up the content of the game. The narrative determines 

who (i.e. game characters) the player will interact with, what problems they will face, 

and possibly in what order. The player assumes a role in the game’s story, which the 

developer writes and the player acts out by going through a series of planned 

interactions. Narrative is scripted by the game developer and without it, the player has 

no reason or direction (i.e. why or what) and is just interacting in a sandbox world 

with no rules, goals or motivations.  

 

Gameplay provides the “how” to the narrative’s “what” and “why”. The gameplay is 

how the player interacts in the game world, how they solve problems and how they 

play the game. Interactions in the game world are the foundation of the gameplay and 

the types of interactions depend on the game genre. In role-playing games, 

interactions include dialogue, using spells or abilities, collecting items, gaining 

experience and upgrading abilities. In real-time strategy games, interactions include 

building units and buildings, collecting resources, upgrading, attacking and defending. 

The gameplay is made up of how the player uses these basic interactions to solve 

problems, achieve goals and advance through the game.  

 

Most games are either narrative-based or gameplay-based. Designing games that are 

narrative-based involves predefining a storyline that the player follows through the 

game. Game genres such as such as role-playing games (e.g. Elder Scroll III: 

Morrowind), action-adventure games (e.g. Tomb Raider) and the campaigns in real-

time strategy games (e.g. Warcraft III) are narrative-based games. Designing games 



 3  

that depend on gameplay involves giving the player rules of play, options for actions 

and allowing them to develop their own strategies and game experiences. Genres that 

are based on gameplay include simulation games (e.g. SimCity) and real-time strategy 

games (e.g. Age of Mythology). 

 

Interestingly, the divide between narrative and gameplay-based games brings two 

different approaches to game development. In narrative-based games, it is not only the 

narrative that is scripted, but also the gameplay. Conversely, in gameplay-based 

games, the gameplay is open but there is a lack of narrative, with only general goals 

for winning or success (e.g. kill the enemy). Therefore, in current games, either the 

gameplay and narrative are both scripted or both open (see Table 1.1). For narrative-

based games, the result is heavily scripted games that successfully tell a story, 

providing depth and background, but limited freedom or control for the player. On the 

other hand, open games provide a sandbox world where the player has a great deal of 

freedom and control, but lacks motivation and goals, except for “experimentation”. It 

seems that the optimal solution would be to have open gameplay within scripted 

narrative. 

 

Table 1.1. Gameplay and narrative. The gameplay and narrative in most games are both 

scripted or both open 

 Scripted Games Open Games 

Gameplay Player plays a scripted role 

- no freedom or control 

Player decides “how” to play 

- freedom in interactions and 

strategies 

Narrative Game has a scripted story 

- provides a “what” and “why” 

Game is a sandbox 

- no goals or motivation 

Genres Role-playing, first-person shooter Real-time strategy, simulation 

Examples Diablo, Wizardy, Might & Magic The Sims, SimCity, Warcraft 

 

1.2 Scripted Gameplay 

The current approach to developing narrative-based games involves scripting a 

specific narrative flow, as well as specific interactions and behaviour for specific 

situations (Church, 2002). This scripted approach gives rise to problems for game 

developers and game players. The problems for game developers include effort in 

design, finding and fixing bugs, and difficulties in modifying and extending the 



 4  

system. For the players, problems include unintuitive and inconsistent interactions, a 

slow learning curve and an inability for players to freely express themselves.  

 

In scripted systems, the game developer must design, implement and test specific 

game elements individually, as well as manually define possible courses of action 

through the game (Church, 2002; Smith, 2001). Scripting requires a great deal of 

effort and time in designing and testing, as each instance of a game element must be 

implemented and tested individually (Smith, 2002). Although scripted systems are 

relatively easy to create initially, they are harder to modify and scale poorly (Church, 

2002). Changes and extensions to the system require revision of any aspect of the 

game that the change affects (Church, 2002). However, the benefit for game 

developers is that scripting the game world offers total structure and creative control 

for designers, empowering them to create a specific narrative or flow for the game.  

 

The considerations for the players include the inconsistencies that occur in scripted 

worlds, which can break the player’s immersion or suspension of disbelief that the 

game is real (Hecker, 2000). Inconsistencies also make learning how to interact in the 

game world more difficult. Players can only interact with game objects in prescripted 

ways, which means that objects behave less like real world objects and objects that 

appear similar can behave very differently (Smith, 2002). Additionally, the players 

only have a few prescripted interactions or courses of action to choose from (Smith, 

2001), which limits player expression and creativity. The result can be an inconsistent, 

unrealistic, unintuitive and confusing game world, where the player has no freedom or 

control.  

 

1.3 Open Gameplay 

The current method of scripting game worlds prohibits players from experiencing 

open, free gameplay and the resulting control and agency. Additionally, scripting 

game worlds is difficult and time-consuming for game developers. However, there is 

currently no alternative design approach that can facilitate open gameplay in 

narrative-driven game worlds. The opportunity exists to develop a new method of 

designing game worlds that allows players to create their own interactions and 



 5  

strategies, as well as reducing the time and cost for game developers. These game 

worlds should be designed globally (not specifically), providing only rules and 

boundaries for player interactions, rather than explicit requirements. The question that 

arises is how can open, emergent game worlds that allow open gameplay within 

scripted narrative be made possible? 

 

Some games have allowed more freedom and variation through property-based 

objects and rules for how the objects interact. For example, in the simulation game 

The Sims (Electronic Arts, 2000), intelligence is embedded into objects in the 

environment, called “Smart Terrain”. The objects broadcast properties to nearby 

agents to guide their behaviour (Woodcock, 2000). Similarly, the game objects in the 

first-person shooter game Half-Life 2 (Valve, 2004) uses named links between pieces 

of content called “symbolic links” (Walker, 2004) that define the properties of the 

objects and determine how they can be affected by players and other objects. Using 

this global design, the objects behave more realistically and are more interactive as 

they are encoded with types of behaviour and rules for interacting, rather than specific 

interactions in specific situations.  

 

Another way that previous games have allowed more freedom and variation is 

through sheer size of the game world and number of possibilities. For example, the 

role-playing game The Elder Scrolls III: Morrowind (Bethesda, 2002) includes an 

enormous world with numerous characters, objects, events and quests. Although the 

game is heavily scripted, the number of characters to talk to, quests to take, places to 

explore and items to collect makes the game seem far more open and complex. Also, 

the real-time strategy game Age of Mythology (Microsoft, 2002) allows the player to 

choose from three different civilisations, from three different major deities in each 

civilisation and a new minor deity each time they advance to a new age. Each of these 

choices gives the player access to different units, upgrades, powers and mythology, 

affording the game increased variability and flexibility.  

 



 6  

1.4 Emergent Game Worlds 

Even though some games have allowed more open gameplay through property-based 

game objects (e.g. Half-Life 2) or increased game content (e.g. Elder Scrolls III: 

Morrowind), the actual environment in these games is still static. The players have 

more freedom in interacting with objects and more choices or content to keep them 

occupied, but there is still no solution for the game worlds as a whole. The game 

objects are only a small part of the game world, which also includes the environment 

(e.g. buildings, terrain and scenery) and game agents (e.g. characters or units). The 

game environment in most games is inert and unresponsive to players, objects and 

events. Also, the agents in most games are unaware of their surroundings and do not 

react to changes in the game world. Both of these aspects reduce the player’s freedom, 

impact and control in the game world, as well as making the game world seem lifeless 

and flat. The question, therefore, is how can game worlds as a whole (e.g. 

environment, objects and agents) be made more open and emergent? 

 

Emergent behaviour occurs when simple, independent rules interact to give rise to 

behaviour that wasn’t specifically programmed into a system (Rabin, 2004). There are 

a variety of techniques from complex systems, machine learning and artificial life that 

have the potential to facilitate emergent behaviour in games. Some examples of 

emergent techniques that can and have been used in games are flocking, cellular 

automata, neural networks and evolutionary algorithms. Flocking is an artificial life 

technique for simulating the natural behaviour of a group of entities, such as a flock of 

birds or school of fish (Reynolds, 1987). Cellular automata are spatial, discrete time 

models that are used to simulate complex systems (Bar-Yam, 1997). Neural networks 

are machine learning techniques inspired by the human brain that are used for 

prediction, classification and decision-making (Haykin, 1994). Finally, evolutionary 

algorithms are techniques for optimisation and search that use concepts from natural 

selection and evolution to evolve solutions to problems (Mitchell, 1998).  

 

Each of the described techniques can be applied to games in varying ways. Flocking 

has been used in games as an alternative to scripting the movement of entities in a 

group individually. For example, Half-Life (Valve, 1997) uses flocking to give its 

monsters more lifelike responses (Woodcock, 2003). Neural networks have been used 



 7  

for character behaviour and decision-making (see Sweetser (2004b) on the CD for a 

review). For example, BattleCruiser: 3000AD (Smart, 1996) uses neural networks to 

control non-player characters, as well as to guide negotiations, trading and combat 

(Woodock, 2003). Finally, evolutionary algorithms have been used to evolve 

strategies and monsters (see Sweetser (2004c) on the CD for a review). In Cloak, 

Dagger and DNA, evolutionary algorithms are used to guide and refine opponent 

behaviour (Woodcock, 2003).  

 

Even though each of these techniques have been used in games, neural networks, 

evolutionary algorithms and flocking are not appropriate to modelling game 

environments as they are not spatial techniques. Neural networks are techniques for 

decision-making and classification, evolutionary algorithms are used for optimisation 

and search, and flocking is used for simulating group behaviour. However, cellular 

automata are suitable to modelling game environments as they are designed to provide 

spatial representations, although they are previously unused in games. 

 

1.5 Cellular Automata in Games 

Insight to modelling game environments can be gleamed from environmental 

simulations. Most approaches to modelling real-world phenomena in virtual worlds 

aim to develop accurate, error-free models. These models are often developed for the 

purposes of accurately simulating forest fires (Hargrove, Gardner, Turner, Romme & 

Despain, 2000; Consolini & De Michelis, 2001; Barros & Mendes, 1997) or visually 

realistic smoke (Stam, 2000; Treuille, McNamara, Popović & Stam, 2003; Fedkiw, 

Stam & Wann Jensen, 2001) and fluid flow (Stam, 2003). Equations and models that 

are commonly used in these applications include Navier-Stokes equations (Stam, 

2000), Euler equations (Fedkiw, Stam & Wann Jensen, 2001), the Stable Fluids 

algorithm (Stam, 2003) and cellular automata (Barros & Mendes, 1997; Consolini & 

De Michelis, 2001).  

 

In games, it is not necessary to use these complex, computationally-expensive 

methods as game worlds do not need to be accurate and error-free. Rather, they need 

to be credible and acceptable to the player. Game worlds only require environments 



 8  

and physics that approximately model reality. Forsyth (2002), a game developer, has 

identified ways in which environmental processes such as air, water, flow, heat and 

fire can be simplified for games using cellular automata. Also, he has formulated 

some example equations for these processes in human-sized (e.g. first-person shooter) 

games. However, there is no implementation (in games or research) of using cellular 

automata for modelling real-time game environments. Furthermore, Forsyth’s 

suggested equations are only for individual game environment processes (e.g. fire or 

water) and do not address the integration of these processes into a complex system or 

the incorporation of game objects, agents and players. 

 

Using cellular automata in games seems to be a good idea in theory, but it is 

necessary to determine how cellular automata can be made to work in practice. The 

lack of cellular automata in current games gives rise to the questions of whether 

cellular automata are appropriate for use in game systems and to what extent cellular 

automata can facilitate emergent gameplay. Additionally, if it is possible to make 

game worlds more emergent through the use of cellular automata, it is also necessary 

to consider the implications there will be for game developers and players. How will 

emergent game worlds affect the development process for game developers (e.g. time, 

effort, difficulty, control) and the enjoyability of the games for players? 

 

1.6 Thesis Overview 

The overall aim of the research reported in this thesis was to investigate emergence as 

an alternative to the current scripted approach to game development and the resulting 

implications for game players and developers. The specific aims of the research were:  

� to define the issues associated with interacting in game environments by 

incorporating the players’ perspective 

� to evaluate the potential of cellular automata to facilitate emergence in game 

environments 

� to design, implement and test an emergent game system based on cellular 

automata 

� to determine how an emergent game system based on cellular automata will 

affect developing and playing games 



 9  

The thesis is divided into three sections: (i) identifying the player-centred issues of 

interacting in game worlds, (ii) designing, implementing and testing the Emergent 

Games Engine Technology (EmerGEnT) system, and (iii) evaluating the facilitation 

of player enjoyment in the EmerGEnT system.  

 

1.6.1 Part I: Identifying the Player-Centred Issues of Interacting in 

Game Worlds 

The issues associated with scripted game worlds have been well-defined by game 

developers. However, there is no empirical evidence of how scripted game worlds 

affect player enjoyment. Therefore, the aim of the first section of the research was to 

assess the players’ perspective on the issues that impact on player enjoyment when 

interacting in game worlds and to determine to what extent the players’ perspective 

supports or differs from the insights provided by game developers. The method used 

consisted of two player-centred studies, including a focus group and a questionnaire 

(see Chapter 3). The player-centred studies aimed to identify and define the issues of 

interacting in game worlds from the players’ perspective and to investigate how the 

issues relate to the context of play (i.e. game-type preference and player experience). 

The player-centred studies allowed the comparison of the players’ perspective to the 

insights of game developers, to determine to what extent these two perspectives align 

and differ and to gain a well-rounded view of the issues that impact on player 

enjoyment when interacting in game worlds.  

 

1.6.2 Part II: Designing, Implementing and Testing the EmerGEnT 

System 

The aim of the second section of the research was to design, implement and test an 

integrated model for game worlds with cellular automata as a foundation. The purpose 

of this model was to facilitate emergent behaviour, gameplay and player enjoyment. 

This section consisted of three studies that involved developing the environment, 

game objects and agents of the EmerGEnT system.  

 

The first step involved developing a game environment system based on cellular 

automata that models fluid flow, heat and pressure (see Chapter 4). The aims were to 



 10  

determine the suitability of cellular automata for modelling game systems and to 

determine the extent to which cellular automata can facilitate emergent behaviour and 

gameplay. Second, game objects (e.g. buildings) with a property-based design were 

integrated into the environment to investigate how the affordances of different objects 

impact on the design of an emergent game world and how game objects can facilitate 

emergent behaviour and gameplay (see Chapter 5). Finally, agents (e.g. villagers) 

were integrated into the environment to determine to what extent an active 

environment can promote reactive agent behaviour and to what extent reactive agents 

can facilitate emergent behaviour and gameplay (see Chapter 6). 

 

1.6.3 Part III: Evaluating the Facilitation of Player Enjoyment in the 

EmerGEnT System 

The third and final section of the research consisted of evaluating the EmerGEnT 

system in terms of player enjoyment. A model of player enjoyment in games, 

GameFlow, was used to evaluate how, and to what extent, the EmerGEnT system can 

facilitate player enjoyment in games (see Chapter 7). GameFlow is an extension of 

flow (Csikszentmihalyi, 1990), an accepted model of enjoyment. Flow has been 

applied extensively by researchers to assess enjoyment in a wide variety of domains, 

including problem solving (Vass, Carroll & Shaffer, 2002), ecommerce websites 

(Jennings, 2000), an interactive music environment (Pachet & Addressi, 2004) and 

information systems (Artz, 1996). 

 

In a study independent of this thesis, flow was adapted to specifically model player 

enjoyment in games, by drawing on games usability and user-experience literature to 

identify how the criteria of flow are manifested in games (see Sweetser & Wyeth, in 

press, on the CD). The EmerGEnT system was evaluated against the GameFlow 

criteria by qualitatively evaluating how and how much each criterion is facilitated by 

the EmerGEnT system.  

 

1.7 Contribution 

The research presented in this thesis contributes to the understanding of emergence as 

an approach to game design. The major achievements are: 



 11  

 

� Proof of concept of the validity and value of using an emergent approach to 

developing game worlds 

 

� Cellular automata – the first investigation of using cellular automata to 

model game worlds 

 

� Design for an emergent game world that includes:  

- environmental effects – cellular automata model rain, fluid flow, heat, 

fire, pressure and explosions 

- property-based objects – interact with environment via properties for 

structure and composition 

- reactive agents – react to and interact with the environment via 

properties and influence maps for decision-making 

 

� Player Enjoyment – an understanding of player enjoyment in: 

- current game worlds – the first empirical investigation of the affect of 

current game worlds on player enjoyment 

- emergent game worlds – how emergent game worlds affect player 

enjoyment 

 



 12  



 13  

 

 

 

 

2 
Scripting versus  

Emergence: 
Contrasting Approaches to  

Developing Game Worlds 
 

 

 

 

The approach that is used to develop game worlds holds considerations for game 

developers and players. The current approach to developing game worlds is a scripted 

approach. Scripting involves a specific, low-level, entities-based approach to 

developing game worlds. The considerations of the scripted approach for game 

players include inconsistencies in the game world, unintuitive interactions, a slow 

learning curve, limited freedom for the player and no possibility of emergent 

gameplay. For game developers, developing scripted game worlds involves 

substantial effort in planning, implementing and testing, difficulties in extending and 

modifying, and issues with quality assurance due to inconsistencies. However, the 

current scripted approach does afford developers full creative control, no uncertainty 

in how the game system will behave and ease of giving feedback and direction to 

players. The current proliferation of the scripted approach is partly due to these 

reasons and partly due to the widespread use of scripted and static software 

techniques, such as scripting and finite state machines. 

 

The proposed alternative to the current scripted approach is an emergent approach to 

developing game worlds. Emergence involves a top-down, systems-based approach to 

developing game worlds. Emergence has been integrated to a limited degree in 

previous games to allow emergent gameplay or emergent narrative. Considerations of 

an emergent approach for game developers include significant planning and tuning in 



 14  

development, a loss of creative control, difficulties in giving feedback and direction to 

players and uncertainty in how the game will respond to the player. However, 

emergent systems are easier to modify and extend and the uncertainty gives the 

possibility for emergent gameplay. Emergent systems can potentially improve player 

experience as they are inherently consistent, interactions can be more intuitive, the 

players’ learning curve can be reduced, and emergent systems allow far more freedom 

for players and the possibility of emergent gameplay. Techniques that can potentially 

be used to facilitate emergence in games include flocking, neural networks, cellular 

automata and evolutionary algorithms. 

 

2.1 Current Approach to Game Design 

The majority of current games are developed with a scripted approach, which 

involves the game developer predefining specific paths and interactions that the 

player will take throughout the game. Scripted game design is the creation of 

gameplay out of the ideas of a particular designer, as needed for a specific, localised 

occurrence in the game. Scripted design involves limited awareness of global game 

patterns and relies on a given designer’s ideas of what is consistent and fun (Smith, 

2002). The environments, objects and agents in these games are limited to the narrow 

and static behaviour that the developer has predefined. As a result, the players’ 

possible interactions with these game elements and resulting gameplay is confined, 

inflexible and lifeless. These scripted systems have also been referred to as 

“emulations” (Church, 2002) and “specific” systems (Smith, 2002).  

 

2.1.1 Issues for Players 

Some of the issues of player enjoyment that need to be considered when designing 

game worlds have been identified and discussed by game developers. These issues 

include the ability of the game to uphold the player’s suspension of disbelief, 

consistency in the game world, the intuitiveness of the environment, player 

expectation and learning, and how well the game facilitates player expression and 

emergent gameplay. Each of these issues is discussed in this section with respect to 

current scripted game systems.  

 



 15  

2.1.1.1 Consistency 

Game worlds that behave consistently and in ways that the player understands enable 

the player to become immersed in the environment and suspend disbelief (Smith, 

2001). Conversely, inconsistencies in games remind that player that it is just a game, 

breaking their suspension of disbelief. For example, if the player becomes stuck in a 

wall when adventuring in a dungeon (Hecker, 2000) or a monster attacks them 

through the wall then inconsistencies occur with the fantasy that the game has created. 

Similarly, if a boom microphone appears in an emotional scene in a movie, the 

immersion the viewer feels – their suspension of disbelief – is instantly broken 

(Hecker, 2000). The viewer of the movie or the player of the game is transported back 

to the real world, reminded and disappointed that their experience was fake. Scripted 

game systems inherently break the player’s immersion, as their specific interactions 

and situations give rise to many inconsistencies. 

 

2.1.1.2 Intuitiveness and Learning 

Another important aspect of player interaction with the game environment is 

intuitiveness and player expectation. A casual game player or a non-game player is 

likely to be baffled by the physics of the game world (Smith, 2001). In the game 

world, only “explosive” barrels burn, some pieces of light furniture cannot be moved, 

the player’s character might not be able to climb onto a desk and sometimes glass 

does not break. In order to be able to play computer games, it is necessary to relearn 

the physics of the world like a child (Smith, 2001). These types of problems arise in 

scripted games because the possible interactions that the player can have with the 

game environment are not intuitive and they do not meet player expectation. 

 

The intuitiveness of interactions in game worlds can be partly attributed to how the 

interactions correspond to interactions with the same objects in the real world. Game 

worlds are populated with objects that are visually similar to objects that we use every 

day, but that are functionally different. Not only can these interactions be counter-

intuitive for the player, but they can often confuse and frustrate the player (Hecker, 

2000). It is natural for a player to expect that they will be able to pick up a phone, 

kick a chair and break a window, as they have learned these actions are possible 

throughout their whole life. However, in scripted systems, these actions are only 



 16  

possible if the developer has specifically coded them for each game object. 

Consequently, it is likely that many intuitive and seemingly logical actions will not be 

possible. 

 

2.1.1.3 Emergent Gameplay and Player Expression 

The final issue identified in the game development literature is the degree of freedom 

of player expression and the possibility of emergent gameplay that is supported by the 

game system. In scripted games, the designers manually define a number of outcomes 

or interactions and allow the player to pick one. The result is a handful of canned 

solutions to each particular problem (Smith, 2001), which makes the game linear (i.e. 

only one path through the game). The player is given a choice of a small number of 

static courses of action to take, which have been predefined by the game designers. 

The game is played in the exact way it was specified, which might not accommodate 

player creativity (Church, 2002).  

 

2.1.2 Issues for Developers 

There are five central issues in the game development literature that are important to 

consider when designing game systems. These issues are (1) effort in designing, 

implementing and testing, (2) effort in modifying and extending, (3) level of creative 

control for game developers, (4) uncertainty and quality assurance, and (5) ease of 

feedback and direction to players. Each of these issues is described in this section and 

discussed with respect to the current scripted approach to game development. 

 

2.1.2.1 Effort in Designing, Implementing and Testing 

In developing scripted games, specific interactions need to be planned by the game 

designers (Church, 2002) and the possible courses of action that the players can take 

need to be manually setup by the developers (Smith, 2001). Scripted systems require a 

“look and feel” approach to the placement of units, weapons, tools, resources, and 

specific puzzles or scripted sequences. Scripted games require a great deal of time and 

effort by the designers, as well as vigilant manual effort to ensure consistency in the 

game world (Smith, 2002).  

 



 17  

2.1.2.2 Effort in Modifying and Extending 

Scripted systems scale poorly and do not lend themselves to extensibility (Church, 

2002). The properties and parameters of objects in scripted systems are different for 

each instance. Also, objects must have explicit relationships with other game elements 

for interactions to occur. For example, for a bullet from a gun to break a window, 

there needs to be a direct relationship between the gun entity and the window entity 

(Smith, 2001). The gun class would need to contain code listing all the things it could 

affect. Consequently, any changes that need to be made to the system require revision 

of any aspect of the game that is affected by the change (Church, 2002). Also, fixing 

bugs in the system requires each instance of a game element to be visited and 

reconfigured manually (Smith, 2002). 

 

2.1.2.3 Level of Creative Control 

As game developers manually plan and set up specific situations, interactions and 

events in scripted games, the game designers have full creative control over the game. 

The designers are empowered to create a specific narrative flow for the game, by 

defining the order and nature of the players’ actions and encounters in the game.  

 

2.1.2.4 Uncertainty and Quality Assurance 

Similarly, nothing occurs in the game that was not intended or planned by the game 

developer. Consequently, there is no uncertainty or unexpected events in the game. 

The player plays the game in the exact way that the developer had intended. However, 

due to the inconsistencies that can exist in scripted games, quality assurance requires 

extensive testing of each game element, interaction and event. The scripted approach 

is effective for developing simple systems or specific complex behaviour, but can be 

difficult to manage on a larger scale.  

 

2.1.2.5 Ease of Feedback and Direction 

As with creative control, giving feedback and direction to players is simple in scripted 

systems as the developer knows when and how the player will interact with various 

game elements. As the desired outcome is known, it is straightforward to give players 

feedback on their success at performing actions or fulfilling goals. 



 18  

2.1.3 Techniques for Scripting Games 

The techniques that are used to implement a game’s environment, objects and agents 

define whether the system will be static and scripted or dynamic and emergent. There 

are two main techniques that are used for implementing scripted game systems: 

scripting and finite state machines. Almost every commercial computer game uses 

scripting or state machines for some, if not all, of the game system. These techniques 

require everything to be built into the system during development, which means that 

the system can only behave as it has been told to behave with no room for adaptation 

or unexpected behaviour.  

 

2.1.3.1 Finite State Machines 

A finite state machine (FSM) is a device that consists of a set of states, a set of input 

events, a set of output events and a state transition function, which takes the current 

state and an input event and returns the new set of output events and the next state. 

The purpose of an FSM is to divide a game object’s behaviour into logical states so 

that the object has one state for each different type of behaviour it exhibits (Rabin, 

2000).  

 

FSMs are by far the most popular technique in modern games, as they are simple to 

program, easy to understand and debug, and general enough to be used for any 

problem (Rabin, 2002). FSMs are amongst the simplest computational devices and 

provide a large amount of power relative to their complexity. Consequently, FSMs are 

ideal for the conditions of game development, which involves limited computational 

resources, as well as limited development and testing time. Some problems with using 

FSMs are that they tend to be poorly structured with poor scaling, so that they 

increase in size uncontrollably as the development cycle progresses. As a result, FSM 

maintenance can be very difficult and game FSMs that are not well planned and 

structured can grow out-of-hand quickly. 

 

2.1.3.2 Scripting 

Scripting languages are designed to simplify some set of tasks for a game and hide 

many complicated aspects (Berger, 2002), thus allowing non-programmers, such as 



 19  

designers and artists, to write script for the game. Scripting languages for games, such 

as Quake’s QuakeC or Unreal’s UnrealScript, allow game code to be programmed in 

a high-level, English-like language (LaMothe, 1999), which is used to control the 

game engine from the outside. The scope of a scripting language can vary 

significantly depending on the problems it is designed to solve, ranging from a simple 

configuration script to a full-blown runtime interpreted language (Poiker, 2002).  

 

Scripting languages are ideal for games as they are suitable for non-programmers, 

such as designers, artists and end users. During development, the designers use 

scripting to implement stories (Poiker, 2002), while artists use scripting to automate 

repetitious tasks, do things that the computer can do better than humans and add new 

functionality (Stripinis, 2001). After the game is shipped, “mod” groups and hobbyists 

write scripts if the scripting system has been exposed to the public (Poiker, 2002). 

Also, scripting languages are generally separate from the game’s data structures and 

codebase and thus provide a safe environment for non-programmers and end users to 

make changes to the game, so that bugs in the script will not cause the game to crash. 

However, as with FSMs, scripting languages are deterministic and they require the 

game developer to hard-code character behaviour and game scenarios. Therefore, the 

developer must anticipate and hard-code each of the player’s possible situations, 

making the game predictable and linear. 

 

2.2 Emergence as an Alternative Approach 

As discussed in the introduction (Chapter 1), there is an opportunity to develop a new 

approach to designing game worlds, which allows more flexible, open gameplay. A 

possible alternative to the current scripted approach to game design is to design 

general, rule-based systems that allow the creation of gameplay out of combinations 

of existing game elements with globally defined, consistent characteristics and 

behaviour. This approach is an emergent approach to game design and is also referred 

to as “simulation” (Church, 2002) and “systemic” system design (Smith, 2002) in the 

game development literature. An emergent approach to game design would involve a 

globally designed game system that provides rules and boundaries for player 

interactions, rather than prescripted paths. 



 20  

2.2.1 Complex Systems 

“Complex systems” is the field of research that includes chaos theory, artificial life, 

evolutionary computation and genetic algorithms. Complex systems are systems in 

which individual, simple entities interact to give rise to overall complex behaviour. 

There are several attributes that are common to complex systems, including short-

range relationships, non-linear relationships, feedback loops, openness, no control 

component, nesting, fuzzy boundaries and emergence (Holland, 1998; Johnson, 2001).  

 

Ant colonies are examples of complex systems (Johnson, 2001). The queen does not 

give direct orders. Instead, each ant reacts to stimuli in the form of chemical scent 

from larvae, other ants, intruders, food, waste, and leaves behind a chemical trail that 

provides stimulus to other ants. Each ant is an autonomous unit that reacts depending 

on its local environment and its genetically encoded rules. Despite the lack of direct 

organisation, ants demonstrate complex behaviour (e.g. building complex colonies) 

and can solve geometric problems (e.g. navigating around obstacles).  

 

2.2.2 Emergence 

Complex systems are distinguished from systems that are merely “complicated” by 

the possibility of emergence. Emergence is the process of deriving some new and 

coherent structures, patterns and properties in a complex system (Holland, 1998). 

Emergent phenomena occur due to the pattern of interactions between the elements of 

a system over time. They are often unexpected, nontrivial results of simple 

interactions of simple components. Emergent behaviour occurs when a number of 

simple entities operate in an environment, forming more complex behaviour as a 

collective (Johnson, 2001). Emergence arises when a complex system reaches a 

combined threshold of diversity, organisation and connectivity. It is not a property of 

any single entity and cannot be predicted or reduced from the behaviour of the entities 

individually. Emergent systems are more than the sum of their parts as the entities 

cannot simply coexist, they must interact.  

 



 21  

2.2.3 Emergence in Games 

Emergence in games can be separated into two potential approaches: emergence in 

gameplay and emergence in narrative. Both of these approaches have been included to 

some extent in previous games. Emergence in gameplay has been included in games 

through emergent game objects. Games such as The Sims and Half-Life 2 use 

property-based objects and rules for interactions with these objects to allow more 

open and emergent gameplay. Emergence in gameplay has also been created through 

many choices and possibilities. The real-time strategy game Age of Mythology allows 

the player to make many choices that affect the way they will be able to play the game. 

The player chooses their civilisation, major god and minor gods, which determines the 

units, upgrades, powers and mythology the player will be able to access.  

 

Games have provided emergence in narrative via sheer size of game worlds. The 

Elder Scrolls III: Morrowind includes a massive world with numerous characters, 

objects, events and quests that gives the player great freedom and diversity. The 

player is still tied down to a central, linear storyline, but the many diversions and 

options along the way make each player’s experience emergent and a product of their 

interactions with the game. 

 

Despite the few examples given, the emergence that has been possible in previous 

games has been quite limited. Games could potentially allow the player to play the 

game in a way that was not designed or implemented by the game developer, but that 

works nonetheless. Emergent behaviour occurs as the player is able to use the basic 

elements that are provided by the game developer to create new gameplay (e.g. stories 

or strategies). Emergence in narrative could potentially involve generating a storyline 

based on the interactions between the game world, characters and objects. Emergence 

in gameplay could be developed to the extent of a fully emergent game world, in 

which there are no scripted paths, interactions or behaviours. The aim of this thesis is 

to investigate the potential and considerations of creating a fully emergent game 

world. 

 



 22  

2.2.4 Issues for Game Developers 

The same five issues need to be considered for designing emergent game systems as 

were discussed for designing scripted game systems. Emergent game systems have 

different considerations for (1) effort in designing, implementing and testing, (2) 

effort in modifying and extending, (3) level of creative control for game developers, 

(4) uncertainty and quality assurance, and (5) ease of feedback and direction to 

players than scripted systems. Each of these issues is described in this section and 

discussed with respect to the proposed emergent approach to game development. 

 

2.2.4.1 Effort in Designing, Implementing and Testing 

Creating emergent systems involves designing types of objects and interactions, rather 

than specific ones (Church, 2002), which can give rise to greater efficiency in 

development and testing. The properties and parameters reside at a higher level 

(Smith, 2002). Rather than having a specific gun able to break a specific window, 

there is an additional layer of abstraction that allows a gun to break anything made of 

glass. For example, the gun would project a bullet entity that has certain properties 

(e.g. ballistic damage, heat or electricity) and the glass is a stimulus-receiving entity 

(Smith, 2001). The system would have a set of rules about the relationship between 

the entities’ general-case properties and when the bullet meets the glass, the game’s 

object-property system looks up the effect of the bullet’s properties on the glass entity. 

Therefore, the gun will work on any window (or any other stimulus-receiving object), 

rather than only the specified windows. 

 

Emergent systems often require considerable initial effort in planning and building, as 

the rules and properties need to be defined in advance. Additionally, the system can 

require substantial tuning to get the rules and properties to function correctly. 

However, development can be more efficient as programmers can build tools that 

allow designers to “drop” objects into levels, with the properties and behaviour of the 

object already defined. Designers can also create new objects and attribute properties 

to the objects using the tools (Smith, 2002).  

 



 23  

2.2.4.2 Effort in Modifying and Extending 

Once an emergent system is built successfully, the design scales well (i.e. increases in 

size easily, maintaining robustness and manageability) and is easily extended (Church, 

2002). Making changes to the system (e.g. fixing bugs) has the potential to be more 

efficient as changes can be made to object types, rather than each particular instance 

of an object than needs to be changed (Smith, 2002). 

 

2.2.4.3 Level of Creative Control 

The use of emergent systems in games could result in a possible loss of creative 

control for the game designer. Using an emergent system involves defining types of 

interactions and behaviours, which makes it is more difficult to set up specific 

narrative and sequences. Consequently, controlling the flow of game and telling a 

specific story is not as straightforward in an emergent system. 

 

2.2.4.4 Uncertainty and Quality Assurance 

Emergent systems also introduce uncertainty, which means that the game can behave 

in ways that the developers had not anticipated. Although this uncertainty can give 

rise to desirable, emergent gameplay, it can also be undesirable if the system allows 

behaviour that is detrimental to the game (Church, 2002). Extensive testing is required 

to ensure that the game does not allow detrimental behaviour. However, the emergent 

events can be too numerous or subtle for the development team to predict or detect 

during testing (Smith, 2002). 

 

2.2.4.5 Ease of Feedback and Direction 

Players have a greater need for feedback on the outcome and success of their actions 

in emergent systems, as the openness of the game world gives rise to more 

possibilities for action (Smith, 2001). Consequently, the players need more feedback 

to know that they are on the right track and that their actions are successful. 

 



 24  

2.2.5 Issues for Game Players 

Game developers and researchers have identified and discussed some of the issues of 

player interaction in game worlds and how they relate to emergent games. The issues 

discussed in the game development literature include the ability of the game to uphold 

the player’s suspension of disbelief, consistency in the game world, the intuitiveness 

of the environment, player expectation and learning, and how well the game facilitates 

player expression and emergent gameplay. Each of these issues is discussed in this 

section with respect to emergent game systems. 

 

2.2.5.1 Consistency 

Emergent games have the potential to be used to create more consistent game worlds 

(Smith, 2001). The game worlds in emergent systems are inherently consistent as the 

rules and properties are defined globally, for types of objects, rather than locally for 

each specific object. For example, the player knows that bullets affect everything that 

is damageable, such as windows, vases and chairs, rather than some windows and no 

vases. Furthermore, the player can deduce that if they can move objects and put 

objects on top of one another then they can stack crates. Games that obey a consistent 

set of physical laws allow the player to stay immersed in the game, sparing them from 

unpleasant surprises (Hecker, 2000).  

 

2.2.5.2 Intuitiveness and Learning 

Game worlds that work in a way that reflect players’ lifelong experiences (in the real 

world) are more intuitive and easier to understand for the average person, even in 

fantasy realms and alien dimensions (Smith, 2001). Emergent game systems are more 

likely to be intuitive to the average person as it is easier to create objects that behave 

and interact in more natural ways, with a wider variety of interactions. The objects in 

emergent systems are not limited to specific interactions that have been hard-coded. 

Instead, they interact in ways that are conducive to their properties and rules for 

interaction. 

 

An important benefit of making game worlds more intuitive is that they become easier 

to learn. The player is more likely to develop an intuitive understanding of the game 



 25  

elements if they are consistent with real world elements (Smith, 2002). For example, 

if fire in the game behaves like fire in the real world then the player will have an 

inherent understanding of how the fire works, without needing to be retaught the rules 

of fire within the game (Smith, 2001). With the use of intuitive game elements, the 

player is more likely to understand the elements, even when encountering them for the 

first time. As a result, the learning curve of the player is substantially decreased, 

which means that the player spends less time learning and more time playing the 

game (Smith, 2002).  

 

2.2.5.3 Emergent Gameplay and Player Expression 

Emergent systems define global possibilities for actions the player can perform, which 

can be applied in more open ways in specific situations. Players have more freedom to 

express their creativity and gameplay can occur that wasn’t anticipated by the 

designers. Emergent gameplay allows players to solve game problems by using 

strategies that were not envisaged by the designers (Smith, 2001; Garneau, 2002). 

Emergent gameplay occurs when a player’s actions result in a second order of 

consequence that the development team did not predict and the game behaves in a 

rational but unplanned way (McLean, 2002; Smith, 2002). For example, in the game 

Deus Ex, players used proximity mines to create ladders up walls to climb off the map, 

a possibility that was not foreseen by the developers.  

 

Emergent game systems empower the player by putting them centre stage (Church, 

2002), giving them freedom to experiment, greater control, a sense of agency, and less 

of a feeling of uncovering a path set for them by the designers (Smith, 2002). 

Consequently, the game can be more satisfying and interesting for the player. Game 

worlds that are not full of prescripted one-to-one interactions are empowering to the 

player as the gameplay becomes largely about exploring the possibility space and the 

game experiences become richer (McLean, 2002). Emergent games also have high 

replayability as each time the player plays the game they make different decisions, 

which change the game as a whole and result in different possibilities for action 

(Garneau, 2002).  

 



 26  

The major difference between scripted and emergent games is that emergent games 

focus on what the player wants to do, whereas scripted games focus on what the 

designer wants the player to do (Smith, 2001). However, it is important to realise that 

emergence alone isn’t a game (Church, 2002). Emergence in games needs to be used 

to improve gameplay, not simply for its own sake.  

 

2.2.6 Techniques for Emergent Games 

Techniques that are given the boundaries for behaviour (rather than the script) or are 

able to grow and change have the potential to give rise to behaviour that may not have 

been foreseen (or expected) by the developers. Emergent behaviour occurs when 

simple, independent rules interact to give rise to behaviour that wasn’t specifically 

programmed into the system (Rabin, 2004). Techniques that can be used to facilitate 

emergence come from complex systems, machine learning and artificial life. Some 

examples of emergent techniques that can or have been used in games are flocking, 

cellular automata, neural networks and evolutionary algorithms.  

 

2.2.6.1 Flocking 

Flocking is a technique for simulating natural behaviours for a group of entities, such 

as a herd of sheep or a school of fish (Reynolds, 1987). Flocking was devised as an 

alternative to scripting the paths of each entity individually, which was tedious, error-

prone and hard to edit, especially for a large number of objects. Flocking assumes that 

a flock is simply the result of the interaction between the behaviours of individual 

birds. In flocking, the generic simulated flocking creatures are called boids. The basic 

flocking model consists of three simple steering behaviours, separation, alignment and 

cohesion, which describe how an individual boid manoeuvres based on the positions 

and velocities of its nearby flockmates. Separation enables the boid to steer to avoid 

crowding local flockmates, alignment allows the boid to steer towards the average 

heading of local flockmates and cohesion makes the boid steer to move toward the 

average position of local flockmates (Reynolds, 1987). Each member in the flock 

revaluates its environment at every update cycle, which reduces the memory 

requirements and allows the flock to be purely reactive, responding to the changing 

environment in real time.  



 27  

Flocking has been successfully used in various commercial games, including Half-life, 

Unreal, Theme Hospital and Enemy Nations, as it provides a powerful tool for unit 

movement (Johnson & Wiles, 2001) and for creating realistic environments the player 

can explore (Woodcock, 2003). It is a relatively simple algorithm and only composes 

a small component of a game engine. However, flocking makes a significant 

contribution to games by making an attack by a group of monsters or marines realistic 

and coordinated. It therefore adds to the suspension of disbelief of the game and is 

ideal for real-time strategy or first-person shooter games that include flocks, swarms 

or herds. 

 

2.2.6.2 Cellular Automata 

Cellular automata (CA) are widely-used techniques in the field of complex systems, 

which studies agents and their interactions. A traditional CA is a spatial, discrete time 

model in which space is represented as a uniform grid (for a comprehensive review 

see Bar-Yam, 1997). Each cell in the grid has a state, typically chosen from a finite 

set. In a CA, time advances in discrete steps. At each time step, each cell changes its 

state according to a set of rules that represent the allowable physics of the model. The 

new state of a cell is a function of the previous state of the cell and the states of its 

neighbouring cells. A CA can be represented in one, two or more dimensions. A one-

dimensional CA consists of a single line of cells, where the new state of each cell 

depends on its own state and the state of the cells to its left and right. In a two-

dimensional CA, each cell can have four or eight neighbours, depending on whether 

cells diagonally adjacent to a cell are considered neighbours. CA have been proposed 

as a solution to the static environments that are prevalent in current computer games 

(Forsyth, 2002). The use of CA could lead to more dynamic and realistic behaviour of 

many game elements that are currently scripted, such as fire, water, explosions, smoke 

and heat.  

 

A variation of CA, influence mapping, is a method for representing the distribution of 

power within a game world in a two-dimensional grid (Rabin, 2004). Influence maps 

are commonly used for strategic assessment and decision-making in games (Sweetser, 



 28  

2004a
1
), but were also used in the game SimCity to model the influence of various 

social entities, such as police and fire stations around the city (Rabin, 2004). 

 

2.2.6.3 Neural Networks 

Neural networks are machine learning techniques inspired by the human brain. Neural 

networks are comprised of artificial neurons, called units, and artificial synapses, 

called weights. In a neural network, knowledge is acquired from the environment 

through a learning process and stored in the network’s connection weights (Haykin, 

1994). The network learns from a training set of data by iteratively adjusting its 

weights until each weight correctly reflects the relative influence that each unit has on 

the output. After training is complete, the network is ready to be used for prediction, 

classification or decision-making.  

 

Some of the considerations when developing neural networks for games include 

which variables from the game world will be used as input, the design of the structure 

of the network, what type of learning will be used, and whether learning will be 

conducted in-game or during development (Sweetser, 2004b
1
). If the neural network 

is allowed to learn during the game then it will be able to dynamically build up a set 

of experiences and adapt to new situations and the human player as the game 

progresses. Alternatively, training the neural network during development will 

produce a network that will behave within expectations and require minimal resources. 

Overall, advantages of neural networks include their flexibility for different 

applications, their ability to adapt when trained in-game and the efficiency of their 

evaluation once trained. However, neural networks can also consume significant 

resources when training, can require substantial tuning to produce optimal results and 

can learn unpredictable or inaccurate information if trained incorrectly. 

 

2.2.6.4 Evolutionary Algorithms 

An evolutionary algorithm (EA) is a technique for optimization and search, which 

evolves a solution to a problem in a similar way to natural selection and evolution 

(Mitchell, 1998). An EA includes a population of possible solutions to a problem, 

                                                
1
 A study independent of the research reported in this thesis. 



 29  

referred to as chromosomes, as well as processes that evaluate each chromosome’s 

fitness and select which chromosomes will become parents. The chromosomes that 

are selected to be parents take part in a process similar to reproduction in which they 

generate new offspring by exchanging genes. The new offspring also have a chance 

that they will mutate, similar to natural mutation. As the cycle continues over time, 

more effective solutions to the problem are evolved.  

 

Considerations that need to be made when designing an EA for a game include the 

many parameters that need to be tuned, such as choice of a suitable representation, 

population size, number of generations, choice of a fitness function and selection 

function, and mutation and crossover parameters (Sweetser, 2004c
2
). There are many 

advantages to using an EA, as they are a robust search method for large, complex or 

poorly-understood search spaces and non-linear problems. An EA is useful and 

efficient when domain knowledge is limited or expert knowledge is difficult to encode 

as they require little information to search effectively. Also, they are useful when 

traditional mathematical and search methods fail. On the down side, an EA is 

computationally expensive and requires substantial tuning to work effectively. In 

general, the more resources they can access the better, with larger populations and 

generations giving better solutions. However, an EA can be used offline, either during 

development or between games on the user’s computer, rather than consuming 

valuable in-game resources. 

 

2.3 Scripting-Emergence Continuum 

The two extreme approaches to game design discussed in this chapter ranged from 

hand-crafted, hard-coded, scripted environments to rule-based, general, emergent 

environments. An emergent approach to game design is significantly different from 

the current scripted approach to game design, in terms of modelling techniques, as 

well as the implications for developers and players. However, the two approaches are 

not mutually exclusive. Rather, scripting and emergence can be seen as two extremes 

of a continuum (Church, 2002; Smith, 2002).  

 

                                                
2
 A study independent of the research reported in this thesis. 



 30  

Both extremes hold benefits and drawbacks for game developers, as well as 

consequences for the game players. At the scripted end of the continuum, the 

developers must hand-craft, implement and test every aspect of the game individually 

but are able to keep full creative control and rest assured that the game won’t break 

after release. With the scripted extreme, the players are often locked into playing the 

game in a predefined way, unable to express their own creativity and may encounter 

inconsistencies in the game world. At the other end of the continuum are emergent 

game worlds that simply contain general rules for how the environment, objects and 

agents will interact, and the specific behaviours and events emerge from the 

interactions of the general rules. However, emergence is a frightening prospect for 

developers, who cannot be sure how the game will actually behave after it is released, 

and is a sandbox type environment even a game? The emergent extreme does, 

however, hold the potential for players to express their own creativity and for intuitive 

and consistent interactions to take place in the game world.  

 

It seems that the future of game development lies somewhere between these two 

extremes; that there needs to be the right combination of scripted, narrated gameplay 

and freedom to interact within the world. There needs to be some way to define the 

boundaries of action, moving the story forwards, but still letting the player do their 

own thing along the way. We suggest that a game world that facilitates emergent 

interactions, based on a technique such as cellular automata, can be used in 

conjunction with other more conventional techniques for gameplay, such as scripting, 

to allow the player sandbox-style interaction within the boundaries of a predefined 

story and game objectives.  



 31  

Part I  

 

Identifying the Player-Centred Issues of 

Interacting in Game Worlds 



 32  

 

 

 

 

 

 

 



 33  

 
 

 

 

3 
Player-Centred  

Game Worlds: 
Assessing Player Opinions,  

Experiences and Issues 
 

 

 

 

Acquiring the player’s perspective on game design issues is central to enhancing the 

gaming experience, by understanding, and ultimately meeting, the desires and 

expectations of the player. Although many game developers gather player feedback in 

some form, there is limited published literature on game design in terms of the aspects 

of game environments that affect player enjoyment. Furthermore, the majority of the 

literature (discussed in Chapter 2) is based on the personal experiences and thoughts 

of game developers (e.g. Smith, 2002; Church, 2002), rather than systematic and 

rigorous studies with players.  

 

The game development literature focuses on three major themes:  consistency in the 

game world, the intuitiveness of the environment and how well the game facilitates 

player expression and emergent gameplay. Consistency is crucial for keeping players 

immersed in the game world (Hecker, 2000). If the game world seems to behave 

consistently and in ways that the player understands then the player has less difficulty 

immersing themselves in the environment and suspending disbelief (Smith, 2001). 

The second theme, intuitiveness, suggests that interactions with the game environment 

and objects in the game environment should be intuitive and meet player expectation. 

An important benefit of making game worlds more intuitive is that they become easier 

to learn. The third theme identified in the literature is freedom of player expression 

and the possibility of emergent gameplay. Defining a limited number of outcomes or 



 34  

interactions for the player restricts their freedom in interacting and removes the 

possibility of emergent gameplay (Smith, 2001). 

 

Although a great deal can be learned from the thoughts and experiences of game 

developers, there is also a need to assess the thoughts and opinions of game players 

regarding the factors that affect their enjoyment of games. Previous empirical studies 

have provided insight into the players’ perspective on non-player characters in games 

(see Sweetser, Johnson, Sweetser & Wiles, 2003
3
, on the CD; Drennan, Viller & 

Wyeth, 2004). However, there is no published work on empirical studies conducted 

by game developers or researchers to ascertain player perspective on interacting in 

game environments. Therefore, the aim of the player-centred studies reported in this 

chapter was to investigate the aspects of game environments that affect player 

enjoyment from the players’ perspective in order to support or contest the developers’ 

views. A focus group was conducted with experienced game-players to identify the 

issues that they felt most affected their enjoyment of a game. The focus group was 

followed up by a questionnaire, which aimed to assess how the issues identified in the 

focus group vary in importance across players with different game-playing experience 

and game-type preference. 

 

3.1 Defining the Player-Centred Issues 

The goal of the focus group study was to collect the opinions and experiences of a 

group of experienced game players with respect to the issues that impact upon their 

enjoyment of game environments. The focus group consisted of four experienced 

game players, consisting of one female and three males aged between 21 and 25. Each 

member of the group considered him or herself to be an experienced game player and 

reported playing games on a daily basis, with a minimum of five years experience 

playing games. The focus group involved several general points of discussion, but the 

group was mostly encouraged to discuss their experiences. The guiding questions 

related to general experience with interacting in games, experience with specific 

games, consistency, gameplay, immersion and suspension of disbelief, physics and 

intuitiveness of interactions. An audio recording was taken during the focus group, 

                                                
3
 A study independent of the research reported in this thesis. 



 35  

which was later transcribed and analysed using grounded theory (Glaser, 1998). The 

analysis gave rise to five major themes: consistency, immersion and suspension of 

disbelief, freedom of player expression, intuitiveness and physics. 

 

3.1.1 Consistency 

A strong theme arising throughout the focus group was the importance of consistency 

in games. Participants felt that it is highly important for objects that look the same to 

act the same. For example, one member was frustrated with “glass windows that 

break sometimes but don’t break other times.” Similar problems were identified for 

crates, barrels, lanterns and mirrors. Inconsistencies can cause difficulties for the 

player in learning the rules of the game, which appear to be constantly changing. If 

the player learns in one instance to kick a barrel to break it and the next time they kick 

a barrel it doesn’t break then they become confused and even frustrated with the game. 

 

On the other end of the scale, it is important for objects that have different behaviour 

to look different, signalling to the player that a different kind of interaction is possible. 

For example, “some games signal actions by having different coloured walls for bits 

of wall you can kick out, for example Bloodrayne” and referring to the game 

Dungeon Siege “there were certain walls that looked a bit different, but you knew that 

you could shoot that wall out”. However, it was also expressed that the visual 

difference shouldn’t be in the form of something unrealistic, such as a big red circle 

around the section of wall. Rather, it should be a subtle, realistic difference that the 

player can detect, such as a “worn-looking part of the wall” that might be more fragile. 

 

3.1.2 Immersion and Suspension of Disbelief 

Another major theme of the discussion was immersion and suspension of disbelief. 

The group agreed that audio is very important for keeping the player immersed in the 

game, in terms of a “powerful and moving soundtrack”, as well as sound effects. The 

group thought that a game is immersive if it can cause an emotional response, such as 

fear or happiness. The group discussed how sounds can be used to build up suspense, 

such as in a horror movie when “you know that something is creeping up on you, to 

the point that you’re afraid and shifting in your seat”. Furthermore, audio was 



 36  

highlighted as being important for “drawing you into the game, but inconsistent 

graphics can quickly knock you back out again”. The graphics don’t need to be 

spectacular, but they do need to be consistent and ensure “nothing catches your eye as 

being wrong or out of place”. A good introduction and a strong narrative were also 

identified as being important for immersion. The introduction gives the player the 

storyline and background, tells them who their character is and what is going on. The 

player then feels like they are “part of the story and they want to find out more”. As 

they play the game, the player is given more of the storyline, “similar to reading a 

book, except that you need to complete certain tasks” to be rewarded with more of the 

story. 

 

3.1.3 Freedom of Player Expression 

Another theme that arose was player expression, which is the freedom that the player 

has in expressing their creativity and intentions by playing the game in the way that 

they want, not the way that the designer had intended it to be played. The group 

discussed linearity in games and agreed that they are often forced to solve problems 

and perform tasks the way the designer had imagined, which can rely on the player 

using trial and error. For example, many “quests aren’t even quests, they’re 

completely linear, you’ve been told exactly what to do, you just have to go pick this 

thing up and come back, you should be able to go out and do the quest your own way”. 

One member said that it becomes “more like trial and error than playing and it’s not 

as fun as looking around at a collection of objects and working out how to use them to 

solve the problem”. It was also considered to be important that the player has a range 

of interactions that can be performed with the environment and game objects and that 

each game should have some kind of new and unique interaction. 

 

3.1.4 Intuitiveness 

The group reflected on many experiences in games where their interactions with the 

environment had not been intuitive. A major source of frustration came from objects 

in games that were simply scenery and hence could not be used or affected. For 

example, furniture that cannot be moved as it seems to be bolted to the floor or “a 

flimsy little plastic chair that can be shot with a shotgun and it’s resilient enough to 



 37  

take that and not be damaged”. Unintuitive interactions can also cause problems for 

gameplay, when the player cannot use objects in the way that they would expect, in 

order to complete a quest or solve a problem. The group discussed the unintuitive 

nature of problem solving in some games. The group found that the way the designers 

intend the problem to be solved is often not intuitive for the player and that they 

“resort to trial and error”. The group suggested that “if it takes 10 hours to find a 

switch or the player needs to go to the internet to get a walkthrough then there is a 

serious problem with the game”. Therefore, it is important to conduct extensive 

testing to ensure that the players’ expectations are met and that they will be able to 

solve the problems in a reasonable time frame, rather than assuming the designer’s 

intentions will be easily determined.  

 

3.1.5 Physics 

The group discussed their expectations of physics in games and reflected on their 

good and bad experiences. There was consensus that gravity in games is important for 

actions such as jumping, falling, taking falling damage, trajectory when launching 

rockets and so on. Modelling gravity can give rise to realistic effects such as bouncing 

grenades around corners, falling off a platform or rolling down a hill when shot. More 

importantly, the “gravity needs to behave consistently, even if it’s not entirely 

realistic”, such as in first person shooter games like Unreal Tournament and Quake, 

where the game may be in low gravity mode. Momentum was also identified as an 

important attribute of physics that needs to be modelled in games, especially in space 

simulations and first person shooters. For example, if the player shoots the enemy or 

is shot by the enemy then “being pushed backwards is natural”.  

 

Another important aspect of physics concerns fire and explosions. Flammable game 

objects should burn and ignite when affected by a flamethrower or incendiary grenade. 

Also, when a flash grenade explodes next to a character it should adversely affect 

their sight and hearing, or when an explosion occurs the player “should be able to 

jump into a pool of water to be protected” from damage. Water was also identified as 

a substance that needs to be modelled more accurately in games. For example, there 

was a considerable discussion about how most weapons shouldn’t work under water, 

especially flamethrowers and fire-based weapons. Other attributes of water that the 



 38  

group decided were important were the effects of the flow and currents of the water, 

as well as visual effects such as ripples. 

 

In summary, consistent physics are important in games to ensure the game reacts in 

the way that the player expects, to allow the player to perform actions in an intuitive 

manner and to keep the player immersed in the game world. Currently, players expect 

gravity, momentum and the basic laws of physics to work in an intuitive way and they 

look forward to more interactive physics in water, fire and explosions. 

 

3.1.6 Focus Group Summary 

In summary, the focus group provided supporting evidence for the themes of 

consistency, freedom of expression and intuitiveness identified in the game design 

literature. First, players need consistency in games to be able to learn the rules of the 

game, to know when they can interact with game elements and to avoid frustration 

and confusion. Second, players want to be free to play games and solve problems in 

the way that they want, not the way the designer had intended. Third, counterintuitive 

interactions often result from game objects having no function or behaving in a way 

that conflicts with player expectation. Furthermore, the focus group provided insight 

into two new issues that affect player enjoyment in games, immersion and physics. 

Immersive games draw the player into the game and affect their senses and emotions 

through elements such as audio and narrative. Finally, consistent physics are 

important in games to ensure the physical elements of the game world, such as gravity, 

momentum, fire and water, behave in the way that the player expects, to allow the 

player to perform actions in an intuitive manner and to keep the player immersed in 

the game world. 

 

3.2 Investigating the Player-Centred Issues 

The results obtained from the focus group were used as a basis for constructing a 

questionnaire (see Appendix A) that aimed to further investigate the issues of 

consistency, immersion, freedom of expression, intuitiveness and physics in game 

environments. Whereas the focus group provided in-depth insight into the opinions 

and experiences of a small group of experienced game players, the questionnaire was 



 39  

designed to provide a survey of the opinions of a large, diverse group of game players. 

There were two main aims of the questionnaire study. First, to determine how the 

different issues defined in the focus group affect the enjoyment of people who play 

different types of computer games, such as role-playing games or first-person shooter 

games. The second aim was to determine how these issues affect the enjoyment of 

people with different levels of experience playing computer games. One question of 

particular interest was whether intuitive interactions with game environments and 

objects have a greater effect on the enjoyment of people with less game-playing 

experience. People who have less experience playing games are not well-versed in the 

“rules” of game worlds and it is therefore likely that unintuitive interactions have a 

greater effect on their enjoyment. 

 

3.2.1 Method 

PARTICIPANTS 

The questionnaire was administered online (http://www.itee.uq.edu.au/~penny/ 

questionnaire.htm) and invitations to participate were emailed to university staff and 

students and posted on several online game forums (http://vnboards.ign.com/). The 

boards posted to included Half-Life 2, Neverwinter Nights, EverQuest, Morrowind 

and Eve Online. The questionnaire was completed by four hundred and fifty-five 

participants, of which 421 (92.5%) were male and 34 (7.5%) were female. 

Participants ranged in age from 11 to 56 years, M = 24.8 (SD = 6.91). The sample 

consisted mainly of frequent game-players, with 94% playing computer games at least 

monthly. The distribution of game-playing frequency and age are shown in Figure 3.1.   



 40  

Frequency of Playing

0

100

200

300

Daily Weekly F/nightly Monthly Less

Frequency
N

o
. 
o

f 
s

u
b

je
c
ts

Age Distribution

0

50

100

150

11-15 16-20 21-25 26-30 31-35 36-40 41+

Age

N
o

. 
o

f 
s

u
b

je
c

ts

 

Figure 3.1. Participant Demographics. The majority of subjects (94%) played games at 

least monthly. Participants ranged in age from 11 to 56 years, with the majority in their 

late teens to late twenties 

 

MEASURES 

Independent. There were three between-subject variables, gender, game-type 

preference and experience. The participants selected their preferred type of game from 

a list of seven common game types, with the majority of participants nominating role-

playing games (41%), first-person shooter (28%) or strategy games (16%) as their 

preferred game type. The other four game-types, simulation, action, racing and sports 

games accounted for twelve percent of the sample. The participants indicated their 

level of experience at playing computer games on a seven-point Likert scale, ranging 

from very inexperienced to very experienced, with the majority of participants rating 

themselves as experienced, M = 5.88 (SD = 1.37). The distribution of game-type 

preference and self-rated experience are shown in Figure 3.2. 

 



 41  

Game-Type Preference

0

50

100

150

200

RPG FPS Str Sim Act Rac Spt

Game Type
N

o
. 
o

f 
s

u
b

je
c

ts

Self-Rated Experience

0

50

100

150

200

250

Very

Inexp

2 3 4 5 6 Very

Exp
Experience Rating

N
o

. 
o

f 
s

u
b

je
c

ts

 
Figure 3.2. Independent Measures. Participants selected their preferred type of game 

from role-playing (RPG), first-person shooter (FPS), strategy (Str), simulation (Sim), 

action-adventure (Act), racing (Rac) and sport (Spt). The majority of participants rated 

themselves as very experienced 

 

Dependent. The participants were required to complete 28 nine-point Likert scales to 

indicate the degree to which different aspects of games affect their enjoyment of their 

preferred type of game, where one indicated “much less enjoyable”, five indicated “no 

effect” and nine indicated “much more enjoyable” (see Appendix A). All measures 

were assessed using multiple item scales and all negatively worded items were 

reverse-scored. Factor analysis via principal components was conducted to identify 

sets of variables that could be combined into scales. On the basis of eigenvalues 

greater than one criterion, a five factor solution was obtained accounting for 68.6% of 

the variance. Cronbach’s coefficient alpha was used to assess the reliability of each 

scale. All scales were found to have acceptable reliabilities (.66 to .90). The five 

factors derived were physics, sound, narrative, intuitiveness and freedom of 

expression (see Table 3.1):  

- Physics The physics scale consisted of eight items related to gravity, 

momentum, life-like graphics and the behaviour of water and fire. 

- Sound The sound scale consisted of three items related to a game’s soundtrack 

and sound effects. 



 42  

- Narrative The narrative scale consisted of two items related to a game’s 

introduction and storyline.  

- Intuitiveness The intuitiveness scale consisted of three items related to 

consistent behaviour of objects, scenery and interaction with objects. 

- Expression The freedom of expression scale consisted of two items related to 

the variety of ways of interacting with objects and having new and unique 

ways of interacting with objects. 

 

Table 3.1. Descriptive data for dependent measures 

Variable Mean Standard 

Deviation 

Possible 

Range 

Actual 

Range 

Reliability 

Sound 7.53 1.26 1 – 9 1 – 9 .85 

Narrative 7.20 1.31 1 - 9 1.5 – 9 .68 

Physics 7.07 1.09 1 - 9 3.13 – 9 .90 

Expression 7.40 1.29 1 - 9 1 – 9 .79 

Intuitiveness 6.31 1.06 1 - 9 2.67 - 9 .66 

 

3.2.2 Results 

Regression analyses were used to examine the main and interactive effects of gender, 

game-type preference and experience on each of the dependent measures (physics, 

sound, narrative, intuitiveness and expression). The main effect terms (gender, game-

type preference and experience) were entered into the regression equation followed by 

the two-way interaction terms (gender-by-game-type preference, gender-by-

experience and experience-by-game-type preference). The main effect terms, but not 

the two way-interaction terms, accounted for a significant increment of variance in 

physics (F(3,385) = 3.185, p < .05), sound (F(3,384 = 6.662, p < .05), expression 

(F(3,385) = 5.287, p < .05), and narrative (F(4,387) = 2.788, p < .05). Also, the main 

effect terms (F(3,385) = 4.395, p < .05) and the two-way interaction terms (F(6,382) = 

3.810, p < .05) accounted for a significant increment of variance in intuitiveness.  

 

It was found that physics (β = .095, t = 1.89, p = .06), sound (β = .117, t = 2.347, p 

< .05) and intuitiveness (β = .098, t = 1.937, p < .05) have a greater effect on 

enjoyment for people who prefer first-person shooter games than people who prefer 

other types of games. For people who prefer strategy games, it was found that 

narrative (β = .112, t = 1.668, p < .10) has a greater effect on enjoyment than for 



 43  

people who prefer other types of games. Also, it was found that of the people who 

prefer role-playing games, the effect that intuitiveness has on enjoyment increases as 

level of experience increases (β = -.804, t = -2.841, p < .05). Finally, it was found that 

the effect that sound (β = .095, t = 1.853, p < .10), freedom of expression (β = .179, t 

= 3.448, p < .05) and narrative (β = .150, t = 2.829, p < .05) have on player enjoyment 

increases as level of experience increases. Analyses of the main and interactive effects 

of gender, game-type preference and experience on the measures of physics, sound, 

narrative, intuitiveness and expression are presented in Table 3.2. 

 



 44  

Table 3.2. Multiple Regression Analysis. Multiple regression analysis predicting Physics, 

Sound, Intuitiveness, Narrative and Expression from Gender, Game-Type Preference and 

Experience 

  Physics 

Step Predictor R2 R2 change F change β 

1 Gender .024 .024 3.185* .080 

 Game-Type Preference    .095+ 

 Experience    .073 

2 Gender x Game-Type .032 .007 .974 .415 

 Gender x Exp    .279 

 Game-Type x Exp    -.331 

  Sound 

Step Predictor R2 R2 change F change β 

1 Gender .049 .049 6.662*** .138** 

 Game-Type Preference    .117* 

 Experience    .095+ 

2 Gender x Game .051 .002 .254 .617 

 Gender x Exp    .823 

 Game-Type x Exp    .052 

  Intuitiveness 

Step Predictor R2 R2 change F change β 

1 Gender .033 .033 4.395** .128* 

 Game-Type Preference    .098* 

 Experience    .052 

2 Gender x Game-Type .056 .023 3.152* .519+ 

 Gender x Exp    .307 

 Game-Type x Exp    -.804** 

  Narrative 

Step Predictor R2 R2 change F change β 

1 Gender .021 .021 2.777* .031 

 Game-Type Preference    .112+ 

 Experience    .150** 

2 Gender x Game-Type .022 .001 .158 -.339 

 Gender x Exp    -.010 

 Game-Type x Exp    -.184 

  Expression 

Step Predictor R2 R2 change F change β 

1 Gender .040 .040 5.287*** .044 

 Game-Type Preference    .045 

 Experience    .179*** 

2 Gender x Game-Type .047 .007 .996 .370 

 Gender x Exp    .367 

 Game-Type x Exp    -.316 

*** p < .001, ** p < .01, * p < .05, + p < .10 

 



 45  

3.2.3 Discussion of Questionnaire 

Effects of Game-Type Preference. The first aim of the questionnaire study was to 

investigate how game-type preference affects the aspects that make games more 

enjoyable for players. It was found that physics, sound and intuitiveness have a 

greater effect on enjoyment for people who prefer first-person shooter games than 

people who prefer other types of games. This finding can be attributed to the 

centrality of physics, sound and intuitiveness to first-person shooter games. First, 

physics is vital in first-person shooter games as typical behaviours include jumping, 

shooting and exploding, which need to be modelled with a certain degree of realism. 

Second, sound is important as it provides immediate feedback and information to the 

player about what is happening around them in the information-rich environment of 

first-person shooter games, which includes fast gameplay, different enemies, rapid 

movement and numerous interactions with objects and the environment. Also, sound 

aids in setting the mood of the game and provides an additional level of immersion, 

by making the player feel frightened or excited. Finally, intuitive interactions with 

objects are important in first-person shooter games as they require far more direct 

interaction with the environment (e.g. direct manipulation of objects and interaction 

with scenery) than any other type of game. Therefore, it is important that interactions 

in first-person shooter games are intuitive as the player will be carrying out a greater 

number of interactions with greater frequency. 

 

For people who prefer strategy games, it was found that narrative has a greater effect 

on enjoyment than for people who prefer other types of games. It might be expected 

that narrative would have a greater effect on the enjoyment of people who prefer role-

playing games. However, this finding could be due to the fact that every role-playing 

game includes narrative, but it is uncommon in strategy games. Therefore, the 

addition of well-placed narrative in strategy games has a significant effect in 

increasing player enjoyment, whereas narrative is commonplace and expected in role-

playing games and therefore the players fail to recognize it as something that affects 

their enjoyment. 

 

Effects of Game-Playing Experience. The second aim of the questionnaire study 

was to investigate how experience affects the aspects that make a game enjoyable. In 



 46  

particular, it was expected that the ability to interact intuitively with objects would 

have a greater effect on the enjoyment of people with less experience playing games. 

However, there was no evidence to support this theory. On the contrary, it was found 

that of the people who prefer role-playing games, the effect that intuitiveness has on 

enjoyment increases as level of experience increases. Maybe more experienced game 

players expect to be able to interact with game environments and objects in a 

particular way, learned from their prior experience playing games, and find it 

annoying when the game doesn’t behave in the way they have learned to expect. On 

the other hand, the inexperienced players have no concept of how the game objects 

should behave, rather they only have the concepts they have learned in real life. 

Additionally, it was found that the effect that sound, freedom of expression and 

narrative have on player enjoyment increases as level of experience increases. As with 

intuitive interactions, perhaps the player’s expectations of these three aspects are built 

up as they play more games. As a result, the more experienced game players know 

from experience that they have really enjoyed games with good sound and narrative. 

More experienced players find freedom of expression more enjoyable, as their 

experience means that they are more likely to want to experiment, try different 

strategies and try to play the game in their own way. 

 

3.3 Discussion and Conclusions 

The aim of the player-centred studies reported in this chapter was to determine the 

issues that have an impact on player enjoyment in a game environment from a player-

centred perspective, by integrating the findings of a focus group and questionnaire 

with the insights of game developers. The focus group confirmed three of the themes 

identified in the game development literature. The first theme was consistency, which 

related to objects behaving in a consistent manner, enabling players to learn the rules 

of the game, to know when they can interact with game objects and to avoid 

frustration and confusion. The questionnaire, however, did not provide any further 

insight into consistency. The second theme from the literature that was supported by 

the focus group was freedom of expression, which refers to the ability of players to 

play the game and solve problems in their own way or a variety of ways, rather than 

the way the designer had intended. The questionnaire refined freedom of expression 



 47  

by showing that the effect freedom of expression has on player enjoyment increases 

with level of experience. The third theme that was confirmed by the focus group was 

intuitive interactions with the game environment, which related to not being able to 

interact with objects or solve problems in the way that the player would expect. The 

findings from the questionnaire were that the effect that intuitiveness had on player 

enjoyment was higher for people who prefer first-person shooter games and people 

with more experience playing games.  

 

There were two new themes related to the enjoyment of players interacting in game 

worlds that were identified in the focus group. The first new theme was immersion, 

which related to game aspects such as audio and narrative drawing the player into the 

game, enabling them to believe it is real or suspending their disbelief. The 

questionnaire further expanded immersion with the findings that sound has a 

significant effect on the enjoyment of people who prefer first-person shooter games 

and players with more experience. Also, it was found that narrative has a significant 

effect on people who prefer strategy games and players with more experience. The 

second new theme found in the focus group was consistent physics, which related to 

gravity, momentum and the basic laws of physics behaving consistently with player 

expectation, as well as more realistic behaviour and interactivity in water, fire and 

explosions. The questionnaire showed that physics has a greater effect on the 

enjoyment of people who prefer first-person shooter games. 

 

The background of the sample that participated in the focus group and questionnaire 

should also be considered. For the focus group, the participants were experienced 

game-players and as such their opinions and views may differ from a group of novice 

players. For the questionnaire, the majority of the sample consisted of experienced 

game-players and a large proportion of the participants were attracted from online 

game forums, such as Eve Online and EverQuest. As such, the results obtained from 

the questionnaire may be more biased towards experienced and online game players. 

Interesting and valuable future work lies in investigating different groups of players 

and comparing the results to the findings of these studies. 

 

In conclusion, the focus group provided supporting evidence from the player’s 

perspective for some of the issues that were identified in the game development 



 48  

literature, including intuitiveness, consistency and freedom of expression. 

Additionally, two new issues were defined in the focus group, immersion and physics. 

As discussed in Chapters 1 and 2, emergent game worlds have the potential to 

enhance player enjoyment in terms of consistency, freedom of expression and 

intuitive interactions, which were each shown to be major factors of player enjoyment 

through the player-centred studies. Additionally, the physics in emergent game worlds 

is inherently consistent, as the laws of physics are defined globally. Consequently, it 

can be concluded from the player-centred studies that emergent game worlds have the 

potential to enhance player enjoyment by providing consistency, freedom of 

expression, intuitive interactions and consistent physics. The aims of the research 

reported in the next section were to design, implement and test an emergent game 

world that has the potential to enhance player enjoyment. 



 49  

Part II  

 

Designing, Implementing and Testing 

the EmerGEnT System 
  



 50  



 51  

 

 

 

 

4 
Cellular Automata in 

Game Environments 
 

 

 

 

The environment is the central component of an emergent game system as it defines 

the game world and the interactions that are possible within the world. The rules that 

are defined for the interactions within the environment itself dictate the rules that will 

apply to entities that exist in the environment, such as objects and agents. Therefore, 

defining the rules for the interactions between cells is a crucial step in developing a 

game world that facilitates emergent behaviour. An active environment, based on 

simple interactions between cells, provides a foundation for emergent behaviour to 

occur in game objects and agents, as well as the environment itself. A possible 

technique that can be used as a foundation for an emergent game environment is 

cellular automata. However, there is currently no integrated implementation of 

cellular automata for modelling game environments. The lack of cellular automata in 

current games gives rise to the questions of whether cellular automata are appropriate 

for use in game systems and to what extent they can facilitate emergent behaviour and 

gameplay. Consequently, the aims of the study presented in this chapter were to 

design and implement a game environment, based on cellular automata, which models 

basic elements of the environment, such as heat, pressure and fluid. Also, the study 

aimed to determine the suitability of cellular automata for modelling game systems 

and to determine the extent to which cellular automata can facilitate emergent 

behaviour and gameplay. The approach taken was to begin with simplified equations 

from thermodynamics, implement a two-dimensional cellular automata and simple 

strategy game environment, tune the rules and properties until reasonable observable 



 52  

behaviour was achieved, and test the system’s behaviour with possible strategy game 

scenarios. 

 

4.1 Strategy Games as a Modelling Environment 

Cellular automata could be used to model game environments in a variety of game 

genres, each with individual constraints. However, a strategy game was chosen as an 

appropriate test-bed for several reasons. First, the abstract nature of strategy games 

means that the rules and properties can be more abstract. More specifically, a strategy 

game is conducted on a map that represents a world or a large region, with each cell 

representing an area that covers several kilometres. On this scale, there is no need to 

model effects such as ripples in water or drops of rain causing splashes. Rather, it is 

the large scale effects, such as forest fires and dams bursting that are important. 

Second, the environmental interactions are more likely to directly impact on gameplay 

in a strategy game. As the interactions are inherently on a larger scale, it is more 

likely that they will have a more significant effect on gameplay. For example, a forest 

burning down can give the player a way into an opponent’s base or destroy a needed 

resource of wood. Third, due to the abstract nature of the game map, the world only 

needs to be represented in two-dimensions, as such the cellular automata only needs 

to be represented in two-dimensions. In games such as first person shooters, the entire 

three-dimensional world would need to be represented. However, in a strategy game, 

the important interactions are only occurring on the surface of the world. The system 

may need to take the height of the surface into consideration, but there is still only one 

plane of cells that require calculations to be performed. Fourth, strategy games are 

almost always divided into grids, called influence maps (Tozour, 2001). As influence 

maps are already widely used in games, a system that uses influence maps is likely to 

be easier to implement and more acceptable by game developers. Fifth, strategy game 

maps are generally a lot smaller than maps in other types of games. Strategy games 

usually have one static map that represents the world, whereas other types of games 

have multiple cities or regions that continually need to be loaded as the player moves 

into each region. For these reasons, strategy games have been selected as an ideal test-

bed, as they are far simpler, have more obvious effects and will involve far fewer 

issues in implementing and incorporating into current games. 



 53  

4.2 Physical Modelling with Cellular Automata 

As discussed in the introduction (Chapter 1), most approaches to modelling real-world 

phenomena in virtual worlds aim to develop accurate, error-free models. These 

models are usually developed for the purposes of simulating natural disasters (e.g. 

forest fires) or visually realistic effects (e.g. smoke or fluid flow), using complex 

equations. However, these computationally-expensive, complex methods are not 

needed in game worlds, where the emphasis is on credible and acceptable behaviour, 

rather than accurate and error-free simulation. Games worlds only need to 

approximately model reality for the purposes of entertainment. Forsyth (2002) has 

identified ways in which environmental processes can be simplified for games using 

cellular automata and has formulated some example equations for these processes in 

human-sized (e.g. first-person shooter) games. In this section, Forsyth’s equations for 

heat, pressure, fluid flow and fire are summarised. 

 

4.2.1 Heat 

Forsyth (2002) discusses three different mechanisms for transmitting heat through the 

environment: conduction, convection and radiation. In conduction, neighbouring cells 

pass heat to each other until they reach the same temperature (see Figure 4.1). Forsyth 

also describes mechanisms for convection (heat rises) and radiation (hot objects emit 

light). 

 



 54  

// Find current heat capacities 

float  HCCell = cell->material->SHC * cell->Mass; 

float HCNeigh = neigh->material->SHC * neigh->Mass; 

float EnergyFlow = neigh->Temp – cell->Temp; 

// Convert from heat to energy 

if (EnergyFlow > 0.0f) 

 EnergyFlow *= HCNeigh; 

else 

 EnergyFlow *= HCCell; 

// A constant according to cell update speed. 

// Usually found by trial and error. 

EnergyFlow *= ConstantEnergyFlowFactor; 

Neigh->Temp -= EnergyFlow / HCNeigh; 

Cell->Temp += EnergyFlow / HCCell; 

// Detect and kill oscillations. 

if (((EnergyFlow>0.0f)&&(neigh->Temp<cell->Temp)) || 

 ((EnergyFlow<=0.0f)&&(neigh->Temp>cell->Temp))) 

{ 

 float TotalEnergy = HCCell * cell->Temp + HCNeigh * neigh->Temp; 

 float AverageTemp = TotalEnergy / (HCCell + HCNeigh); 

 cell->Temp = AverageTemp; 

 neigh->Temp = AverageTemp; 

} 
Figure 4.1. Equations for heat. Neighbouring cells pass heat to each other until they 

reach the same temperature (reproduced from Forsyth, 2002, p. 209) 

 

4.2.2 Pressure 

Forsyth (2002) provides a general algorithm for diffusion, which calculates the 

difference in pressure between a cell and its neighbour and divides that amount by the 

number of neighbours (see Figure 4.2). 

 

for (neigh = each neighbour cell) 

{ 

 if (neigh->Material->IsInert( )  ) continue; 

 float DPress = cell->Pressure – neigh->Pressure; 

 float Flow = cell->Material->Flow * DPress; 

 Flow = clamp (Flow,  

  Cell->Pressure / 6.0f, 

  -neigh->Pressure / 6.0f  ); 

 cell->NewPressure -= Flow; 

 neigh->NewPressure += Flow; 

} 

Figure 4.2. Equations for pressure diffusion. Pressure is divided equally between a cell 

and its neighbours (reproduced from Forsyth, 2002, p. 205) 

 



 55  

4.2.3 Fluid Flow 

The equations for fluid flow suggested by Forsyth (2002) are based on his general 

equations for pressure diffusion (see Figure 4.2). However, fluid is made 

compressible, so that fluid at greater depth seems to have greater pressure (more fluid 

stored in the same space). The compression property allows water to behave 

realistically in three dimensions (see Figure 4.3).  

 

if (neighbour cell is above this one) 

{ 

 if (  (  cell->Mass < material->MaxMass ) || 

  (neigh->MaxMass < material->MaxMass )  ) 

 { 

  Flow = cell->Mass – material->MaxMass; 

 }else{ 

  Flow = cell->Mass – neigh->Mass - material->MaxCompress; 

  Flow *= 0.5f; 

} 

else if  (  neighbour cell is below this one  ) 

{ 

 if  (  (  cell->Mass < material->MaxMass  )  || 

  (neigh->Mass < material->MaxMass  )  ) 

 { 

  Flow = material->MaxMass – neigh->Mass; 

 } else { 

  Flow = cell->Mass – neigh->Mass + material->MaxCompress; 

  Flow *= 0.5f; 

 } 

} 

else // neighbour is on same level 

{ 

 Flow = (cell->Mass – neigh->Mass ) * 0.5f; 

} 
Figure 4.3. Equations for fluid flow. Fluid is made compressible so that water at greater 

depths has more pressure (reproduced from Forsyth, 2002, p. 207) 

 

4.2.4 Fire 

Forsyth (2002) notes that the process of burning materials is extremely complex and 

identifies that the best results are given by using a function that shows the amount of 

heat energy that is released per unit of time when a material burns at a certain 

temperature. In order to model burning in real-time the materials need to be reduced 

to their main characteristics. With Forsyth’s approach, the two variables maximum 



 56  

burning rate and burning temperature can be tweaked to allow the burning of any 

material to be simulated.  

 

float Temp = cell->Temp – material->Flashpoint; 

// Damage the cell 

CellDamage = Temp * material->BurnRate; 

float Burn; 

// Convert to actual burning value. 

if (Temp > material->MaxBurn * 2 ) 

 Burn = material->MaxBurn; 

else 

 Burn = ( 1.0f – ( 0.25f * Temp / material->MaxBurn ) ) * Temp; 

ASSERT ( Burn <= material->MaxBurn ); 

ASSERT ( Burn >= 0.0f ); 

// And heat the cell up from the burning. 

Cell->Temp += Burn * material->BurnTemp; 

Figure 4.4. Equations for burning. Burning can be reduced to the amount of heat energy 

that is released per unit of time when a material burns at a certain temperature (reproduced 

from Forsyth, 2002, p. 211) 

 

4.2.5 Limitations 

The equations discussed by Forsyth (2002) provide a foundation for developing a 

game world based on cellular automata. However, there is a need to develop these 

equations into a full world model that includes structure, as well as means for 

integrating the individual components and updating the game world. Also, the 

equations need to be developed into complete algorithms and adapted to strategy 

games, as opposed to human-sized games. Finally, extensive tuning is required to 

ensure the behaviour of the system meets requirements. Consequently, the aim of this 

study was to develop and tune such a system, which is discussed in the following 

sections. 

 

4.3 EmerGEnT System Structure 

The Emergent Games Engine Technology (EmerGEnT) system designed in this study 

can be viewed as a hierarchy with three levels (see Figure 4.5). The top level is the 

behaviour of the system that is observable by the player, such as the effects of fire, 

damage and fluid flow. The player can see that a cell is on fire or that it is damaged as 

these are observable effects. The second level consists of the simple rules that give 



 57  

rise to the visible, complex, top-level behaviour. There are two types of rules at the 

second level of the system. First, there are rules that define the interactions between 

neighbouring cells, such as the spread of heat from one cell to another. An example 

rule for interactions between cells is that heat flows from a hot cell to a cooler cell. At 

the second level, there are also are rules for interactions within a cell, such as the 

burning of a cell. An example rule for interactions within a cell is that hot cells catch 

on fire. Finally, the third level of the hierarchy contains the properties of the cells, 

which determine how cells act and react in accordance with the rules at the level 

above. For example, each cell is made of a material that has a certain flashpoint, 

burning temperature and burning rate that determines how hot it needs to be to catch 

on fire, how fast it burns and how long it will burn. The multi-levelled design of the 

EmerGEnT system allows the system to be systemic, facilitates emergent top-level 

behaviour and lends it to future extension. 

 

 
Figure 4.5. EmerGEnT system structure. The multi-levelled structure of the environment 

facilitates top-level emergent behaviour 

 

Level 1: Observable Behaviour 
E.g. fire, damage, fluid flow 

 

Level 2: System Rules 

Between Cells 

E.g. heat flows 

from hot cells to 

cool cells 

Within Cells 

E.g. hot cells 

catch on fire 

Level 3: Properties 

Cells 

Temp 

Mass 

Pressure 

Material 

Flashpoint 

BurnTemp 

BurnRate 



 58  

4.4 Properties 

The bottom level of the EmerGEnT system hierarchy (see Figure 4.5) contains the 

properties of the cells. This level contains the data structures for the cellular automata 

and materials of the system. The system consists of a grid of cells and each cell has a 

set of properties. Included in the set of properties is the material (or terrain) of the cell. 

Each material also has its own set of properties that govern its behaviour. The main 

data structure in the system is the grid for the cellular automata. The grid consists of 

100 cells (10 by 10), each of which represents a piece of a strategy game map of 

arbitrary size. In commercial strategy games, the size of the cells that are used in 

structures such as influence maps is arbitrary and there is a trade-off between 

accuracy and efficiency (Tozour, 2001). If the cells are too large then the influence 

map will miss important features and if the cells are too small then there is redundant 

information and substantial memory is used. Usually, the cells are made fairly large, 

approximately big enough to fit 10-20 standard units side by side, and from there the 

cell size is tuned to obtain optimal results.  

 

Each cell is a record with a set of 12 associated properties, including the terrain type 

(material), temperature, mass, damage, wetness, height, fluid and pressure. There is 

also a set of materials, which contains information about all the materials in the 

system. Each material has a set of properties, including flashpoint, burning 

temperature, maximum burning rate, specific heat capacity (SHC) and maximum fluid 

level before overflow (see Table 4.1).  

 

Table 4.1. Cell material properties. Possible material for cells include water, grass and 

woods 

Property Description Values 
  Water Grass Woods 

Flashpoint The ignition temperature of the material. 99999 99 2000 

BurnTemp A multiplier for the temperature that the 

material burns at (amount of heat released). 

0 3 5 

BurnRate A multiplier for the rate that the material burns 

at (rate of consuming fuel). 

0 20 10 

MaxBurn The maximum rate that the material can burn 

at. 

0 200 300 

SHC Specific heat capacity – the amount of energy 

required to heat up this material. 

1 100 100 

MaxFluid The maximum amount of fluid a cell can hold. 60 60 60 



 59  

4.5 Rules for Interactions between Cells 

The second level of the hierarchy contains the rules of the cellular automata, which 

define the interactions between cells. There are two important functions for 

maintaining the cellular automata, get neighbours and update. Apart from these 

upkeep functions, there are rules for the environmental systems that use the cellular 

automata to spread their effects, including heat, fluid flow and pressure. Appendix B 

contains pseudo-code for the heat, pressure and fluid flow algorithms, which 

illustrates how the equations are integrated. 

 

4.5.1 Get Neighbours and Update 

There are two main processes that each cell in the grid needs to go through, update 

and get neighbours. In the update process, the new values for fluid, temp, damage and 

pressure are substituted for the old values in the cellular automata. Also, any rain that 

is currently falling is added to the fluid value. Finally, the buffer is cleared. The buffer 

is made up of the outermost layer of cells in each direction and is used to simulate the 

effects of the system moving out into the world beyond the simulation. For example, 

heat is released into the buffer each turn and at the beginning of each turn the buffer is 

reset to zero. 

 

4.5.2 Heat 

The algorithm for conduction described in Forsyth (2002) was used as a basis for heat 

diffusion in the EmerGEnT system. In the EmerGEnT system, each material has a 

specific heat capacity, which determines how much heat is required to raise the 

temperature of that material. Materials with a high specific heat capacity require more 

energy to raise their temperature. In order to diffuse heat in the EmerGEnT system, 

the heat capacity of the cell, HCCell, is first calculated. The heat capacity is equal to 

the specific heat capacity of the material, material(cell).SHC, multiplied by the mass 

of the material in the cell, cell.Mass. The heat capacity for the neighbour, HCNeigh, is 

calculated in the same way.  

 
HCCell = material(cell).SHC * cell.Mass 
HCNeigh = material(neigh).SHC * neigh.Mass 

 



 60  

The energy flow, EnergyFlow, between the cell and its neighbour is equal to the 

difference in temperature between the cell, cell.Temp, and its neighbour, neigh.Temp. 

The energy flow value is converted from heat to energy by multiplying it by the heat 

capacity of the transmitting cell. The energy flow is also multiplied by a constant, 

ConstantEnergyFlowFactor, to control the speed of the cell update. 

 
EnergyFlow = cell.Temp – neigh.Temp 
EnergyFlow *= HCCell 
EnergyFlow *= ConstantEnergyFlowFactor 

 

Subsequently, the new heat values for the cell, cell.NewTemp, and neighbour, 

neigh.NewTemp, are calculated by dividing the energy flow by the heat capacity for 

each cell.  

 
neigh.NewTemp += EnergyFlow / HCNeigh 
cell.NewTemp -= EnergyFlow / HCCell 

 

To reduce oscillations (heat moving back and forth between the same two cells), the 

heat of neighbouring cells is distributed evenly if the neighbour cell has more heat 

than the cells as a result of the heat transfer.  

 
TotalEnergy = (HCCell * cell.Temp) + (HCNeigh  
* neigh.Temp) 

AverageTemp = TotalEnergy / (HCCell + HCNeigh) 
cell.NewTemp = AverageTemp 
neigh.NewTemp = AverageTemp 

 

The diffusion of heat is increased in the direction that the wind is blowing and 

reduced against the wind, proportional to the speed of the wind. 

 

Convention and radiation were not modelled in the EmerGEnT system as the scale of 

the strategy game environment means that these processes are likely to go unnoticed. 

In a first-person game, where the environment is on a human-sized scale, convection 

and conduction are likely to be more important. A possible enhancement to the 

EmerGEnT system would be to model convection to some extent. In a strategy game 

environment, the most appropriate application of convection would be to allow heat to 

transfer faster uphill by a small amount. However, such a subtle difference may not be 

noticed by the player or add to the gameplay in any way. 

 



 61  

5.4.3 Fluid Flow 

The method suggested for fluid flow by Forsyth (2002) is not well suited to a strategy 

game environment, as it is designed to simulate the effects necessary in a ‘human-

sized’ game, such as a first-person shooter. For example, it is more suited to water 

flowing into a container, such as a bucket, and would not be viable for simulating 

large bodies of water, such as a river in a strategy game. Due to the difference in the 

scale of a ‘human-sized’ game and a strategy game, a new approach was needed for 

the EmerGEnT system. A new algorithm was developed that was similar to the heat 

and pressure diffusion algorithms, with the addition of terrain height. For heat and 

pressure, the terrain can be treated as though it is flat. However, for fluid flow, it is 

necessary to know the contours of the landscape, as fluid has different rules for 

flowing downhill, uphill and on level ground. 

 

The main rule modelled in the EmerGEnT system’s fluid flow algorithm is the 

flowing of the fluid from one cell to its neighbouring cells. Once the fluid in a cell, 

cell.Fluid, exceeds a certain amount (dependent on the maximum amount of fluid the 

material in the cell can hold, material(cell).MaxFluid) the fluid then flows into the 

surrounding cells. The flow of fluid between cells is also affected by the relative 

height of the cell, cell.Height, and its neighbours, neigh.Height.  

 
if (cell.Fluid > (material(cell).MaxFluid  
* (neigh.Height / cell.Height)))  

 

Fluid flows faster to lower cells and less fluid is accumulated in a cell before it starts 

flowing to a lower neighbour. When flowing uphill, more fluid is accumulated in the 

cell, until the cell overflows to its higher neighbours. Fluid also flows at a slower rate 

uphill. The steeper the slope, the more effect it has on the flow of the fluid, in terms of 

the rate of the flow (flow) and the amount of fluid that is accumulated before flowing 

to the neighbours.  

 
flow = flow * (cell.Height / neigh.Height)  

 

Also, fluid flows faster when there is a greater difference between the amount of fluid 

in a cell, cell.Fluid, and the amount in the neighbouring cells, niegh.Fluid, as there 

would be greater pressure. The difference is divided by four as each cell has a 



 62  

maximum of four neighbouring cells, providing a good approximation to how the 

fluid will be divided into the neighbours. 

 
flow = (cell.Fluid – neigh.Fluid) * 0.25 

 

Another effect of fluid is that it wets. Material that is wet has a lower temperature, as 

well as being harder to ignite and slower to burn. The wetness in a cell also reduces 

slowly overtime, as the moisture evaporates, and gradually repairs damage over time.  

 

Currently, there is only one type of fluid that is modelled in the EmerGEnT system. 

However, a possible enhancement to the EmerGEnT system would be to model 

different types of fluids. Different fluids flow at different rates, depending on 

properties such as their viscosity. However, the need to model fluids other than water 

would be more relevant to ‘human-sized’ games, rather than strategy games. In a 

strategy game, it is unlikely that there will be large bodies of fluid other than water, 

but a possible example would be lava or petrol, which would flow very differently to 

water. 

 

4.5.4 Pressure 

The EmerGEnT system extends the simple pressure diffusion equations presented by 

Forsyth (2002) to include a model for explosions. In the EmerGEnT system, the rate 

of diffusion of pressure, PressureFlow, is determined by the difference in pressure 

between a cell, cell.Pressure, and its neighbour, neigh.Pressure. As with fluid, the 

pressure flow is divided by four, as each cell has a maximum of four neighbour cells, 

providing a good approximation. 

 
PressureFlow = cell.Pressure – neigh.Pressure 
neigh.Pressure += PressureFlow * 0.25 
cell.Pressure -= PressureFlow * 0.25 

 

If there is a large enough difference in pressure between two adjacent cells then an 

explosion occurs, as there is a rapid change in pressure. An explosion occurs when a 

material produces a large amount of air in a short period of time. 

 
pressure_ratio = cell.Pressure / neigh.Pressure 

 



 63  

When an explosion occurs in the EmerGEnT system, heat is released in an amount 

proportional to the difference in pressure (i.e. the size of the explosion).  

 
cell.NewTemp += (explosion_const * pressure_ratio)  
* 0.25 

 

If the amount of heat is great enough, then a fire is started (see the fire section) and 

damage is caused to the surrounding cells. Additionally, explosions cause damage due 

to high absolute pressures, as well as high pressure differences. Therefore, the 

EmerGEnT system models the effects of high absolute pressure in cells. A cell with a 

high enough pressure causes damage to itself and its contents, irrespective of the 

pressures of the surroundings cells.  

 

A possible enhancement to the EmerGEnT system would be to have the pressure 

system affecting the wind, so they are part of the same force rather than different 

forces acting independently. This integration would be particularly useful when 

objects are introduced into the system. When an explosion occurs, small objects and 

debris should be picked up and carried by the force of the explosion (Forsyth, 2002).  

 

4.6 Rules for Interactions within Cells 

The second level of the EmerGEnT system hierarchy (see Figure 4.1) also includes 

rules for interactions that occur within a cell. Similar to the rules for interactions 

between cells, the rules for interactions within cells interact with the lower level of the 

hierarchy, the properties. However, the rules for interactions within cells are specific 

to what is happening within an individual cell, irrespective of what is happening in 

neighbouring cells, and include rules for fire, wind and rain. Appendix B contains 

pseudo-code for the fire, wind and rain algorithms, which illustrates how the 

equations are integrated. 

 

4.6.1 Fire 

The simulation of fire in the EmerGEnT system is based on the equations provided by 

Forsyth (2002). In the EmerGEnT system, if the temperature of a cell, cell.Temp, 

exceeds the flashpoint of the material in the cell, material(cell).Flashpoint, then the 



 64  

cell ignites. The rate that the cell burns at depends on the burning rate of the material 

in the cell, material(cell).MaxBurn, and the temperature of the cell. The wetness of 

the cell, cell.Wetness, also affects the rate that it burns and how difficult it is to ignite.  

 
Temp = cell.Temp – (material(cell).Flashpoint  
+ cell.Wetness) 

Burn = (1.0 –((0.25 * Temp)/material(cell).MaxBurn))  
* Temp 

 

As a cell burns, damage is caused to cell, cell.NewDamage, proportional to the 

temperature of the cell. As a cell becomes more damaged, it burns slower until all the 

fuel in the cell is used up and it can burn no longer. 

 
cell.Damage += (Temp * material(cell).BurnRate)  
– cell.Wetness) * burn_const 

Burn -= cell.Damage 

 

As the cell burns, the fire releases heat and the cell heats up proportional to the 

burning rate of the cell and burning temperature of the material, 

material(cell).BurnTemp. 

 
cell.NewTemp += Burn * material(cell).BurnTemp 

 

Different materials burn at different rates and have different flashpoints. Three 

materials are modelled in the EmerGEnT system, water, grass and woods. Water 

cannot burn, grass is easy to ignite and burns quickly, and wood is harder to ignite and 

burns longer as it provides more fuel per cell.  

 

4.6.2 Wind 

In the EmerGEnT system, wind is a global value that is comprised of two components, 

speed and direction. Wind blows from one of four directions, north, south, east or 

west. The speed of the wind is set to an arbitrary strength of ten. The only effect of the 

wind in the EmerGEnT system is that it modifies the spread of heat. Heat spreads 

slower against the wind and spreads faster in the direction that the wind is blowing, 

depending on the speed of the wind, windspeed.  

 
if (neighbour is with wind) 
then cell.NewTemp /= 1 + (windspeed * wind_const) 
        neigh.NewTemp *= 1 + (windspeed * wind_const) 

 



 65  

if (neighbour is against wind) 
then cell.NewTemp *= 1 + (windspeed * wind_const) 
        neigh.NewTemp /= 1 + (windspeed * wind_const) 

 

Wind currently affects the entire grid in the same way (i.e. there is a uniform wind 

speed and direction for the entire grid). A possible enhancement to the EmerGEnT 

system would be to have local wind effects, as opposed to the current global wind 

effects. 

 

4.6.3 Rain 

In the EmerGEnT system, rain effects fluid flow by adding fluid to the cells where it 

is raining. In turn, cells that contain fluid are also wetted by the fluid, increasing their 

wetness value. The effects of wetness are described in the section on fluid flow. In the 

update cycle, the amount of rain in a cell is added to the fluid in the cell. 

 

4.7 Visualisation of the EmerGEnT System 

Originally, the EmerGEnT system was implemented in Direct X and visualised in two 

dimensions (2D). The 2D visualisation included three types of terrain, grass, water 

and woods, which were represented as light green, blue and dark green, respectively 

(see Figure 4.6). Also, the observable effects in the system were visualised, including 

fire, fluid flow, rain and damage caused by heat. Each of the effects were visualised as 

different coloured pixels, where fire was red, fluid was blue, rain was light blue and 

damage was black. The number of pixels for each effect in each cell was equal to the 

magnitude of the effect. For example, as a cell became more damaged there were 

more black pixels to illustrate the damage. 

 



 66  

 
Figure 4.6. 2D EmerGEnT system. The visualisation of the EmerGEnT system in 2D, 

including the terrain in each cell and the effects of fire, fluid flow, rain and damage 

 

Subsequently, the EmerGEnT system was ported into a three-dimensional (3D) game 

engine, the Auran Jet (www.auran.com/jet), to provide a realistic game-like 

environment. Similar to the 2D representation, the 3D representation included the 

same three terrain types, water, woods and grass. The observable effects are modelled 

in the 3D system by the use of sprites (2D objects), including a rain cloud, water, fire 

and damage (see Figure 4.7). The 3D representation also visualises contour of the 

terrain and includes a user-interface that allows the modification of the scenario by 

clicking the mouse. The user-interface enabled rapid and dynamic scenario setup for 

testing the system. 

 

 
Figure 4.7. 3D EmerGEnT system. The visualisation of the EmerGEnT system in 3D, 

including the terrain and the effects of fire, fluid flow, rain and damage 

 

4.8 Observable Behaviour 

In games, scenarios and sequences of actions are often specifically scripted and coded. 

The advantage to using a cellular automata and a systemic approach, as used in the 



 67  

EmerGEnT system, is that the observable behaviour of any object or situation in the 

game can be dynamic and emergent, without needing to be scripted individually for 

each object or situation. As a result, the game engine is flexible and responds 

consistently and realistically to a wide range of actions that the player may take and 

events in any situation in the game. This section examines four scenarios that are 

possible situations for a strategy game and evaluates the performance of the CA 

system and a conventional scripted system in terms of the observable behaviour. The 

four scenarios are heat and fire, rain and water flow, pressure and explosions, and the 

integrated system with each of the previous components. 

 

4.8.1 Scenario 1: Heat & Fire 

Consider an example where a fire starts in a forest or woods. To appear natural, the 

fire needs to burn, cause damage to the woods and spread through the woods, all at a 

believable rate. Subsequently, the fire is blown north to grasslands by wind. As grass 

has different properties than woods, the fire should behave differently when 

interacting with the grass, it will burn out faster as the grass provides less fuel, it will 

spread faster as the grass is easier to ignite and it will release less heat as it burns. 

Finally, the fire runs into a river that runs across the map and the fire spreads no 

further as the river cannot be ignited, although some heat can be passed across it (see 

Figure 4.8). 

 

 
Figure 4.8. Heat and fire scenario in the EmerGEnT system. A fire starts in a forest (a), 

wind spreads the fire north to grasslands (b-c) and the fire is blocked by a river (d) 

 



 68  

In a game where the heat and fire scenario is scripted, the rate at which the fire burns, 

spreads and damages would need to be specifically coded. Also, the rate of the fire 

spreading from the woods to the grass would need to be specified, as would the 

information that the fire must stop burning when it reaches the river. For example, the 

script would include instructions such as burn each cell of woods for x seconds, 

spread fire to neighbouring woods cells after y seconds, spread fire from woods to 

grass after z seconds and so on. If the scenario were changed slightly, such as 

increasing the density of the woods, then the variables that are dependent on the 

density of the woods, such as the rate at which the fire spreads in woods, would need 

to be changed. It becomes apparent that a system with a specifically-coded, static 

architecture is not robust to even small changes in the heat and fire scenario. Each 

time a change is made, each variable that is associated with the change would need to 

be updated by hand, or the system would not work. Furthermore, extending this 

scripted system would become difficult and awkward. For example, if a new type of 

terrain were added, such as scrub, then there would need to be new variables for fire 

moving from woods to scrub, grass to scrub, scrub to woods, and scrub to grass, as 

well as all the variables for burning scrub. It is clear that the number of instructions 

needed to run the heat and fire scenario would rapidly grow out of control with even a 

few small extensions. 

 

In contrast to scripted systems, when the heat and fire scenario is run in the 

EmerGEnT system, the resulting behaviour depends on the underlying properties of 

the terrain, which are used by the equations for heat and fire to determine the 

behaviour of the system dynamically. The approach that is taken when scripting is to 

attempt to encode the behaviour directly. For example, the woods burn for five 

seconds because it is told to burn for five seconds. However, the EmerGEnT system 

uses lower-level information so that the visible behaviour of the system will be 

emergent. With the EmerGEnT system, the woods burn for five seconds because the 

system rules consider its flashpoint, specific heat capacity, rate of burning, amount of 

fuel, temperature and so on, and calculates at each time step whether it is still burning. 

Due to the extra level of complexity, the EmerGEnT system works on any materials 

in any scenarios. It may seem more complex to make these calculations, but there is 

one set of formulae that applies in any situation with any material and the only 

difference is the properties of each material. Therefore, once the set of formulae is 



 69  

coded, the burning of any material can be simulated as long as the values of the 

properties are available, making it a data-driven system. There is no awkward 

expansion of the system, no limit to the number of materials that can be added and a 

great deal of flexibility in handling new situations, which reduces the difficulty and 

cost of quality assurance. 

 

4.8.2 Scenario 2: Rain & Water Flow 

The second scenario presents a case study with rain and water flow, in which rain falls 

on the map in a position that is at the top of a hill. A certain amount of the water is 

able to soak into the ground at the top of the hill (depending on the terrain), but after 

some rain has fallen the water starts to run down the hill. The harder the rain, the 

faster the water runs down the hill. Also, the steeper the slope, the faster the water 

runs down the hill. At the bottom of the hill is a valley, which rises back up into a hill 

on the other side. When the water reaches the valley it starts to build up and runs 

outwards to fill the level ground in the valley. With sufficient rainfall, the water will 

fill the valley and start to flow back up the hills on either side of the valley (see Figure 

4.9). 

 

 
Figure 4.9. Rain and water flow scenario in the EmerGEnT system. Rain falls at the top 

of a hill (a) and the water runs down the hill (b) and spreads out in the valley below (c-d) 

 

When scripting the rain and water flow scenario specifically, the script would need to 

encode information for where the water will run, how fast it will run and other 

behaviours such as how deep it will pool in different areas. Scripting the behaviour of 



 70  

the water specifically would be relatively simple, but would rely on the rain falling in 

the same position and at the same rate and the contours of the landscape always being 

the same. However, if the rain were to fall from a different position, or if the contours 

of the landscape were to change even slightly, then the behaviour of the water would 

be completely different and a new script would be needed. So, if the rain and water 

flow scenario was an event in a game that always played out the same way, then a 

script would be fine. However, if rain was a random event that occurred in the game, 

then it could not be foreseen where it would fall or what path it should follow. 

 

In the EmerGEnT system, the position of the rain, the speed of the rain and the 

contour of the landscape are not a problem. The EmerGEnT system makes 

calculations every time step for which way the water will flow, how fast it will flow 

and how deep it will pool. The EmerGEnT system uses its formulas and the data it is 

provided, such as the relative height of the neighbours of each cell and the amount of 

water in each cell, and it dynamically calculates the behaviour of the water at each 

time step. As a result, the EmerGEnT system can accommodate changes in the 

environment and simulate the flow of water down the hill for different positions and 

speed of the rain and for different contours of the hill. The EmerGEnT system uses its 

rules and properties to determine the behaviour of the water in real-time, dependent 

on the current situation, rather than have the behaviours of the water pre-scripted. 

 

4.8.3 Scenario 3: Pressure & Explosions 

The third scenario presents a case study with pressure and explosions, in which an 

explosion occurs somewhere on the map. The high absolute pressure of the explosion 

causes immediate damage in the vicinity of the explosion. The area that is affected by 

the pressure depends on the magnitude of the explosion. As well as the damage from 

pressure, energy is generated as a result of the difference in pressure between the 

explosion and the surrounding area. As a result of the energy (heat) that is released, a 

fire is started in the area around the explosion. The fire then spreads and causes 

damage to a wider area around the initial explosion (see Figure 4.10). 

 



 71  

 
Figure 4.10. Pressure and explosions scenario in the EmerGEnT system. An explosion 

occurs, the high absolute pressure causes immediate damage and a fire starts as a result of 

the heat released by the explosion. Each panel shows different sized explosions 

 

An explosion is relatively simple to simulate in the conventional manner, and is 

commonly scripted in many commercial games. However, there is a difference 

between a scripted explosion occurring that is triggered by a bomb going off and an 

explosion naturally occurring as there is suddenly a large difference in pressure 

between two cells. With the scripted example, there must always be a high-level 

trigger for the explosion, such as a bomb, a grenade or some other discrete explosion 

event. On the other hand, if there are conditions under which an explosion occurs, 

such as a large difference in pressure brought about by piercing a gas cylinder, then 

the explosion will naturally occur when these conditions are met. Therefore, there 

doesn’t need to be a discrete event, rather the explosion will occur because an 

explosive device has just caused a large difference in pressure or for unforeseen 

reasons. 

 

Another interesting aspect in the pressure and explosions scenario is the second 

degree effect of the explosion, namely the fire that is started as a result of the rapid 

increase in heat around the explosion. This second degree effect could be 

manufactured in a scripted explosion, but would not reach the same level of realism as 

the EmerGEnT system, which can dynamically take into consideration the type of 

terrain, objects in the area and other important factors. Also, depending on the 

magnitude of the explosion, there would be different amounts of heat generated and 

different effects of the fire. Although this variation could be scripted, it would not 

have the flexibility of the EmerGEnT system. For example, if an explosion occurs in 

an area containing highly flammable material, the behaviour of the EmerGEnT system 



 72  

would be significantly different, but a scripted explosion would only consider the 

magnitude of the explosion and burn an area around the explosion accordingly. 

 

4.8.4 Scenario 4: Integrated System: Heat, Fluid & Pressure 

The fourth scenario is a combination of the previous three case studies and illustrates 

the real power of the EmerGEnT system. An explosion occurs in the woods and the 

high pressure causes damage to the immediate area. As a result of the energy released 

from the explosion a fire is started, which then spreads through the woods. A wind 

then blows the fire west into a neighbouring grassy valley, which contains a small 

village. It has been raining at the top of the hill next to the valley and the water flows 

down the hill into the valley and puts out the fire. The fire recedes into the woods and 

burns until the woods are burnt out and there is no more fuel (see Figure 4.11). 

 

 
Figure 4.11. Integrated scenario in the EmerGEnT system. An explosion in the woods 

causes immediate damage and starts a fire (a). The fire is blown west by the wind (b) and 

extinguished by the water flowing down the hill from the rain falling above (c-d) 

 

The complex situation described in the integrated scenario demonstrates the benefit of 

the emergence of the EmerGEnT system. Rather than the complex behaviour having 

to be specifically scripted, it just happens as a result of all the components of the 

system working together. Each element in the EmerGEnT system looks after its own 

behaviour, the heat spreads, the fire burns, the water flows and so on, dependent on its 

own set of rules and the properties and state of the materials it is acting on. As these 

elements simultaneously work independently, they impact on each other and give rise 



 73  

to emergent, complex behaviour that wasn’t specifically programmed into them. The 

observable complex behaviour in the scenario arises from the independent behaviour 

of the elements, making the whole more than the sum of its parts. 

 

It would take a great deal of effort to specifically script the complex behaviour of the 

environment in the integrated scenario, as well as careful attention to detail.  Also, 

every small change to the scenario would result in different desired behaviour, 

requiring the scenario to be rescripted. Therefore, specifically scripting a scenario as 

complex as the fourth scenario would require substantial initial effort as well as 

significant ongoing effort to update and maintain the system. On the other hand, the 

use of cellular automata means that the complex behaviour arises as a result of the 

individual elements interacting with each other. The EmerGEnT system 

accommodates the possible variations in a complex scenario, such as different types 

of terrain, the affect of wind, the contours of the terrain, the interactions of heat, 

pressure and fluid, without the need to recode for each specific scenario. 

 

4.9 Discussion and Conclusions 

The goal of the presented study was to develop a system that supports the 

requirements defined by game developers and players as discussed in Chapters 2 and 

3, including consistency, immersion, intuitive interactions, freedom of expression and 

realistic physics. The steps taken to achieve this goal were to determine the properties 

and rules that need to be modelled to create the basic environment of a game system 

that supports these requirements. In order to develop the rules for the EmerGEnT 

system, simplified equations from thermodynamics were developed into three 

complete, independent systems: heat, fluid flow and pressure, with local effects of 

rain, explosions and fire. The heat, fire and pressure systems were based on the 

equations presented by Forsyth (2002). The fluid flow system required an entirely 

new approach to be appropriate for a strategy game. Finally, explosions, rain and 

wind were new initiatives of the EmerGEnT system. 

 

Each of the major systems, heat, fluid and pressure, demonstrated various advantages 

over conventional scripted approaches. For heat and fire, the major advantage was 



 74  

that any number of terrain types could be added to the system and no additional 

scripting or calculating would be required. In contrast, in a conventional system, the 

script would need to be updated for each new material and transition between 

materials. In the rain and fluid flow system, the advantage was found in the contours 

of the terrain. As the EmerGEnT system used the underlying rules and properties to 

calculate the speed and direction of the flow, any possible terrain contours could be 

accommodated, whereas a scripted system would need to have the contours of the 

terrain specified in advance. For the pressure and explosions system, advantages were 

that the explosions could occur naturally due to a difference in pressure between two 

cells, rather than needing an event to trigger the explosion. Also, a fire was started as 

a second degree effect of the explosion, if sufficient heat was generated by the 

explosion to ignite the material. Each of these sub-systems had advantages over 

conventional scripting methods, which were mostly related to the EmerGEnT system 

being able to dynamically accommodate changes or variations to the environment that 

a scripted system would be unable to do. However, the real power of the EmerGEnT 

system became apparent when the heat, pressure and fluid flow systems were 

combined. In combining these systems, the EmerGEnT system was able to 

demonstrate the emergent interactions that take place in a complex scenario that 

would otherwise need to be scripted specifically, such as water flowing downhill to 

put out a fire that had been blown there from an explosion to the east. 

 

It is important to note that emergent systems based on cellular automata also possess 

drawbacks and issues. Often, emergent systems require extra time in development to 

design and tune the rules and properties. Additionally, while an emergent system can 

open up the game world for the player’s expression and experimentation, the game 

developer can lose the ability to setup specific narrative by being unable to predict 

and control exactly what will happen in a given situation. Therefore, developing a 

custom emergent game environment is not necessarily the best approach for game 

developers with limited time and resources. Ideally, the EmerGEnT system could be 

made into middleware that game developers can easily integrate into their game, 

without the issues that relate to designing and tuning the system. Finally, it is likely 

that the best results will involve integrating scripted scenarios seamlessly into an 

emergent system, to enable open-ended gameplay while still advancing narrative at 

the designer’s discretion. 



 75  

 

In conclusion, the reported study provided evidence that cellular automata are a 

suitable foundation of a game system that allows emergent interactions. Furthermore, 

the EmerGEnT system, which was based on cellular automata, demonstrated various 

advantages over conventional scripted systems. The major advantages were related to 

the ability of the cellular automata to dynamically respond to changes in the 

environment and the extensibility of the system. Finally, it was in combining each of 

the component systems of the cellular automata to form the integrated EmerGEnT 

system that the power of cellular automata to create an emergent environment became 

evident. The cellular automata techniques that were used and demonstrated in the 

EmerGEnT system form a compelling case for using cellular automata in games. 

Further extension and experimentation with the EmerGEnT system will potentially 

lead to richer gameplay and playing experiences. 



 76  



 77  

 

 

 

 

5 
Property-Based  

Game Objects  
 

 

 

 

Game objects are an integral part of any game world as they compose the major 

source of player interactions. Objects in games are numerous and varied and include 

weapons (e.g. guns, swords) in first-person shooter games, quest items (e.g. holy grail, 

diary) in role-playing games and buildings (e.g. house, factory) in strategy games. 

Each type of game object interacts with the game environment and the player in 

different ways, which gives rise to interesting possibilities for action for the player but 

also complicates the job of the game developer.  

 

In many games, the properties and parameters of objects are different for each 

instance and objects have explicit relationships with every other game element to 

define their interactions. As discussed in Chapters 2 and 3, specifically scripting game 

objects causes various problems for the game players, such as unintuitive interactions 

and inconsistencies. Also, problems exist for the game developers, such as substantial 

effort in designing, maintaining and debugging the game objects (Church, 2002; 

Smith, 2002).  

 

An alternative to scripting the interactions for each object specifically is to plan for 

types of interactions, based on general properties (Church, 2002). The questions that 

arise are how can game objects with a property-based design be incorporated into an 

active game environment and to what extent can property-based game objects 

facilitate emergent behaviour and gameplay? Consequently, the aims of the study 

presented in this chapter were to design and integrate property-based game objects 



 78  

into the EmerGEnT system and to determine the extent to which property-based 

objects and the active game environment can facilitate emergent behaviour and 

gameplay. The approach taken was to first implement objects as though they were 

cells, using the same low-level properties based on the object’s material. 

Subsequently, objects were also imbued with high-level properties, based on their 

structure, to constrain the possible interactions of the objects. 

 

5.1 Object Structure 

In the EmerGEnT system, the objects were designed to have a similar structure as the 

cells of the environment. Each object has a set of properties that include coordinates 

(position in the cellular automata), temperature, pressure, fluid, mass, wetness and 

material. The materials that objects are composed of have the same properties as 

materials for the terrain, including flashpoint, burning temperature, specific heat 

capacity and maximum burning rate. In strategy games, the majority of objects in the 

environment are buildings, such as houses, bunkers or factories. Therefore, the 

materials that have been chosen for the EmerGEnT system are common types of 

building materials, such as wood, metal and brick. These materials have significantly 

varying properties and are therefore ideal for illustrating the emergent behaviour of 

the system when interacting with different objects (see Table 5.1). First, metal is hard 

to ignite, transfers heat easily and absorbs little fluid. Second, wood is much easier to 

ignite but doesn’t transfer heat as well and is far more absorbent. Third, brick is 

moderate to ignite, poor for heat transfer and can absorb a moderate amount of water. 

In addition to these low-level properties, objects also have a set of high-level 

properties (represented as Boolean values) that encode attributes of the object’s 

physical structure, including whether the object has volume, is solid or is open. 

 



 79  

Table 5.1. Object material properties. Possible materials for objects include wood, metal 

and brick 

Property Description Values 

  Wood Metal Brick 

Flashpoint Ignition temperature of the material 2000 5000 4000 

BurnTemp Multiplier for the temperature the material burns 

at (amount of heat released) 

5 10 8 

BurnRate Multiplier for the rate the material burns at (rate 

of consuming fuel) 

10 5 7 

MaxBurn Maximum rate the material can burn at 300 100 200 

SHC Specific heat capacity – the amount of energy 

required to heat up this material 

100 50 150 

MaxFluid The maximum amount of fluid the material can 

absorb 

50 0 20 

Strength Modifier for the pressure the material can 

withstand before it breaks 

0.6 1.0 0.8 

 

5.2 Object Design 

At the basic level, objects are the same as cells in the environment in that they both 

exist in the physical world and are therefore subject to the same rules of physics, such 

as heat transfer, fluid flow and pressure. However, whereas all cells are uniform in 

structure, in that they are all squares of terrain, objects have comparatively complex 

physical structures. In order to model the structure of objects at the same level as the 

rest of the system, it would be necessary to divide the objects up into cells in the same 

way the terrain is divided into cells. Unit mapping objects would allow the cellular 

automata to dynamically determine the contours (i.e. structure) of the object in the 

same way as the contours of the terrain are dynamically determined. However, there 

are two main considerations with breaking objects down into cells. First, given the 

number of objects in a game environment and the complexity of game objects, it 

would be prohibitively expensive to perform the necessary calculations. Second, the 

relative benefit to the game would be minimal, especially in comparison to the cost 

involved. For example, whereas it is of great benefit to a game to be able to map how 

water would flow from one cell of the map to the next, it is much less important to 

calculate exactly how water will flow into an object, such as a bucket. However, 

knowing that water will flow into the bucket has significant potential in terms of 

emergent gameplay, in that a player could fill up a bucket with water, carry it to a fire 

and extinguish the fire.  

 



 80  

The potential benefit of structural object properties to gameplay lies in knowing the 

important features of the game objects that will have an impact on the possible actions 

and interactions of the objects. A possible solution is to give the objects descriptors of 

the important features of their physical structure that predispose them to certain 

actions and behaviours. For example, only an object that has volume can be filled 

with water, so that a bucket can be filled with water but a sword cannot. Consequently, 

it can be seen that a logical and computationally viable solution is to have two 

different levels of properties for objects. As with cells, objects have low-level 

properties, which define how the matter of the objects interacts in the world. 

Additionally, objects have high-level properties, defined by the structure of the object, 

which determine whether it is structurally able to participate in certain interactions. 

As a result, objects in the EmerGEnT system have low-level properties related to their 

composition and high-level properties related to their structure. 

 

Having two levels of properties necessitates a two-part approach to modelling objects 

in a game environment. The first part of the approach is to treat the objects as cells, 

where each object has only one neighbour (its host cell). The second part of the 

approach is to consider the high-level properties of the objects. High-level properties 

can be assembled into affordances that determine whether the object is able to 

participate in each interaction. For example, only objects that afford flow can 

participate in fluid or pressure flow. The two-part approach used for defining the 

interactions of objects with the environment in the EmerGEnT system is described in 

the following sections. 

 

5.3 Low-Level Properties 

At the basic level of physical interactions, objects are the same as cells, as they are 

both entities in the physical environment that are subject to the rules of physics. 

Therefore, the first part of the approach to modelling objects in the EmerGEnT system 

is to treat the objects as cells, where each object interacts exclusively with its host cell. 

There are two key types of interactions possible between objects and cells. First, 

objects within a cell are affected by the cell in the same way that neighbouring cells 

are affected by the cell (i.e. exchange of heat, pressure and fluid). Second, objects 



 81  

affect their host cell as if the host were the object’s only neighbour. Therefore, the 

object both affects and is affected by its host cell.  

 

In some components of the EmerGEnT system, such as heat transfer, there is no 

difference between object-to-cell interactions and cell-to-object interactions. However, 

in other components there needs to be a differentiation between these two types of 

interactions. For example, a high-pressure object in a comparatively low-pressure cell 

will explode. However, the effect of the inverse of this state, a high-pressure cell 

(with a low or high-pressure object), is to damage anything within the cell from high 

absolute pressure (including the cell itself), rather than the cell exploding. The 

interactions that take place between cells and objects are described in this section, 

with the differences from cell-to-cell interactions highlighted. Appendix C contains 

pseudo-code for the heat, pressure, fluid flow, fire, wind and rain algorithms, which 

illustrates how the equations are integrated. 

 

5.3.1 Heat 

When transferring heat between two entities, whether they are two cells or an object 

and a cell, the heat capacities of the two entities first need to be calculated. The main 

difference between transferring heat between two cells and between a cell and an 

object is that objects are much smaller than cells, indicated by the mass of the object. 

As such, the heat transfer between an object and a cell will be much less than the 

transfer between two cells of the same size. The heat capacity of the object, HCObj, is 

equal to the specific heat capacity of the object’s material, material(obj).SHC, 

multiplied by the mass of the object, obj.Mass. Similarly, the heat capacity of the cell, 

HCCell, equals the specific heat capacity of the cell’s material, material(cell).SHC, 

multiplied by the mass of the cell. 

 
HCObj = material(obj).SHC * obj.Mass 
HCCell = material(cell).SCH * cell.Mass 

 

The energy flow, EnergyFlow, between the object and the cell is equal to the 

difference between the cell’s temperature, cell.Temp, and the object’s temperature, 

obj.Temp. 

 
EnergyFlow = cell.Temp – obj.Temp 



 82  

Once the energy flow is calculated, it can be used to determine whether energy will 

flow from the object to the cell or from the cell to the object. If EnergyFlow is a 

positive value, then the cell’s temperature is greater than the object’s temperature and 

heat will flow from the cell to the object. Otherwise, heat will flow from the object to 

the cell. In the case where the cell’s temperature is greater and heat flows from the 

cell to the object, the EnergyFlow is converted from heat to energy by multiplying by 

the heat capacity of the cell. 

 
EnergyFlow *= HCCell 

 

Otherwise, if energy is flowing from the object to the cell, then the EnergyFlow is 

converted from heat to energy by multiplying by the heat capacity of the object. 

 
EnergyFlow *= HCObj 

 

In both cases, the EnergyFlow is then multiplied by a constant, 

ConstantEnergyFlowFactor, to control the speed of the cell update. 

 
EnergyFlow *= ConstantEnergyFlowFactor 

 

Subsequently, the new heats for the cell, cell.NewTemp, and the object, obj.NewTemp, 

are calculated by dividing the EnergyFlow by the heat capacity for the cell and object, 

respectively. In the case where heat flows from the cell to the object, the cell’s 

temperature decreases and the object’s temperature increases. Otherwise, if the heat 

flows from the object to the cell then the object’s temperature decreases and the cell’s 

temperature increases. 

 
cell.NewTemp (+/-) = EnergyFlow / HCCell 
obj.NewTemp (+/-) = EnergyFlow / HCObj 

 

To avoid oscillations (heat moving back and forth between the object and cell), the 

difference in heat is distributed evenly between the object and the cell if the transfer 

of heat would result in the entity that previously had less heat having more heat after 

the exchange.  

 
TotalEnergy = (HCObj * obj.NewTemp) + (HCCell  
* cell.NewTemp) 

AverageTemp = TotalEnergy / (HCObj + HCCell) 
obj.NewTemp = AverageTemp 
cell.NewTemp = AverageTemp 



 83  

5.3.2 Fluid Flow and Wetness 

There are two main interactions of fluids with objects: flow and wetness. Fluid flow 

between an object and a cell is relatively simple compared to fluid flow between cells, 

as there is no height difference between a cell and the objects in the cell. There are 

two cases for fluid flow between an object and a cell modelled in the EmerGEnT 

system, flow from cell to object and flow from object to cell. The two fluid flow cases 

are discussed in this section. The wetness of an object is simply dependent on the 

wetness of the object’s host cell and the absorbency of the object’s material. 

 

5.3.2.1 Flow from Cell to Object 

Fluid flows from a cell to an object within the cell if the cell contains fluid and if the 

object contains less than the maximum amount of fluid it can hold, which depends on 

the size of the object. Also, the object must afford flowing, which is discussed in the 

section 5.4. The amount of fluid that flows into the object from the cell, flow, is equal 

to the difference between the amount of fluid in the cell, cell.Fluid, and the amount of 

fluid in the object, obj.Fluid. This difference is then divided by four, as the fluid from 

the cell must be divided amongst the cell’s neighbours and the object and one quarter 

provides a good approximation. Also, the difference between cell.Fluid and obj.Fluid 

is multiplied by the ratio of the mass of the object, obj.Mass, to the mass of the cell, 

cell.Mass, to account for the difference in size between the cell and the object. 

Consequently, the object is filled with the same proportion of fluid as is in the cell. 

 
flow = (cell.Fluid – obj.Fluid) * 0.25  
* (obj.Mass / cell.Mass) 

 

5.3.2.2 Flow from Object to Cell 

Fluid flows from a cell when the material in that cell contains the maximum amount 

of fluid that it can hold. As a result, the excess fluid spills from the cell into its 

neighbouring cells. However, fluid flow from an object does not depend on the 

amount of fluid that the object’s material can hold. Rather, it depends on the 

maximum amount of fluid that the structure of the object can hold, which depends on 

the volume of the object. When the fluid in an object exceeds the volume of the object, 

as determined by the mass of the object, the excess fluid spills over into the object’s 



 84  

host cell. The excess fluid in an object, excess, is the difference between the amount 

of fluid in the object, obj.Fluid, and the mass of the object, obj.Mass. 

 
excess = obj.Fluid – obj.Mass 

 

If the object contains more fluid then it can hold then it overflows into the host cell. 

The amount of fluid that flows, flow, from the object to the cell is equal to the excess, 

multiplied by the ratio of the obj.Mass to the cell.Mass. 

 
flow = excess * (obj.Mass / cell.Mass) 

 

5.3.3 Pressure 

The three main interactions of pressure with objects modelled in the EmerGEnT 

system are high-pressure damage, flow and explosions. Objects that are located in a 

cell that has high enough pressure are damaged, as is the cell itself. Similar to fluid, 

pressure can also flow from objects to cells and cells to objects. Finally, if an object 

contains significantly more pressure than its host cell then it will explode, under the 

right conditions. The pressure ratio between an object and a cell that is necessary for 

an explosion to occur depends on the object’s material. For example, a metal crate can 

hold more pressure than a wooden crate before it explodes, due to the strength of the 

material. Additionally, the metal crate exploding results in a bigger explosion than the 

wooden crate due to the increased pressure capacity.  

 

In the environment study reported in Chapter 4, neighbouring cells with high pressure 

differences exploded. However, it was decided that cells themselves should not 

explode in the EmerGEnT system, due to the scale of cells in a real-time strategy 

game. It would make sense for small cells in a human-sized game to be able to 

explode based on pressure differences, but not for cells several kilometres across to 

explode in strategy games. Instead, only objects can explode within cells in the 

EmerGEnT system. The rules used for each of the pressure interactions are explained 

in this section. 

 

First, if an object is located in a cell that has high absolute pressure then the object 

will be damaged. If the pressure of the cell, cell.Pressure, is greater than the constant 



 85  

for high absolute pressure, high_pressure, then the object will incur damage, 

obj.NewDamage, proportional to the cell’s pressure. 

 
obj.NewDamage += cell.Pressure*pressure_damage_const 

 

If the pressure in the cell, cell.Pressure, is higher than the pressure in the object, 

obj.Pressure, then pressure flows from the cell to the object. Pressure only flows 

between a cell and an object if the object affords flow, as discussed in the section 5.4. 

The amount of pressure that flows from the cell to the object, PressureFlow, is equal 

to the difference between the cell’s pressure, cell.Pressure, and the object’s pressure, 

obj.Pressure. The rate of the PressureFlow between a cell and an object is modified 

by the ratio of the size of the object, obj.Mass, to the size of the cell, cell.Mass. 

 
PressureFlow = (cell.Pressure – obj.Pressure)  
* (obj.Mass / cell.Mass) 

 

If the pressure in an object is substantially greater than pressure in its host cell, then it 

is possible that an explosion will occur. First, the ratio of the pressure, pressure_ratio, 

in the object to the cell is calculated. 

 
pressure_ratio = obj.Pressure / cell.Pressure 

 

If the pressure_ratio is greater than the pressure ratio required for an explosion, 

explosion_ratio, then an explosion will occur. The explosion_ratio is modified by the 

strength of the object’s material, material(obj).Strength, so that the explosion_ratio 

required for an object that is made of a relatively weak material, such as wood, is 

much lower than for an object made of a much stronger material, such as metal. Also, 

the object must afford exploding, as discussed in the section 5.4. The explosion 

releases an amount of heat that is proportional to the size of the explosion, 

pressure_ratio, multiplied by a constant, explosion_const. The heat generated by the 

explosion of the object is released into the host cell, increasing the temperature of the 

cell, cell.NewTemp. 

 
if ((pressure_ratio > (explosion_ratio  
*material(obj).Strength)) and AffordsExploding(obj)) 

then cell.NewTemp += pressure_ratio * explosion_const

  

When an explosion occurs, as well as releasing heat, the pressure from the object is 

transferred to the cell. The amount of pressure that flows from the exploded object to 



 86  

the cell, PressureFlow, is equal to the difference between the pressure of the object 

and the pressure of the cell. 

 
PressureFlow = obj.Pressure – cell.Pressure 

 

If an explosion does not occur because the pressure_ratio is not high enough then 

pressure will simply flow from the object to the cell. In order for pressure to flow 

from the object to the cell, the object must afford flowing, as discussed in the next 

section. The amount of pressure that flows from the object to the cell, PressureFlow, 

is equal to the difference in pressure between the object and the cell. The rate of the 

PressureFlow between an object and a cell is modified by the ratio of the size of the 

object, obj.Mass, to the size of the cell, cell.Mass. 

 
PressureFlow = (obj.Pressure – cell.Pressure)  
* (obj.Mass / cell.Mass) 

 

5.3.4 Fire 

The rules for the burning of an object are the same as the rules for the burning of a 

cell of the terrain, as burning is only dependent on the properties of the object or cell 

and its material. The burning temperature of the object, Temp, is the difference 

between the temperature of the object, obj.Temp, and the flashpoint of the object’s 

material, material(obj).FlashPoint, modified by the wetness of the object, obj.Wetness. 

 
Temp = obj.Temp – (material(obj).FlashPoint  
+ obj.Wetness) 

 

If the burning temperature is greater than zero, then the object will incur damage 

proportional to the burning temperature multiplied by the burning rate of the object’s 

material, material(obj).BurnRate, modified by the wetness of the object and 

multiplied by a constant. 

 
obj.NewDamage += ((Temp * material(obj).BurnRate)  
– obj.Wetness) * burn_const 

 

The burning temperature of the object must then be converted to an actual burning 

value, Burn. If the burning temperature is greater than double the maximum burning 

rate of the object’s material, material(obj).MaxBurn, then Burn is equal to the 



 87  

maximum burn rate of the object’s material. Otherwise, Burn equals one minus the 

temperature divided by the maximum burn rate, multiplied by the temperature. 

 
Burn = (1.0 – ((0.25*Temp) / material(obj).MaxBurn))  
* Temp 

 

As the object burns, the fire releases heat and the object heats up from burning. The 

amount the object is heated is proportional to the burning value multiplied by the 

burning temperature of the object’s material, material(obj).BurnTemp, and a constant 

value. 

 
obj.NewTemp += (Burn * material(obj).BurnTemp)  
* BurnHeatConst 

 

5.3.5 Wind and Rain 

Currently, wind and rain do not directly affect the objects in the EmerGEnT system. 

Instead of rain directly affecting the objects, rain affects the fluid in a cell, which 

determines the wetness of a cell, which in turn determines the wetness of the objects 

in the cell. Wind does not affect objects, as the wind is on the scale of cell to cell, 

rather than within a cell. Within the context of a strategy game, it is unlikely that wind 

would affect the objects in the environment as they are mostly very large objects, such 

as buildings. Wind would be a more interesting effect modelled in human-sized 

games, such as first-person shooter or role-playing games, where there are small 

objects to blow around, such as paper and cans. 

 

5.4 High-Level Properties 

Whereas the low-level properties discussed in the previous section are pertaining to an 

object’s composing material, the high-level properties relate to an object’s structure. 

Low-level properties consist of continuous numeric values, such as a material’s 

flashpoint or burning temperature, which are substituted into equations to determine 

when and how that material will be affected by heat, water and pressure. In contrast, 

high-level properties consist of discrete descriptors of an object’s structural properties, 

which constrain the interactions that an object will be able to take part in due to its 

physical structure. For example, only an object that has volume will be able to hold 



 88  

water, whereas an object’s volume has no effect on whether it will catch on fire. 

High-level properties are implemented in the EmerGEnT system as Boolean values, 

such as “is_open = false” or “has_volume = true”. 

 

Objects with different combinations of high-level properties afford different types of 

interactions. An object’s high-level properties can be combined to form different 

affordances. For example, for an object to afford fluid flow it must have volume, 

some kind of opening and be solid (as opposed to perforated). Also, an object can 

only contain a large amount of pressure if it does not have an opening. Affordances 

can then be used as preconditions for certain interactions. For instance, only objects 

that afford flow can engage in fluid or pressure flow. Affordances are implemented in 

the system as functions that read in an object, check the relevant properties of the 

object and return a true or false value to indicate whether the object affords the given 

behaviour. 

 

It would be possible to define affordances for materials in the same way as for 

structure. For example, rather than having a flashpoint, burning temperature and so on, 

a material could simply afford burning. However, encoding these properties at a high 

level would reduce the emergent potential of the environment. These properties are 

modelled at a low-level so that the high-level behaviour will be emergent. 

Furthermore, modelling the high-level properties at a low-level (reducing the object to 

a set of cells to define its structure) would be impractical and provide little benefit to 

the gameplay in comparison to the computational complexity. Therefore, it is 

necessary to separate the properties of objects into two levels, a low level related to 

the object’s material to allow emergent behaviour and a high level related to the 

object’s structure to constrain the object’s set of interactions to what is possible given 

its physical structure. 

 

5.4.1 Heat and Fire 

Heat is a system that is solely dependent on the composition of an object. The 

structure of an object does not determine whether it can transfer heat, only the 

material of the object does. For example, an object made of metal will transfer heat in 

the same way, dependent on the rules of heat transfer, whether it is a metal crate or a 



 89  

metal chair. Similarly, the burning of an object only depends on its material, not its 

structure. A wooden table will burn in the same way as a wooden house, following the 

rules of fire, which take the object’s mass into consideration. 

 

5.4.2 Fluid Flow and Wetness 

There are two behaviours of fluids that need to be considered with respect to objects. 

First, fluids can fill objects that have structures that afford filling. Second, fluids can 

wet objects, dependent on the material of the object. The second behaviour depends 

solely on the material of the object. Objects made of wood can absorb a considerable 

amount of water, whereas objects made of metal can absorb substantially less water. 

As discussed in the previous section, the wetness of an object is simply determined by 

the wetness of its host cell and the object’s material. In contrast, objects can only be 

filled with fluid if their structure affords filling or flow. There are three main high-

level properties that have been identified for an object to afford flow. First, an object 

must have volume, as an object such as a sword or a book cannot hold fluid. Second, 

an object must have an opening for the fluid to flow into, as a crate that is sealed has 

volume but no way for the fluid to enter. Third, the object must have solid sides (as 

opposed to perforated), as a crate that is made of wire mesh would not be able to hold 

fluid. Therefore, an object that has_volume, is_open and is_solid affords flow. The 

function AffordsFlow is used as a precondition for fluid flowing from an object to a 

cell and from a cell to an object. 

 
AffordsFlow (object obj) 
{ 

if (obj.has_volume and obj.is_open  
and obj.is_solid)  

then return true 
} 

 

5.4.3 Pressure 

There are two affordances relevant to pressure modelled in the EmerGEnT system. 

First, pressure can only flow to and from objects that afford flow, identical to fluid 

flow. Second, only objects with structures that afford exploding (can contain high 

pressure) are able to explode. For the first behaviour, pressure flow, the function 

AffordsFlow is used as a precondition for pressure flowing from an object to a cell 



 90  

and from a cell to an object. Therefore, only an object that has_volume, is_open and 

is_solid affords pressure flow. The same three properties used in fluid and pressure 

flow are relevant to whether an object affords exploding. First, in order for an object 

to hold the necessary pressure, the object must have volume. Second, the object must 

have solid sides to keep in the pressure. Third, the object must be closed (or not open), 

which also keeps in the pressure. If the object does not have these properties then it is 

not possible for the pressure inside the object to build up enough to exceed the 

external pressure so much that it explodes. Therefore, an object that has_volume, not 

(is_open) and is_solid affords exploding. The function AffordsExploding is used as a 

precondition for an object exploding.  

 
AffordsExploding (object obj) 
{ 

if (not(obj.is_open) and obj.has_volume  
and obj.is_solid)  

then return true 
} 

 

5.5 Observable Behaviour 

In games, scenarios and sequences of actions are often specifically scripted and coded. 

The advantage to using a cellular automata and a systemic approach is that the 

observable behaviour of any object or situation in the game can be dynamic and 

emergent, without needing to be scripted individually for each object or situation. 

This allows the game engine to be flexible and respond consistently and realistically 

to a wide range of actions that the player may take and events in any situation in the 

game. This section examines four possible scenarios within a strategy game world, 

focusing on the interactions between the objects and the environment. For each 

scenario, the performance of the EmerGEnT system and a conventional scripted 

system are compared and evaluated in terms of the observable behaviour of the 

objects, environment and the interactions between the two. The four scenarios are heat 

and fire, rain and water flow, pressure and explosions, and the integrated system 

including each of the previous components. 

 



 91  

5.5.1 Scenario 1: Heat & Fire 

Consider a situation where a wooden building, located in a forest, is set on fire (see 

Figure 5.1). Not only should the building burn and be damaged as a result, but the 

heat from the fire should also spread into the surrounding area. As the fire burns, the 

surrounding forest should also heat up and catch on fire, which will cause subsequent 

damage to the forest and the further spread of heat to surrounding areas. The heat and 

fire will continue to spread until the fuel is exhausted (there are no more trees) or until 

some other event causes the fire the stop (e.g. rain).  

 

 
Figure 5.1. Heat and fire scenario in the EmerGEnT system. A wooden building in a 

forest is set on fire (a), the fire spreads to the forest (b-c) and the surrounding area (d) 

 

In a system where the heat and fire scenario is scripted, the observable behaviour of 

the fire burning the building, then burning the surrounding area and eventually 

stopping would need to be specifically encoded. This would include specifying how 

long the fire will burn the building and each section of the terrain, how much damage 

will be caused by the fire in the process and what the fire will look like while it is 

burning. However, specifically scripting the observable behaviour of the heat and fire 

scenario means that the scenario will only behave in a pre-scripted and limited way. 

Any changes to the scenario would require the behaviour of the fire to be manually 

rescripted. For example, there could be more than one building, the building could be 

made of brick instead of wood and the surrounding terrain could be grass instead of 

forest. As the observable behaviour of burning brick is different than burning wood, 

the script would need to be updated to encode the new observable behaviour. The 

alternative would be to have a brick building burn in the same way as a wood building, 

which would not be as believable. The same problem would exist for the surrounding 



 92  

terrain. If the building were surrounded by grass rather than forest, the way the fire 

spreads from the building to the terrain and then through the terrain should be 

significantly different for grass than for forest, which would require further alterations 

to the script. Therefore, the major problems that exists for specifically scripting the 

heat and fire scenario is that there is considerable initial effort in implementing the 

scenario and small changes to the material of the terrain and objects requires the script 

to be rewritten or the same behaviour to be used for different scenarios. 

 

On the other hand, when the heat and fire scenario is implemented using the 

EmerGEnT system, the resulting behaviour depends on the underlying properties of 

the materials of the cells and objects, which are used by the equations for heat and fire 

to determine the behaviour of the system dynamically. As such, the system is robust 

to changes in the heat and fire scenario, such as the number and position of buildings, 

the material of the buildings and the material of the surrounding terrain. Whereas a 

scripted system requires the observable behaviour to be encoded directly, the 

EmerGEnT system works at a lower level so that the observable behaviour of the 

system is emergent. Emergent behaviour is possible because cells and objects are 

subject to the same rules of heat and fire and their low-level properties and materials 

determine how they are affected by the system’s rules. 

 

5.5.2 Scenario 2: Fluid & Wetness 

The second scenario presents a case study for fluid and wetness, in which rain falls on 

a hillside and the water from the rain runs down the hill into the valley below (see 

Figure 5.2). Subsequently, the water pools in the valley and floods the village that is 

located in the valley. In the village there are wooden houses, which absorb water from 

the flood. There is also a factory made of metal, which absorbs much less water from 

the flood. Some of the buildings are closed up, but others are open become flooded. 

Eventually, the rain stops and over time the flood water and buildings dry out.  

 



 93  

 
Figure 5.2. Fluid and wetness scenario in the EmerGEnT system. Rains falls on a hillside 

(a) and runs into the valley below (b). The houses that are open are flooded (c) and 

remain flooded after the water has dried up (d) 

 

Scripting the fluid and wetness scenario would require many details to be considered. 

The water must follow a certain path to flow down the hill into the valley, the water 

will accumulate in the valley to cause a flood, the flood water will soak and flow into 

the buildings in a certain way and the water will dry out. For the fluid and wetness 

scenario, the observable behaviour of each component would need to be scripted, 

paying careful attention to detail. Due to the complexity of the fluid and wetness 

scenario, the resulting behaviour would be very specific to the situation. For example, 

the contours of the hill, the location of the town or the position of the rain would each 

greatly change the observable flowing of the water. If the town were located on the 

side of the hill, if the rain fell on the other side of the hill or if the contours of the hill 

forced the water to flow in a different direction then the town would not flood. 

Additionally, when the water does flood the town, the way it interacts with each type 

of building is different and this behaviour would need to be specifically scripted. If 

the buildings were different, in terms of material or affordances (such as whether 

they’re open or not), then the behaviour of the water interacting with the buildings 

would need to be rescripted. Therefore, there are several variables that affect the 

observable behaviour in the fluid and wetness scenario that require careful attention to 

detail and considerable initial effort in implementing. Additionally, small changes to 

any of the variables would give rise to significant changes in the observable behaviour 

of the system, requiring considerable effort in maintenance and updating. 

 



 94  

In contrast to scripted systems, the complex observable behaviour of the fluid and 

wetness scenario simply emerged in the EmerGEnT system as a result of the simple, 

low-level rules interacting with each other. There are three main components of the 

EmerGEnT system that allow the behaviour in fluid and wetness scenario to be 

emergent. First, as with the previous scenario for fire and heat, objects and cells have 

common low-level properties and materials and are subject to the same rules, which 

allow complex, high-level behaviour to emerge. The low-level properties allow the 

varying materials of the objects and terrain to absorb water differently. Second, 

objects in the EmerGEnT system have affordances so that structurally different 

objects behave differently. The high-level properties allow water to interact 

differently with buildings depending on their structure (e.g. water can only flow into 

buildings that are open). Third, in the EmerGEnT system, the way that water flows 

over the terrain is determined by the contours. Consequently, in the fluid and wetness 

scenario, the water flow over the terrain is dynamically determined by where the rain 

falls and the contour of the terrain, which may or may not cause the town to flood. 

Therefore, the EmerGEnT system allows the behaviour in the fluid and wetness 

scenario to be dynamic and emergent due to the properties of the cells and objects, the 

affordances of the objects and the contours of the terrain, which all contribute to the 

complex, high-level behaviour that is observable to the player.  

 

5.5.3 Scenario 3: Pressure & Explosions 

The third scenario presents a case study with pressure and explosions, in which a high 

pressure object is placed in an area with significantly lower pressure, located in a 

village (see Figure 5.3). The object explodes and the pressure in the surrounding area 

is immediately increased. As a result of the high absolute pressure, the surrounding 

buildings are damaged. Some buildings are more damaged than others, depending on 

their material. After the immediate release of pressure, the pressure flows out from the 

explosion into surroundings buildings and into the surrounding area. 

 



 95  

 
Figure 5.3. Pressure and explosions scenario in the EmerGEnT system. A high pressure 

object is placed in an area with significantly lower pressure (a). The effects of three 

different sized explosions are shown (b-d) 

 

The factors that need to be considered when implementing the pressure and 

explosions scenario include the size of the explosion, the trigger for the explosion, the 

spread of pressure, damage to objects and cells and any secondary effects of the 

explosion. In a system that is specifically scripted, each of these factors needs to be 

specified and hard-coded. The size of the explosion will determine the area that the 

explosion effects and how much damage is done. If the size of the explosion varies 

then the variables need to be manually adjusted accordingly. In a scripted system, 

there would need to be a scripted trigger for an explosion to occur, such as a grenade 

being thrown. Additionally, any secondary effects of the explosion, such as a fire 

starting, would need to be hard-coded. Finally, the effect that the explosion has on 

different objects and terrain would need to be scripted. For example, more damage 

would be done to a tin can than to a lead barrel and this behaviour would need to be 

specifically scripted. 

 

In the EmerGEnT system, the rules for explosions and pressure flow allow any 

changes in the system to be automatically accommodated. For example, larger 

explosions cause more heat to be released from the explosion, automatically causing a 

larger area to be effected and more damage to be done to nearby objects and cells. 

Additionally, events do not need to be scripted to trigger explosions (although they 

can be), as an explosion will naturally occur under the right conditions. Similarly, 

secondary effects, such as the release of heat and subsequent fires occur naturally as a 

result of the explosion, rather than needing to be scripted. Also, the flow of pressure 



 96  

between the objects and environment occurs dynamically, due to the affordances of 

the objects. Finally, objects and cells made of different materials are affected by the 

explosion to varying degrees, depending on their low-level properties. Therefore, the 

EmerGEnT system can respond dynamically in pressure and explosions scenario due 

to the affordances of objects (determining how pressure will flow between objects and 

cells), the low-level properties of objects and cells (determining how they will be 

affected by explosions) and the global rules of the system. The global rules of the 

EmerGEnT system allow the explosion and secondary effects to occur naturally, as 

well as variations to the pressure and explosions scenario (e.g. size of the explosion) 

to be automatically accommodated.  

 

5.5.4 Scenario 4: Integrated System: Heat, Pressure & Fluid 

The fourth scenario is a combination of the previous three scenarios. Rain falls on a 

hillside and runs down the hill, causing a flood in a village that is located in the valley 

below. As the flood washes through the village, the buildings made of wood absorb 

fluid, as does the grassland on the hillside and in the valley. Immediately afterwards, a 

small explosion occurs as a result of a high pressure object in the village. The 

surrounding buildings in the village are damaged, but due to their wetness they are 

difficult to ignite. The wooden buildings catch on fire and burn briefly and the fire 

spreads to the forest on the hillside on the other side of the valley (see Figure 5.4). 

 

 
Figure 5.4. Integrated scenario in the EmerGEnT system. Rain falls on a hillside and 

causes a flood in the valley below (a). An explosion occurs in the village (b), damaging 

the buildings and causing a fire that spreads to a nearby forest (c-d) 

 



 97  

The integrated scenario combines the attributes of each of the previous scenarios. The 

same problems exist for the specifically scripted system as in each individual scenario, 

but to a far greater degree due to the increase in complexity in the integrated scenario. 

There are many more variables in the integrated scenario, including the number, 

composition, structure and placement of buildings, the composition, contours and 

layout of the terrain, as well as attributes of the flood, explosion and fire. Changes that 

are made to any of these variables present complications for every aspect of the 

observable behaviour, including water flow, fire, explosions and damage, giving rise 

to a problem of combinatorial complexity. Similarly, the increased complexity of the 

integrated scenario has an impact on the performance of the EmerGEnT system. 

However, this impact increases the value and visibility of the emergence of the 

EmerGEnT system. In the integrated scenario, the rules of each of the systems of heat, 

pressure and fluid, as well as wetness, fire and explosions, combine with the 

affordances of the objects, the low-level properties of the objects and cells and the 

contours of the terrain, so that many simple, local interactions occur simultaneously to 

give rise to a living, complex environment with realistic, global, observable behaviour. 

 

5.6 Discussion and Conclusions 

The goal of the reported study was to design and integrate game objects into the 

active game environment of the EmerGEnT system discussed in Chapter 4 and to 

determine the extent to which property-based objects and the integrated system can 

facilitate emergent behaviour and gameplay. The approach taken was to implement 

objects as though they were cells, using the same low-level properties, based on the 

object’s material. Subsequently, objects were also given high-level properties, based 

on their structure, to constrain the possible interactions of the object with the 

environment. The interactions that were modelled for objects were the same as for the 

cells in Chapter 4, including heat, pressure, fluid, fire, wetness and explosions. The 

key differences between the object-to-cell interactions developed in this study and the 

cell-to-cell interactions discussed in Chapter 4 were that objects only have one 

neighbour (its host cell) and objects have affordances (determined by high-level 

properties). In this study, high-level properties were related to an object’s structure, 

whereas low-level properties were related to its composition (i.e. material). Structure 



 98  

was modelled at a high-level as modelling it at a low-level would result in impossible 

computational complexity for a computer game, with marginal improvement in 

behaviour. Composition was modelled at a low-level as modelling it at a high-level 

would substantially decrease the emergent capacity of the objects and remove the link 

to the game environment. For game objects in the EmerGEnT system, determining 

whether object properties were high or low level was clear cut. However, deciding on 

the appropriate level to model properties comes down to a tradeoff between 

computational complexity and the gain of modelling at a lower level. In some cases, it 

will be prohibitively expensive to model properties at a low level, in other cases there 

will be no gain of modelling properties at a low level, and other cases will not be as 

clear cut. 

 

As with the environmental interactions in Chapter 4, each of the major systems 

designed in this study, heat, fluid and pressure, demonstrated various advantages over 

conventional scripted approaches for game object interactions. For heat and fire, the 

major problems that exist for specifically scripted systems is that changes to the 

material of objects and the terrain, as well as the number and placement of objects, 

requires the script to be rewritten. However, the model of heat and fire implemented 

in the EmerGEnT system uses the underlying properties of the materials of the objects 

and cells, as well as global rules for heat and fire, resulting in emergent high-level 

behaviour. Scripting the behaviour of fluid and wetness requires considerable initial 

effort and careful attention to detail due to the number of variables that affect the 

observable behaviour of the system, such as the material of objects and cells, structure 

of objects and contours of the terrain. However, the EmerGEnT system allows the 

behaviour of fluid and wetness to be emergent due to the global rules of the cellular 

automata, which dynamically process the low-level properties of cells and objects, the 

high-level properties of objects and the contours of the terrain. For pressure and 

explosions, the factors that are problematic in scripted systems include the size of the 

explosion, the trigger for the explosion, the spread of pressure, damage to objects and 

cells and any secondary effects of the explosion. In a scripted system, the cause and 

effect of each of these factors needs to be anticipated and specifically scripted. 

However, the EmerGEnT system can respond dynamically to pressure and explosions 

due to the affordances of objects (for pressure flow), the low-level properties of 

objects and cells (effect of explosions) and global rules of the system (secondary 



 99  

effects and variations to scenario). Finally, the integrated scenario illustrated that a 

complex system with many variables poses significant problems for scripted systems 

as changes to one variable in the system presents complications for every aspect of the 

observable behaviour of the system. However, in the EmerGEnT system, the rules of 

each of the systems of heat, pressure and fluid, as well as fire, wetness and explosions, 

combine with the affordances of the objects, the low-level properties of the objects 

and cells and the contours of the terrain, so that many simple, local interactions occur 

simultaneously to give rise to a living, complex environment with realistic, global, 

observable behaviour.  

 

In conclusion, this study answered the questions of how can game objects with a 

property-based design be incorporated into an active game environment and to what 

extent can property-based game objects facilitate emergent behaviour and gameplay. 

First, objects with a property-based design can be incorporated into an active game 

environment by dividing their properties into two levels, high-level and low-level. An 

object’s low-level properties are the same as the cells in the active environment and as 

such the objects are easily incorporated into an active environment as they are subject 

to the same rules. An object’s high-level properties constrain which rules affect 

various types of objects, as different objects have different affordances, unlike cells of 

the environment, which are uniform in structure. Second, this study provided evidence 

that property-based objects, in conjunction with the active environment, can facilitate 

emergent behaviour and gameplay by means of the global rules of the system and the 

properties of the objects and cells. These aspects of the EmerGEnT system enable 

real-time, dynamic processing of the game environment and objects to generate 

emergent, high-level behaviour that was not specifically planned and scripted in 

advance. The game objects designed in this study address the problems associated 

with current scripted systems for game developers and game players. For game 

developers, the objects have general, global properties, simplifying design of objects, 

planning of interactions and subsequent implementation and testing. For the game 

players, the global properties of the objects give rise to intuitive, consistent, emergent 

interactions, rather than pre-scripted, specific gameplay. With the use of two-part 

property-based objects, within an active environment, game design can be simplified 

and gameplay can be enhanced in strategy games, as well as other game genres. 

 



 



 101  

 

 

 

 

6 
Reactive Agents  

 

 

 

 

Agents are an important type of object in game worlds as they give the game life, 

story and atmosphere. Agents serve many different purposes and hold many different 

positions in games, which contributes to making the game world rich, interesting and 

complex. For example, strategy games include units (e.g. marines) that the player 

controls and role-playing games include agents that fill a wide range of different roles 

in society, from kings to cobolds. Game-players expect agents to behave intelligently 

by being cunning, flexible, unpredictable, challenging to play against and able to 

adapt and vary their strategies and responses (Sweetser, Johnson, Sweetser & Wiles, 

2003
4
). However, players often find that agents in games are unintelligent and 

predictable (Sweetser et al, 2003). Furthermore, players believe that agents’ actions 

and reactions in games should demonstrate an awareness of events in their immediate 

surroundings (Drennan, Viller & Wyeth, 2004). However, many games are 

proliferated with agents that do not demonstrate even a basic awareness of the 

situation around them. These agents often occupy the landscape as glorified pieces of 

scenery and behave in exactly the same way in any number of situations, ranging 

from rain to open gun fire. The questions that arise are how can agents that appear 

intelligent to the player by reacting sensibly to the game environment be incorporated 

into an active game environment and to what extent can reactive agents give rise to 

emergent behaviour and gameplay?  

 

Various techniques that can be used for agents in games are reviewed in section 6.1 

and influence maps are identified as a potential solution. The aim of the study 

                                                
4
 A study independent of the research reported in this thesis. 



 102  

presented in this chapter was to design, implement and test reactive agents in the 

EmerGEnT system (see Chapter 4 to 6) and to assess the extent to which the 

behaviour of these agents is appropriate, intelligent, realistic and emergent. The 

approach taken was to design, implement and test agents that use influence maps, in 

conjunction with the cellular automata in the EmerGEnT system, to dynamically 

respond to the environment. Three structured experiments were conducted to 

determine the design that would achieve the most appropriate agent behaviour, as 

indicated by criteria for efficiency, effectiveness and visible behaviour. 

 

6.1 Reactive Agents in Current Games 

An agent is anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through actuators (Russel & Norvig, 2003). 

Furthermore, an agent is considered autonomous if it relies on its own percepts, rather 

than the prior knowledge of its designer (Russel & Norvig, 2003). As discussed in 

Chapter 2, the agents in most games are hard-coded, relying heavily on the prior 

knowledge of their designers and little on their current situation. Many agents in 

games, such as units in strategy games and villagers in role-playing games, simply do 

not react to the environment in any way. This behaviour demonstrates a lack of 

situational awareness, which is an agent’s dynamic mental model of its operating 

environment and its place in it (Perla, Markowitz, Nofi, Weuve, Loughran & Stahl, 

2000).  

 

Situational awareness gives an agent a sense of what is happening in its current 

environment, what could happen next, what options there are for action and the 

possible outcomes of those actions. Situational awareness is the foundation for 

making decisions in complex operational environments. There are some games in 

which the agents demonstrate situational awareness by actively sensing and reacting 

to other agents in their environment. For example, the agents in Half-Life have sight 

and hearing and periodically “look” at and “listen” to the world (Leonard, 2003). 

Also, the game Thief: The Dark Project uses the same core concepts as Half-Life, but 

with a wider spectrum of states (Leonard, 2003). However, the agents in these games 

still fall into the category of hard-coded AI, as they are based on finite state machines 



 103  

that take into consideration what they can “see” and “hear” in the environment. The 

method used by these agents is to periodically run through a list of rules to determine 

whether they sense an opponent (see Figure 6.1). Another limitation is that these 

agents actively check to determine whether they can sense something periodically, 

whereas real vision and hearing arrive at the senses continuously (Leonard, 2003). 

Therefore, depending on the agents’ frequency of probing the environment, it is likely 

that events and actions will be missed. 

 

 
Figure 6.1. Core sensory logic in Half-Life. The agents in Half-Life periodically run 

through a list of rules to determine whether they sense an opponent (reproduced from 

Leonard, 2003, p. 2) 

 

Another game that requires the agents to sense and react to information in the 

environment is The Sims. However, unlike Half-Life and Thief, the agents in The 

Sims constantly receive information from the environment. In The Sims, the AI is 

embedded in the objects in the environment, known as “Smart Terrain”. Each agent 

has various motivations and needs and each object in the terrain broadcasts how it can 

satisfy those needs (Woodcock, 2000). For example, a refrigerator broadcasts that it 

can satisfy hunger. When the agent takes the food from the refrigerator, the food 

broadcasts that it needs cooking and the microwave broadcasts that it can cook food. 

Consequently, the agent is guided from action to action by the environment 

(Woodcock, 2000). Therefore, the agents in The Sims are not hard-coded like the 

agents in Half-Life and Thief. Instead, their behaviour is autonomous and emergent, 

based on their current needs and their environment. Whereas the agents in Thief and 

Half-Life use a list of rules to determine their behaviour, the agents in The Sims use 

weighted sums to determine the best behaviour based on the current situation. These 

Begin look 

--Gather a list of entities within a specified distance 

--For each entity found… 

----If I want to look for them and 

----If they are in my viewcone and 

----If I can raycast from my eyes to their eyes then… 

------If they are the player and 

------If I have been told to not see the player until they see me and 

------If they do not see me 

--------End look 

------Else 

--------Set various signals depending on my relationship with the seen entity 

End look 



 104  

weighted sums are known as utility functions, which map states onto real numbers 

that describe the degree of happiness associated with each state (Russel & Norvig, 

2003). Utility functions allow rational decisions to be made when the agent has 

conflicting goals or multiple goals. 

 

Although the agents in each of these games are able to sense entities in the 

environment in some way, they are still unable to sense the state of the environment 

itself. The agents in Thief and Half-Life are limited to sensing other agents in the 

environment and the agents in The Sims are limited to sensing other agents and 

objects in the environment. These agents would still be unable to react to events and 

states of the environment such as rain, fire, gunfire and so on. The approach used in 

The Sims could be extended to incorporate the environment as well as the game 

objects. However, there are a finite number of objects in the environment and a finite 

number of ways to interact with these objects. When considering the environment 

itself and the possible events and states in the environment, the problem becomes 

infinitely more complex and the approach used in The Sims would become too 

computationally demanding and difficult to manage. Translating the approach used in 

The Sims to a game environment would require every element and event in the 

environment to project information to every agent in every location. Another 

approach that is more applicable to the problem of agents reacting to the game 

environment is a technique used in many strategy games, influence maps. A summary 

of influence maps related to games is provided in Sweetser (2004a), included on the 

CD.  

 

6.1.1 Influence Maps 

Influence maps divide the game map into a grid of cells, with multiple layers of cells 

that each contains different information about the game world. For example, the 

layers could store data for combat strength, vulnerable assets, area visibility, body 

count, resources or traversability (Tozour, 2001). The values for each cell in each 

layer are first calculated based on the current state of the game and then the values are 

propagated to nearby cells, thereby spreading the influence of each cell. This 

influence propagation gives a much more accurate picture of the current strategic 

situation, as it not only shows where the units are and what they’re doing, but also 



 105  

what they might do and the areas they potentially influence (Tozour, 2001). Influence 

maps can be used for strategic assessment and decision making as their structure 

makes it possible to make intelligent inferences about the characteristics of different 

locations in the environment. For example, areas that have high strategic control can 

be identified, as well as weak spots in an opponent’s defences, the enemy’s front, 

flanks and rear, prime camping locations, strategically vulnerable areas, choke points 

on the terrain, and other meaningful features that human players would choose 

through experience or intuition (Tozour, 2001; Woodcock, 2002). Each layer, or set 

of layers, provides information about a different aspect of the game. For example, the 

influence map can indicate where the AI’s forces are deployed, the location of the 

enemy, the location of the frontier, areas that are unexplored, areas where significant 

battles have occurred and areas where enemies are most likely to attack in the future 

(Tozour, 2001; Woodcock, 2002). Furthermore, when these layers are combined, they 

can be used to make strategic decisions about the game. For example, they can be 

used to make decisions about where to attack or defend, where to explore, and where 

to place assets for defence, resource-collection, unit-production and research. 

 

Currently, influence maps are used in games for strategic, high-level decision-making. 

However, it would also be possible to use them for tactical, low-level decision-

making, such as individual agents or units reacting to the environment. Similar to 

strategic influence maps, a tactical influence map would require values for the 

environmental factors that need to be considered and a method for combing these 

factors into values that can be used for decision-making. The factors that need to be 

considered by the agents include rain, fire, gunfire and any other events and effects 

that are relevant to their decision. The method to combine these factors would be the 

same as in strategic influence maps, a weighted sum that weights the factors in the 

environment depending on how important they are for the decision that is being made.  

 

The advantage of using influence maps over methods that are currently used in games, 

such as Smart Terrain in The Sims, is that the agent is presented with a single value 

(calculated using the weighted sum to combine all the factors) instead of numerous 

messages being sent to the agent about the environment. Therefore, the agents can 

simply choose the best cell (based on the weighted sum) for the decision that it is 

making (e.g. where to move to avoid danger). Also, this approach has further 



 106  

advantages over the method used in games such as Half-Life and Thief as the agent is 

continuously adapting its behaviour to the environment (rather than probing at given 

time intervals) and its behaviour is a function of its environment (rather than 

following a prescribed set of rules). Finally, the influence map structure fits nicely 

with the cellular automata that are already being used to model the environment in the 

EmerGEnT system. Both use the same data structure and the raw values for the 

influence map are supplied by the calculations of the cellular automata. Therefore, the 

approach of using an influence map for tactical decision-making is investigated in this 

chapter as it accommodates passive sensing of a continuous environment (as opposed 

to discrete entities), allows the agents’ situational awareness to evolve as a function of 

the environment, gives rise to reactive and emergent behaviour and combines well 

with the cellular automata model of the environment. 

 

6.2 Agent Structure 

In the EmerGEnT system, agents have an identical structure to the objects discussed 

in Chapter 5. Each agent has a set of properties that include coordinates (position in 

the cellular automata), temperature, pressure, fluid, mass, wetness and material. The 

materials that agents are composed of have the same properties as materials for 

terrain and objects, including flashpoint, burning temperature, specific heat capacity 

and maximum burning rate. In strategy games, there are a wide range of possible 

agent types, such as humans (e.g. marine), vehicles (e.g. tank), boats (e.g. fishing 

boat) and aircraft (e.g. B-52). Therefore, possible materials for agents include flesh, 

metal and wood (see Table 6.1). The values for each material were initially estimated 

then tuned until the materials burned at an acceptable rate and duration. Agents also 

have the same high-level properties as objects, which encode attributes of the agents’ 

physical structure. These attributes determine whether agents will engage in various 

interactions (e.g. a human cannot be filled with water but a boat can). 

 



 107  

Table 6.1. Agent material properties. Possible materials for agents include flesh, metal 

and wood 

Property Description Values 

  Wood Metal Flesh 

Flashpoint Ignition temperature of the material 2000 5000 300 

BurnTemp Multiplier for the temperature the material burns 

at (amount of heat released) 

5 10 3 

BurnRate Multiplier for the rate the material burns at (rate 

of consuming fuel) 

10 5 15 

MaxBurn Maximum rate the material can burn at 300 100 200 

SHC Specific heat capacity – the amount of energy 

required to heat up this material 

100 50 100 

MaxFluid The maximum amount of fluid the material can 

absorb 

50 0 20 

Strength Modifier for the pressure the material can 

withstand before it breaks 

0.6 1.0 0.5 

 

6.3 Agent Design 

The agents in the EmerGEnT system are identical to the objects in terms of structure 

and composition. The defining difference between agents and objects is that an object 

is simply acted upon by the environment and responds according to its physical 

composition and structure, whereas agents have a choice of how to respond to the 

environment. If an agent does not respond to the environment in a way that seems 

reasonable to the player (e.g. preserving its own safety), then they seem unrealistic 

and unintelligent. For example, if an object (e.g. a crate) is in a room that is on fire, 

the object’s only course of action is to sit there and burn. However, an agent in the 

same situation would be expected to try and escape from the room in order to 

preserve its own life. If the agent were simply to stand in the room and burn then it 

would appear neither intelligent nor realistic. Therefore, it is necessary for an agent to 

have two things in order for it to react sensibly to the environment. First, it must have 

a way to sense the environment and second, it must have a way to choose a suitable 

reaction, based on what it has sensed.  

 

As discussed in the previous section, an agent’s understanding of its situation in the 

EmerGEnT system is represented as a weighted sum of the factors affecting each cell 

on the map. Based on the utility value of each cell, the agent chooses a cell to move to 

and reacts at a level that reflects its current situation (e.g. if the agent’s current cell is 

on fire then it panics). After the agent chooses a destination, its task is simply to move 



 108  

towards it. This section discusses the “comfort” function that determines the utility of 

each cell, the agent’s level of reaction and the agent’s choice of destination cell. 

 

6.3.1 Comfort Function 

The utility function for the agents in the EmerGEnT system determines how 

comfortable each cell is for the agents and is therefore called a comfort function. The 

comfort function is a weighted sum of the factors that affect the agents’ comfort in 

each cell and includes temperature, fire, pressure and wetness. Each of these factors is 

weighted according to how distressing it is for the agent. For human agents in the 

EmerGEnT system, fire is the most distressing, followed by temperature, pressure and 

wetness. However, these weights (W1, W2, W3, W4) can be tuned to reflect different 

priorities of different agents. For example, an alien might find water far more 

dangerous than heat. The comfort function returns a real value between zero and one, 

with a lower value representing a more comfortable cell. 

 
Comfort = Min(((fire*W1) + (temp*W2) + (pressure*W3)  
+ (wetness*W4)) ,1) 

 

The comfort function provides an efficient alternative to the environment sending the 

agent multiple messages about its state, such as “it’s hot” or “it’s raining”. Instead, 

the relevant factors are weighted and combined into a single value that gives the agent 

an estimate of the safety and comfort of its current location. The purpose of the 

comfort value is twofold. First, it provides a means for the agents to determine how 

comfortable they are in the current cell and to react accordingly. Second, it provides a 

means for the agents to assess surrounding cells and find a suitable destination. These 

two tasks are discussed in the following sections.  

 

6.3.2 Level of Reaction 

The comfort function returns a real value between zero and one, which allows the 

agent to react with varying degrees of distress, providing for more diverse and 

interesting behaviour (see Table 6.2). A comfort value of less than 0.1 represents a 

comfortable cell and the agent does not react. A comfort value of greater than 0.1 but 

less than 0.3 represents a cell that is uncomfortable and the agent reacts calmly and 

moves to a more comfortable cell. A comfort value of greater than 0.3 but less than 



 109  

0.6 represents a cell that is distressing and the agent runs from the cell. Finally, a 

comfort value of greater than 0.6 represents a cell that is painful, which causes the 

agent to panic and run from the cell. The agent’s level of reaction is denoted by its 

speed of movement, as well as its animation and sound. Scaling the agents’ reactions 

allows the agents to react in varying ways to different situations, while greatly 

simplifying the process of determining how the agents will react. Instead of the agents 

considering each element in the environment individually, the comfort function 

determines the agents’ level of discomfort and the agents respond accordingly by 

choosing the reaction level that corresponds to their comfort value. 

 

Table 6.2. Agent reaction levels. Agents react with varying degrees of distress to provide 

more diverse behaviour 

Value Level Reaction 

< 0.1 comfortable no reaction 

0.1 - 0.3 uncomfortable calmly moves to more comfortable cell 

0.3 - 0.6 distressing runs from the cell 

> 0.6 painful panics and runs quickly from cell 

 

6.3.3 Choosing a Destination 

If the agents are not comfortable in their current cell then they must locate and move 

to a more comfortable cell. Each agent reassesses its situation each timestep, by 

calculating the comfort value for the cell it is standing in or passing through and 

finding a destination cell based on the comfort of its neighbour cells. As long as the 

agent is not comfortable, it will keep reassessing its situation and finding a new 

destination, which means that agents can change destination while they are moving 

towards their current destination, if they find a better destination. Also, as the state of 

the environment is continuously changing, the destination the agent found last cycle 

may no longer be a comfortable cell. In choosing a destination, the agents evaluate 

the comfort values of the cells in a neighbourhood of a given size and choose the cell 

with the lowest comfort value.  

 

6.4 Agent Experiments 

Three experiments were conducted to investigate and tune the behaviour of the agents 

in the EmerGEnT system, in terms of efficiency, effectiveness and observable 



 110  

behaviour. The first experiment aimed to determine the most appropriate 

neighbourhood size that should be used by the agents when choosing a destination. 

The second experiment followed on from the first experiment and investigated 

combining different sized neighbourhoods to gain the benefits of both reactive and 

goal-directed behaviour. The third and final experiment involved combining 

desirability, in the form of a goal, with the comfort-based reactive behaviour of the 

agents. This section discusses the aims, methods, results and conclusions of each 

experiment. 

 

6.4.1 Method 

Several conditions were investigated in each experiment and ten trials with ten agents 

were run in each condition. Each experiment was conducted on a ten by ten grid of 

cells in the EmerGEnT system. The criteria that were used to evaluate the 

performance of the agents included whether or not the agents converged on a solution 

(i.e. agents located and reached comfortable cells), the number of cycles the 

EmerGEnT system ran before the agents converged, how efficiently the agents found 

a solution, what (if any) strategies or patterns agents exhibited and the number of 

local optima (comfortable cells) on which the agents converged.  

 

The initial state of each trial was randomly generated, including the position of the 

agents, the position of rain and the number and position of explosions. After the trials 

were started, notes were made in relation to the criteria of efficiency, strategy and 

patterns and the EmerGEnT system was stopped as soon as the agents converged for 

the first time. At this point, the number of cycles the agents took to converge was 

noted, as was the number of optima that the agents converged on (an optima was 

considered to be a single cell). If the agents failed to converge (which usually 

occurred if the agents died before finding an optimum) then it was noted that the 

agents did not converge. A screen shot was taken of the final state of the EmerGEnT 

system in each trial, showing the state of the system, the number of cycles and the 

position of the agents. 

 



 111  

6.4.2 Experiment 1: Determining Neighbourhood Size 

The aim of the first experiment was to determine the optimal neighbourhood size, in 

terms of agent performance and behaviour, that agents should evaluate when 

choosing a destination (i.e. where to move to maximise comfort). Four conditions 

were investigated, including three conditions where the agents used neighbourhood 

sizes of one (n=1), two (n=2) and three (n=3) to choose destinations (see Figure 6.2). 

The final condition involved the evaluation of the entire grid to find a global optimum. 

  

 
Figure 6.2. Neighbourhood sizes. Area that is evaluated for neighbourhood sizes n=1, 2 

and 3 

 

6.4.2.1 Results and Discussion 

Each of the neighbourhood sizes that were evaluated in the first experiment had 

various advantages and drawbacks. The agents with a neighbourhood size of one 

performed the best at avoiding immediate danger. However, their short sight meant 

that they often ran towards more dangerous situations or became stuck in larger 

hazards as they were unable to find a way out. With a neighbourhood size of two, the 

agents were better at choosing safe destinations and appeared more organised, but 

still expressed the problems associated with short sight. The agents with a 

neighbourhood size of three were exceptional at picking particularly desirable cells 

and appeared organised as many agents moved to similar locations. However, the 

problems for these agents were almost the opposite of the previous agents, as they 

performed the best at choosing a destination but were unable to avoid immediate 

hazards in getting to their destination. They would often put themselves in great 

danger (e.g. run through fire) to get to a safe destination cell.   

n=3 

n=2 

n=1 



 112  

Moving through hazards to reach a safe goal was a far more severe problem when the 

agents were simply moving towards a global optimum. The agents would move 

across the whole map to get to their destination, rather than looking for a local 

optimum or a “good enough” cell in local proximity. The global optimum agents also 

took significantly more cycles to reach a goal cell than the agents in each of the 

previous conditions
5

 (see Figure 6.3), as the global optimum was continually 

changing. Using a global optimum would be more reasonable if the goal cell was 

particularly desirable, such as fulfilling a mission or going home. The global optimum 

works well if the agents are in close proximity to the global optimum, but does not 

work at all if they are far away. Therefore, it would be much more logical for the 

agents to find a local optimum, as in the previous conditions where they were 

evaluating their local neighbourhood. 

 

Mean number of cycles agents took to 

converge in each condition

0

100

200

300

400

500

600

n=1 n=2 n=3 global

optima

 
Figure 6.3. Finding a destination. The agents took significantly more cycles to converge 

in the global optimum condition than each of the local optima conditions 

 

There were desirable traits expressed by the agents with short sight (avoiding 

immediate danger) and the agents with longer sight (finding a local optimum). As a 

result, a logical solution is to endeavour to combine these two approaches to enable 

the agents to move to a nearby, safe cell while avoiding hazards along the way. 

Consequently, the next experiment investigates how these two approaches can be 

combined and whether they yield an improvement in behaviour. 

 

                                                
5
 n=1 (t=5.280, p<.001), n=2 (t=4.669, p<.001), n=3 (t=4.865, p<.001) 



 113  

6.4.3 Experiment 2: Optimising Agent Navigation 

The previous experiment demonstrated that neither purely reactive nor goal-directed 

behaviour was desirable for the agents in the EmerGEnT system. The reactive agents 

were able to avoid immediate danger but often ran into another hazard and the goal-

directed agents chose a suitable goal but ran through hazards to reach it. Therefore, 

the aim of the second experiment was to determine if a combination of these two 

approaches is more effective than either approach individually and what combination 

of reactive and goal-directed behaviour is the most suitable for the EmerGEnT system. 

 

The agents in the second experiment combined the reactive and goal-directed 

behaviours of the agents in the first experiment by first selecting a goal (the most 

comfortable cell) from the area around the agent (n=3). Second, the agents then 

evaluated the cells in their immediate neighbourhood (n=1) and chose which way to 

move, based on the comfort of the immediate cells and how close the immediate cells 

advanced the agent towards the goal. There were three conditions evaluated in the 

second experiment. The first condition weighted the comfort of each cell in the 

agent’s immediate area with equal importance to the proximity of each cell to the 

agent’s goal cell in the local area. The second condition weighted the proximity of the 

immediate cells to the goal cell more importantly (75%) and the comfort of the 

immediate cells less importantly (25%). Finally, the third condition weighted the 

proximity of the immediate cells to the goal cell less importantly (25%) and the 

comfort of the immediate cells more importantly (75%).  

 

6.4.3.1 Results and Discussion 

The agents in the second experiment displayed definite advantages over the agents in 

the first experiment. The agents in the evenly weighted and goal-directed conditions 

appeared far more intelligent, as they moved towards a goal rather than running back 

and forth randomly. Also, these agents appeared more realistic, as they moved around 

hazards on the way to their goal rather than simply running in a straight line, which 

made the agents in the previous experiment appear very flat and synthetic. Also, the 

agents in the evenly weighted condition displayed more depth as they did not always 

react in the same way, sometimes they would appear organised and at other times 

they would appear more independent, with their behaviour being heavily dependent 



 114  

on the current situation. The agents in the evenly weighted condition took the least 

amount of time to converge on safe cells (see Figure 6.4). The agents in the goal-

directed condition behaved in a similar way to the agents in the evenly weighted 

condition, but became stuck more often and still ran through hazards. The agents in 

the reactive condition had the least desirable behaviour as they often appeared to 

move randomly, did not appear organised and often became stuck. Therefore, the 

second experiment suggests that the most suitable combination of reactive and goal-

directed behaviour for the agents in the EmerGEnT system is approximately equal, 

where it is more desirable to err on the side of goal-directed than on reactive 

behaviour. 

 

Mean number of cycles agents took to 

converge in each condition

0

100

200

300

400

50% goal 75% goal 25% goal

 

Figure 6.4. Optimising agent navigation. Mean number of cycles agents took to converge 

in Experiment 2 

 

6.4.4 Experiment 3: Combining Comfort and Desire 

The first and second experiments gave rise to agents that efficiently, intelligently and 

realistically react to the environment by moving from danger to safety. However, in a 

computer game situation, it is also likely that agents will have greater goals or desires 

that they need to fulfil, apart from simply surviving and reacting sensibly to the 

environment. For example, marines in a strategy game might be on a mission to kill 

the enemy in a particular cell or a villager in a role-playing game might want to stay 

near its house or shop. Drawing on the notion of “desirability” values from influence 

maps, goal areas could be given high desirability values for the agents. Additionally, 

desirability values could then be propagated out to surrounding areas to indicate that 

these areas are more desirable as they are near the goal. Therefore, the aim of the 



 115  

third experiment was to combine the desire to reach a greater goal with the agents’ 

current behaviour of reacting to the environment and avoiding hazards. The third 

experiment combined an influence map to propagate the desirability of the cells with 

the cellular automata to determine the comfort of the cells. The question being 

investigated in the third experiment was what combination of desire and comfort 

gives the agents the optimal behaviour, in terms of avoiding hazards and reaching 

their goal.  

 

The scenario for the third experiment was that ten agents have been given the order of 

getting to a single goal (e.g. marines sent to attack an enemy tank). The method used 

in the third experiment was to propagate the desire out from the goal position, with a 

propagation constant of 0.7 (i.e. the desirability value is multiplied by 0.7 for each 

step out from the goal). This value was chosen as it allows the influence to spread 

over the entire map of ten by ten cells, with a high concentration of desirability near 

the goal and low levels away from the goal. Figure 6.5 shows the desirability on a 

map with a single goal and desirability combined with comfort (darker is less 

desirable). Next, the agents calculated the comfort values for their local 

neighbourhood (n=3). Subsequently, the agents selected the best cell in this 

neighbourhood, based on the desirability value combined with the comfort value of 

each cell, which became their goal.  

 

 
Figure 6.5. Desirability visualisation. Desirability on a ten by ten map with a single goal 

and propagation constant of 0.7 (left) and combined with comfort values (right) 

 

The three conditions that were investigated in the third experiment were designed to 

test different influences of comfort and desirability on the agent’s choice. The three 

conditions were evenly weighted (50% desirability – 50% comfort), goal-oriented 

(75% desirability – 25% comfort), and self-preserving (25% desirability – 75% 

comfort). After the agent has chosen the best cell in its local neighbourhood, based on 

comfort and desirability, it then chose which cell to move to in its immediate 



 116  

neighbourhood (as in Experiment 2). The best cell in the immediate neighbourhood 

was chosen based on its comfort value (50%) and its closeness to the chosen cell in 

the local neighbourhood (50%), which is the condition that was identified as optimal 

in the second experiment.  

 

6.4.4.1 Results and Discussion 

The first three conditions demonstrated that an equal weighting of desirability and 

comfort gave the agents the most acceptable observable behaviour, in terms of 

organisation, avoiding hazards and navigating the environment realistically and 

intelligently. The agents converged reasonably efficiently (Mean = 326 cycles), but 

only about half of the agents found the goal (Mean = 4.3 agents) as they opted for 

comfort over the goal.  

 

When the weighting was tipped towards comfort or desirability, the agents’ behaviour 

appeared random, less organised and less intelligent. The goal-directed agents 

converged in a reasonable period of time (Mean = 253 cycles), but only about half the 

agents found the goal (Mean = 4.2 agents). The self-preserving agents required 

significantly more cycles to converge (Mean = 420 cycles) than the agents in the 

previous conditions
6
. There was no significant difference between the number of 

agents that found the goal (Mean = 3.2 agents) in the self-preserving condition and in 

the previous conditions (see Figure 6.6). 

 

                                                
6
 (t=2.443, p<.05) 



 117  

Mean number of cycles agents took to 

converge in each condition

0

100

200

300

400

500

50% desire 75% desire 25% desire

Mean number of agents to find the goal 

in each condition

0

1

2

3

4

5

50% desire 75% desire 25% desire

 
Figure 6.6. Combining comfort and desire. Mean number of agents to find the goal and 

mean number of cycles agents took to converge in each condition 

 

Propagation Constant 

The agents in each of the first three conditions were not very successful at finding the 

goal. Therefore, a fourth trial was run with equal weighting to optimise behaviour, but 

with a greater propagation constant to increase desirability values around the goal. 

Increasing the propagation constant (0.8) resulted in greater differentiation between 

cells on the influence map and further improvements in observable agent behaviour. 

The most noticeable change with a propagation constant of 0.8 was the improvement 

in the agents’ behaviour, in terms of organisation, intelligence and rational behaviour. 

The agents were consistently able to move in organised and intelligent ways, 

exhibiting interesting and rich behaviour. In one situation, the agents were moving 

towards a goal that was blocked by rain and they waited for the rain to pass before 

moving towards the goal, rather than running through the rain or getting stuck. The 

increased differentiation between cells on the influence map provided the agents with 

a clear view of the best way to navigate through the environment. However, the 

agents were still not successfully able to find the goal.  

 

Multiple Goals 

A fifth and final condition was tested to determine how the agents would perform 

with multiple goals instead of one. The agents in the multiple goals condition were 

much better at finding the goals (Mean = 5.9 agents), but did not appear as intelligent 

or realistic as the agents in the previous condition. The agent were more likely to find 



 118  

the goals in this condition as there were more goals, but mostly because the 

desirability from the goals was cumulative, allowing more cells to have higher values 

and the influence to propagate further. 

 

The third experiment produced an agent model that successfully integrates goal-

directed behaviour (based on agent desires) with situation awareness (based on 

comfort), which enabled the agents to both react to the environment in an intelligent, 

realistic and organised way while simultaneously satisfying their desire to reach a 

goal. 

 

6.4.5 Outcomes of Agent Experiments 

The outcome of the first two experiments was a model for agents that dynamically 

respond to the environment in an intelligent and realistic way, based on concepts from 

cellular automata and influence maps. The outcome of the third experiment was an 

extension of this model that also integrates goal-directed behaviour to enable the 

agents to respond to the environment while pursuing a goal. An advantage of the 

model developed through these experiments is extensibility, in that it can be extended 

to incorporate any aspects in the game world that are relevant to the agents’ behaviour 

(e.g. other agents, terrain, events). It would also be possible to incorporate other 

models for agent behaviour, such as flocking, so that the agents also take into 

consideration the movement of other agents around them. The simplicity and 

flexibility of this model means that it can be used to govern the behaviour of almost 

any agent in any circumstance. The contribution of this research is a design that 

allows agents to dynamically react to the changing situation of their environment, as 

well as an intelligent pathfinding algorithm that allows agents to find a safe path to a 

goal, based on aspects of their environment. A summary of the agent model that was 

developed and tuned through the experiments in the previous section can be seen in 

Figure 6.7 (see Appendix D for full pseudo-code). 

 



 119  

 
Figure 6.7. Reactive agent model. A summary of the agent model developed and tuned 

through the agent experiments 

 

6.5 Scripting versus Emergence 

Introducing entities that have a choice of how to react to the situation amplified the 

variation and unpredictability of the system. Rather than the simple physical 

exchange that existed in the previous chapters, a new level of depth was introduced to 

the EmerGEnT system by agents that actively change their own state. Agents in the 

environment are not confined to the state of their current cell. Instead, they are free to 

react to the changing environment in ways that optimise values that are important to 

them, such as comfort and desirability. In doing so, the agents actively change the 

state of the environment, as they carry effects between cells in new and dynamic 

ways. For example, if a tank catches on fire and reacts by rolling into a group of trees, 

then those trees will in turn catch on fire, whereas the outcome would have been 

different without the active role of the agent. Furthermore, as the agents have the 

First, the desirability of the goal is propagated by iterating through each cell on the map 

and setting the propagated influence value in each cell, depending on its distance from the 

goal, as well as the goal’s desirability and propagation constant:  

 

 Desirability = goal’s desirability * (propagation constant) 
distance from goal 

 

In each cycle, each agent calculates the comfort value for each cell in its local 

neighbourhood (n=3). The comfort value is a weighted sum of the environmental factors 

in the cellular automata, including temperature, pressure, fire and wetness: 

 

Comfort = Min(((fire*W1) + (temp*W2) + (pressure*W3) + (wetness*W4)), 1) 

 

Subsequently, the agent finds the optimal cell in its local neighbourhood. The “goodness” 

of each cell in the local neighbourhood is the sum of 50 percent of the comfort of that cell 

and 50 percent of the desirability of that cell. 

 

 Goodness of local cell = 50% comfort + 50% desirability 

 

The cell that the agent identifies as the optimal cell in its local neighbourhood becomes its 

goal. Subsequently, the agent assesses its immediate neighbourhood (n=1) to find the 

most optimal cell. The “goodness” of each cell is in its immediate neighbourhood is the 

sum of 50 percent of the comfort of that cell and 50 percent of the proximity of that cell to 

the agent’s goal in the local neighbourhood. 

 

 Goodness of immediate cell = 50% comfort + 50% proximity to local goal 

 

After the agent determines its destination cell in the immediate neighbourhood, it moves 

towards that cell at a pace dependent on its current comfort. Each cycle, the agent re-

evaluates its local and immediate neighbourhood and updates its goal and destination. 



 120  

same set of physical and structural properties as objects and cells, different agents are 

also affected in varying ways by the same circumstances and subsequently react in 

different ways in these scenarios. This section examines four scenarios and discusses 

the contrasting outcomes and considerations for agents, objects, and environments in 

scripted and emergent systems with respect to these scenarios. The four scenarios are 

heat and fire, rain and water flow, pressure and explosions, and the integrated system 

including each of the previous components. 

 

6.5.1 Scenario 1: Heat & Fire 

The first scenario presents a case study for heat and fire, in which a fire is started in a 

military base that contains a variety of buildings (e.g. metal bunkers, wooden 

barracks) and agents (e.g. tanks, people). As discussed in the previous chapter, the 

interactions of fire with each of the different types of objects and terrain are emergent 

in the EmerGEnT system (see Figure 6.8). Similarly, the interactions of fire with the 

different types of agents in the scenario are emergent. The observable behaviour of 

the fire is emergent due to the high and low-level properties of the entities in the 

scenario, combined with the rules for the interactions of heat and fire. Therefore, the 

observable behaviour of fire in the heat and fire scenario depends on the position, 

composition, number and variety of objects, agents and terrain in the scenario. 

Furthermore, the behaviour and effects of the fire emerge and change as a function of 

the situation. Additionally, the agents in the heat and fire scenario react dynamically 

to the changing situation and in varying ways, depending on their low-level properties 

(a tank has a higher threshold for discomfort than a human) and high-level properties 

(a tank can move faster than a human and a boat cannot move on land). Finally, the 

ways that the agents react to the heat and fire scenario feedback to actively change the 

state of the scenario. For example, a tank that is on fire will propagate the fire as the 

tank moves into cells that the fire might not have reached otherwise.  

 



 121  

 
Figure 6.8. Heat and fire scenario in the EmerGEnT system. A fire is started in a military 

base (a) and spreads throughout the base (b-d) affecting different agents (tanks, people) 

and buildings (bunkers, barracks) in different ways 

 

It would be difficult and time-consuming to script the observable behaviour of the fire, 

the effects of the fire on the agents, objects and terrain, as well as the resulting 

reactions of the agents to the situation, especially with any level of realism. As 

discussed in previous chapters, it is prohibitively complex to script the interactions of 

fire with game objects and environments to the level of detail implemented in the 

EmerGEnT system. Each attribute of the objects and terrain that need to be 

considered add a new level of complexity to the problem. Furthermore, the layout of 

the objects, agents and terrain in the heat and fire scenario magnifies the problem. 

Finally, when the reaction of the agents to the fire also needs to be considered (even 

without the agents’ actions feeding back into the scenario), the problem becomes 

simply impossible. Therefore, the options for scripting fire in a game scenario are to 

implement flat, unrealistic, uniform fire or to spend tedious hours specifically 

scripting the multitude of combinations that are possible, which would fall far short of 

what is simulated in the EmerGEnT system due to time and logistical constraints. 

 

6.5.2 Scenario 2: Fluid & Wetness 

The second scenario presents a case study for fluid and wetness, in which rain falls on 

a hillside and runs down the hill and floods the village in the valley below. The 

village contains different types of buildings, villagers, vehicles and a boat. As 

discussed in the previous chapters, the interactions of water with different types of 

objects, agents and terrain are emergent in the EmerGEnT system (see Figure 6.9), as 



 122  

well as interactions of water with different terrain contours. The water from the rain 

runs down the hill and floods the valley, due to the emergent interactions of the water 

with the contours of the hill and valley. Also, some objects and agents (such as 

houses and cars) are filled with water, due to their high-level properties and other 

agents can float on the water (such as boats), due to their ability to move on water. 

Also, the different objects, agents and terrain become wet from the water to varying 

degrees, depending on their composition. For example, a wooden house absorbs more 

water than a metal shack, making it harder to ignite and more water-damaged. Again, 

small changes in the fluid and wetness scenario can give rise to significantly different 

observable behaviour. For example, changing the contours of the hill could mean that 

the village will not flood. Also, different agents respond to the water in different ways, 

as a flood is far more dangerous to a villager than it is to a boat. 

 

 
Figure 6.9. Fluid and wetness scenario in the EmerGEnT system. Rain runs down a 

hillside (a) and floods the village in the valley below (b-c) and dries out over time (d). 

The flood affects and interacts with the agents (trucks, people and a boat) in different 

ways 

 

Again, scripting the behaviour of the fluid and wetness scenario specifically would be 

time-consuming, difficult and impractical. Changes to the contours of the terrain have 

a significant effect on the series of events in the scenario, by determining whether the 

water will flood the valley, whether it will pass through the valley and the magnitude 

of the flood. Subsequently, the various entities in the valley are affected by the flood 

water in varying ways, which would be prohibitively expensive to script specifically. 

Furthermore, the agents add another layer of complexity to the problem. Again, there 



 123  

are two possible approaches to scripting the fluid and wetness scenario. The first is to 

have a limited number of pre-scripted scenarios that can take place and the second is 

to attempt to script the scenario with some level of realism and flexibility, which is 

prohibitively time-consuming and complex. 

 

6.5.3 Scenario 3: Pressure & Explosions 

The third scenario presents a case study for pressure and explosions, in which a bomb 

explodes in a military base that contains different types of buildings (e.g. metal 

bunker, wooden barracks) and agents (e.g. people, tanks). As discussed in previous 

chapters, the observable effects of the interactions of the explosion (i.e. pressure) with 

the objects, agents and terrain in the pressure and explosions scenario are emergent in 

the EmerGEnT system (see Figure 6.10), as are the secondary effects of the explosion 

(e.g. fire started as a result of heat generated by explosions). The objects, agents and 

terrain are affected in varying ways by the explosion, depending on the strength of 

their composing material, their high-level properties (e.g. objects with volume can be 

filled with pressure), size and number of explosions, as well as the position, size, 

number and type of entities in the scenario. The result is a dynamic, emergent chain 

of interactions that arise from the rules for interaction, properties of the entities and 

the initial and evolving state of the scenario. Furthermore, the actions of the agents 

again add an extra layer of complexity to the EmerGEnT system. The agents react in 

varying ways to the pressure and explosions scenario and as a function of the 

changing state of the scenario. In doing so, they actively change the system state and 

propagate effects in ways that might not have occurred naturally. 

  



 124  

 
Figure 6.10. Pressure and explosions scenario in the EmerGEnT system. A bomb 

explodes in a military base (b), causing a fire (c) that spreads through the base (d) 

 

The same problems exist for specifically scripting the pressure and explosions 

scenario as are discussed in the previous scenarios and in previous chapters. The 

EmerGEnT system takes into consideration many different factors, such as the 

position and magnitude of the explosion, proximity of game objects and agents to the 

explosion, high and low-level properties of objects, agents and terrain that result in 

varied effects from the explosion and so on. Again, the actions and reactions of the 

agents, which vary by type and situation of agents, add another layer of complexity to 

the problem. Therefore, the pressure and explosions scenario could be scripted to be 

executed in a prescribed way or the system could attempt to consider various 

attributes of the situation and run a precoded script. In either case, the script is preset, 

rigid and cannot be interacted with by the player or changed as a result of the 

situation. 

 

6.5.4 Scenario 4: Integrated System: Heat, Fluid & Pressure 

The fourth scenario is a combination of the previous three scenarios. Rain falls on a 

hillside and runs down the hill, flooding the village in the valley below. Subsequently, 

the flood washes away and an unrelated explosion occurs in the village. In the 

EmerGEnT system (see Figure 6.11), the initial flood accumulates in the valley as a 

result of the interactions of the water with the contours of the hill. The flood water 

then interacts with the buildings, vehicles and people in the village in varying ways, 

depending on their low and high-level properties. The flood washes away due to the 

contours of the landscape and also dries out over time. When the explosion occurs, 



 125  

the entities in the village are affected by the high pressure in different ways, 

depending on their composition. Also, under the right conditions, a fire starts in the 

village as a result of the heat released by the explosion. The fire then spreads through 

the village, affecting different buildings and agents in different ways, depending on 

their composition, their wetness from the flood, position, size and various other 

factors.  

 

 
Figure 6.11. Integrated scenario in the EmerGEnT system. Rain runs down a hillside and 

floods a village (a) and dries out over time (b), followed by an explosion in the village (c) 

and a fire caused by the explosion (d) 

 

As discussed in previous chapters, the complexity, power and flexibility of the 

EmerGEnT system becomes most apparent in the integrated scenario. The simple 

low-level rules of each system (pressure, heat and water) interact to give rise to 

interesting, rich and complex high-level, observable behaviour. The low-level 

properties of the agents, objects and terrain, the high-level properties of agents and 

objects and the contours of the terrain combine with the system rules to create a living, 

evolving and complex system. Changes to the initial and continuing state of the 

integrated scenario give rise to different outcomes and observable behaviour of the 

system.  

 

Each event that occurs in the EmerGEnT system (rain, flood, explosion, fire) is not 

the result of pre-planning and scripting. Instead, each event occurs because the 

conditions of the integrated scenario are right for each of these events to happen, as 

would be the case in the real world. The rules of how things work in the EmerGEnT 



 126  

system (e.g. hot things burn, water flows downhill) combine and interact to mould the 

series of events that occur in integrated scenario. With the addition of the agents 

(entities that have a choice of how to react in a given situation), the complexity of the 

system is deepened further. As the system state changes, the agents choose how to 

react to their environment (affected by their high and low-level properties and goals), 

which in turn feeds back into the state of the system.  

 

The interactions and actions of the agents give another level of complexity to the 

observable behaviour of the EmerGEnT system, bringing the environment to life with 

thinking, responding, interacting entities. A script to run the events described in the 

integrated scenario would need to be very specific to the scenario. Any change to the 

initial setup or any change to effects throughout the scenario would require multiple 

changes to be made to the script. It would not be possible to achieve the level of detail, 

interactivity and dynamic behaviour as is described in the integrated scenario in a 

specifically coded system. 

 

6.6 Discussion and Conclusions 

The aim of the study presented in this chapter was to design, implement and test 

reactive agents in the EmerGEnT system and to assess the extent to which the 

behaviour of these agents is appropriate, intelligent, realistic and emergent. The 

approach taken was to design, implement and test agents that use influence maps, in 

conjunction with the cellular automata in the EmerGEnT system, to dynamically 

respond to the environment. The resulting agent model works by first populating the 

agents’ influence map with values based on the comfort of the cells and the agents’ 

desire to move to a goal (if they have one). Subsequently, the agents find the best cell 

in the influence map in their local neighbourhood and decide which way to move 

(north, south, east or west), based on the comfort of the cell in each direction and the 

proximity of this cell to their local optima.  

 

Three structured experiments were conducted to determine the design that would 

achieve optimal behaviour for the agents. The first experiment aimed to determine the 

appropriate neighbourhood size that agents should evaluate when choosing a 



 127  

destination. It was concluded that it would be desirable to combine the ability to find 

local optima of agents with larger neighbourhoods with the ability to avoid immediate 

threats of agents with smaller neighbourhoods. Consequently, the aim of the second 

experiment was to find the most appropriate combination of immediate area (reactive) 

and greater area (goal) evaluation. From the second experiment, it was concluded that 

an equal weighing of reactive and goal-directed behaviour gives rise to the most 

appropriate agent behaviour in the EmerGEnT system. Finally, the third experiment 

aimed to determine how well the agents perform with a goal, as many agents in 

games are required to do more than react to the environment.  From the third 

experiment, it was demonstrated that optimal differentiation between cells is 

important to the success of an agent’s behaviour. 

 

The EmerGEnT system, including cells, objects and agents, exhibited the same 

advantages over scripted systems as were discussed in Chapters 4 and 5, as well as a 

new level of complexity and emergence added by the autonomous agents. As 

discussed in Chapters 4 and 5, the agents, objects and cells have low-level properties, 

related to their physical composition, which determine how they will interact with 

heat, pressure and water. Also, as discussed in Chapter 5, the agents and objects have 

high-level properties, related to their physical structure, which further constrain the 

ways in which they are able to interact with heat, pressure and water. Therefore, the 

interactions that occur in any given scenario are dependent on, and emerge as a 

function of, a variety of factors, including number, type and position of entities in the 

environment, terrain and external effects (e.g. rain, wind).  

 

The addition of agents to the EmerGEnT system’s complex and emergent 

environment adds another layer of complexity as the agents are able to actively 

change the state of the environment by choosing how to react to a given situation. 

Furthermore, the differences between individual and types of agents, such as 

composition, structure, goals, personality and so on, means that different agents will 

choose to react in different ways in the same situation. The result of each component 

of the system (objects, agents and cells) working together is a complex, rich and 

living world that provides a suitable environment for interesting and emergent 

gameplay to take place. The depth, complexity and life of the EmerGEnT system 

could not be replicated in a static system, based on scripting or finite states. 



 128  

In conclusion, the agent study answered the questions of how agents that appear 

intelligent to the player, by reacting sensibly to the game environment, can be 

incorporated into an active game environment and to what extent these agents give 

rise to emergent behaviour and gameplay. First, reactive agents can be incorporated 

into an active environment by using cellular automata to provide the agents with a 

measure of comfort in their current situation, as well as a map for deciding where 

they might move to maximise their comfort. As this design closely resembles an 

influence map, it is also possible to integrate goal-directed behaviour and potentially 

personality, group movement and various other behaviours into the agent model. 

Within the active environment, the agents are simply extensions of the existing 

objects and are therefore subject to the same rules of interacting in the environment. 

Second, the agent study provided evidence that the reactive agents can further the 

emergent behaviour and gameplay discussed in previous chapters by adding a new 

level of complexity to the game world. As the agents are able to choose how to react 

to the environment, they are able to actively change the state of the world in ways that 

might not have occurred without their intervention. Whereas current agents in games 

do not demonstrate an awareness of their situation or react appropriately to events in 

their immediate surroundings, the reactive agents maintain a model of the comfort of 

their environment and react according to the changing state of their situation. The 

reactive agent model developed in this study allows agents to dynamically react to the 

changing situation of their environment and to intelligently find a path to a goal, 

increasing their visible level of intelligent, realistic and non-deterministic behaviour. 

 



 129  

Part III  

 

Evaluating the Facilitation of Player 

Enjoyment in the EmerGEnT System 
 



 130  



 131  

 

 

 

 

7 
Evaluation of  

Player Enjoyment  
 

 

 

 

Player enjoyment is the single most important goal for computer games. The 

EmerGEnT system was developed to enhance player enjoyment by addressing the 

issues associated with interacting in and developing game worlds by facilitating 

emergent behaviour and gameplay in games. The EmerGEnT system has been 

evaluated to determine the extent to which it facilitates emergent behaviour and 

gameplay (see Chapters 4 to 6), but is yet to be evaluated in terms of player 

enjoyment. Therefore, the next step is to assess the extent to which the EmerGEnT 

system can potentially facilitate player enjoyment in comparison to conventional 

scripted systems and to identify the ways in which it can facilitate player enjoyment.  

 

The aim of the study reported in this chapter was to evaluate the EmerGEnT system 

with respect to player enjoyment, which was accomplished by evaluating it against 

the GameFlow criteria (see Sweetser & Wyeth, in press, on the CD). GameFlow 

consists of eight elements – concentration, challenge, skills, control, clear goals, 

feedback, immersion and social interaction. Each element consists of a set of criteria 

for achieving enjoyment in games. GameFlow is an extension of flow 

(Csikszentmihalyi, 1990), a widely used model of enjoyment that is based on the idea 

that optimal experience or “flow” is the same the world over. Flow is an experience 

“so gratifying that people are willing to do it for its own sake, with little concern for 

what they will get out of it, even when it is difficult or dangerous” (Csikszentmihalyi, 

1990). The EmerGEnT system was quantitatively evaluated against each of the 



 132  

criteria of GameFlow to determine the extent to which and how it can potentially 

facilitate enjoyment in games. 

 

7.1 Enjoyment and Flow 

Flow is based on Csikszentmihalyi’s (1990) extensive research into what makes 

experiences enjoyable. Csikszentmihalyi’s research consisted of long interviews, 

questionnaires and other data collection over a dozen years from several thousand 

respondents. Csikszentmihalyi started with people who spend large amounts of time 

and effort on activities that are difficult, but provide no external rewards (e.g. money 

or status), such as composers, chess players and rock climbers. Later studies were 

conducted with ordinary people with ordinary lives, asking them to describe how it 

felt when their lives were at their fullest and when what they did was most enjoyable. 

His research was conducted in many countries (e.g. USA, Korea, Japan, Thailand, 

Australia, Europe and on a Navajo reservation) and he found that optimal experience, 

or flow, is the same all over the world. He also found that very different activities are 

described in similar ways when they are being enjoyed and that enjoyment is the same 

irrespective of social class, age or gender. 

 

Flow consists of eight elements:  

- a task that can be completed 

- ability to concentrate on the task 

- concentration is possible because the task has clear goals 

- concentration is possible because the task provides immediate feedback 

- ability to exercise a sense of control over actions 

- deep but effortless involvement that removes awareness of worries and 

frustrations of everyday life 

- concern for self disappears but sense of self emerges stronger afterwards 

- sense of duration of time is altered 

 

The combination of these elements causes a sense of deep enjoyment that is so 

rewarding that people feel that expending a great deal of energy is worthwhile simply 

to be able to feel it (Csikszentmihalyi, 1990). Additionally, an important precursor of 



 133  

flow is a match between the person’s perceived skills and the challenges associated 

with the task, with both being over a certain level. 

 

Most flow experiences occur with activities that are goal-directed, bounded by rules 

and that require mental energy and the appropriate skills. For example, reading is one 

of the most frequently enjoyed activities throughout the world (Csikszentmihalyi, 

1990). Reading has a goal and requires concentration of attention and that the reader 

knows the rules of the written language. The skills involved in reading are literacy, as 

well as the ability to turn words into images, empathise with fictional characters, 

recognise historical and cultural contexts, anticipate plot twists, critique and evaluate. 

Activities such as games, sports, art and literature have been developed throughout 

history for the express purpose of enriching life with enjoyable experiences 

(Csikszentmihalyi, 1990). The key element of flow is that the activity is an end in 

itself (or autotelic) – it must be intrinsically rewarding. This rings true in games 

because people play games (computer or other) for the experience itself, as there is no 

external reward. Finally, every flow activity provides a sense of discovery, a creative 

feeling of transporting the person into a new reality, which is a familiar concept for 

game players. 

 

Flow has been applied extensively by researchers to assess enjoyment in a wide 

variety of domains. Previous applications of flow include workflow (Vass, Carroll & 

Shaffer, 2002), which was developed to support creativity in problem solving. Flow 

has also been used in a framework for constructing engaging ecommerce websites 

(Jennings, 2000), to assess enjoyment in an interactive music environment (Pachet & 

Addressi, 2004) and for assessing information systems (Artz, 1996). 

 

7.2 GameFlow: A Model of Player Enjoyment 

A comprehensive review of the literature on usability and user-experience in games 

was conducted to determine how the elements of flow are manifested in computer 

games (Sweetser & Wyeth, in press
7

). A model of enjoyment in games was 

constructed, based on the elements of flow and the evidence of flow experiences in 

                                                
7
 A study independent of the research reported in this thesis. 



 134  

games from the literature. The result was the development of the GameFlow model, 

which consists of eight core elements – concentration, challenge, skills, control, clear 

goals, feedback, immersion and social interaction. Each of these elements consists of 

a varying number of criteria and relate to Cziksentmilalyi’s (1990) elements of flow 

as shown in Table 7.1.  

 

Table 7.1. Elements of flow. The mapping of the elements from games literature to the 

elements of flow 

Games Literature Flow 

The Game A task that can be completed 

Concentration Ability to concentrate on the task 

Challenge 

Player Skills 

Perceived skills should match challenges and both must 

exceed a certain threshold 

Control Allowed to exercise a sense of control over actions 

Clear goals The task has clear goals 

Feedback The task provides immediate feedback 

Immersion Deep but effortless involvement, reduced concern for self 

and sense of time 

Social Interaction n/a 

 

The first element of flow, a task that can be completed, is not represented directly in 

the GameFlow elements as it is the game itself. The remaining elements of GameFlow 

are all closely interrelated and interdependent. In summary, games need to keep the 

player’s concentration through a high work load, but the tasks must be sufficiently 

challenging to be enjoyable. The player must be skilled enough to undertake the 

challenging tasks, the tasks must have clear goals so that the player can complete the 

tasks and the player must receive feedback on their progress towards completing the 

tasks. If the player is sufficiently skilled and the tasks have clear goals and feedback 

then they will feel a sense of control over the task. The resulting feeling for the player 

is total immersion or absorption in the game, which causes them to lose awareness of 

everyday life, lose concern for themselves and have an altered sense of time. The final 

element of player enjoyment, social interaction, does not map to the elements of flow 

but is featured highly in user-experience literature on games. People play games for 

interaction with other people, regardless of the task, and will even play games that 

they do not like or if they don’t like games at all. 

  

In this section, each element of flow is described and its manifestation in games is 

discussed. For each element, the GameFlow model includes an overall goal and a set 



 135  

of central criteria that can be used to design and evaluate games with respect to player 

enjoyment (see Table 7.2). 

 

Table 7.2. GameFlow criteria for player enjoyment in games 

Element Criteria 
Concentration  
Games should require 

concentration and the 

player should be able to 

concentrate on the game 

- games should provide a lot of stimuli from different sources 

- games must provide stimuli that is worth attending to 

- games should quickly grab the player’s attention and maintain their focus 

throughout the game  

- the player shouldn’t be burdened with tasks that don’t feel important 

- games should have a high workload, while still being appropriate for the 

player’s perceptual, cognitive and memory limits 

- players should not be distracted from tasks that they want / need to 

concentrate on 

Challenge 
Games should be 

sufficiently challenging 

and match the player’s skill 

level 

- challenges in games must match the player’s skill level 

- games should provide different levels of challenge for different players 

- the level of challenge should increase as the player progresses through the 

game and increases their skill level 

- games should provide new challenges at an appropriate pace 

Player Skills 
Games must support player 

skill development and 

mastery 

- players should be able to start playing the game without reading the manual 

- learning the game should not be boring, it should be part of the fun 

- games should include online help so the player doesn’t need to exit the game 

- players should be taught to play the game through tutorials or initial levels 

that feel like playing the game 

- games should increase player skills at an appropriate pace as they progress 

through the game 

- players should be rewarded appropriately for their effort and skill 

development 

- game interfaces and mechanics should be easy to learn and use 

Control 
Players should feel a sense 

of control over their actions 

in the game 

- players should feel a sense of control over their character or units and their 

movements and interactions in the game world 

- players should feel a sense of control over the game interface and input 

devices 

- players should feel a sense of control over the game shell (starting, stopping, 

saving etc) 

- players should not be able to make errors that are detrimental to the game and 

should be supported in recovering from errors 

- players should feel a sense of control and impact onto the game world (like 

their actions matter and they are shaping the game world) 

- players should feel a sense of control over the actions that they take and the 

strategies that they use and that they are free to play the game the way that 

they want (not simply discovering actions and strategies planned by the game 

developers) 

Clear Goals 
Games should provide the 

player with clear goals at 

appropriate times 

- overriding goals should be clear and presented early 

- intermediate goals should be clear and presented at appropriate times 

Feedback 
Players must receive 

appropriate feedback at 

appropriate times 

- players should receive feedback on their progress to their goals 

- players should receive immediate feedback on their actions 

- players should always know their status or score 

Immersion 
Players should experience 

deep but effortless 

involvement in the game 

- players should become less aware of their surroundings 

- players should become less self-aware and less worried about everyday life 

or self 

- players should experience an altered sense of time 

- players should feel emotionally involved in the game 

- players should feel viscerally involved in the game 

Social Interaction 
Games should support and 

create opportunities for 

social interaction 

- games should support competition and cooperation between players 

- games should support social interaction between players (chat etc) 

- games should support social communities inside and outside the game 



 136  

7.2.1 Concentration 

For a game to be enjoyable, it needs to require concentration and the player must be 

able to concentrate on the game (see Table 7.2). The more concentration a task 

requires, in terms of attention and workload, the greater the absorption in the task. 

When all of a person’s relevant skills are needed to cope with the challenges of a 

situation, that person’s attention is completely absorbed by the activity and no excess 

energy is left over to process anything other than the activity (Csikszentmihalyi, 

1990). Games must quickly grab the player’s attention and maintain their focus 

throughout the game (Pagulayan, Keeker, Wixon, Romero & Fuller, 2003; Lazzaro, 

2004). Games can captivate player attention by providing something worth attending 

to (Brown & Cairns, 2004), such as detailed game worlds that draw the player into the 

game (Johnson & Wiles, 2003). It is important to increase the player’s workload, 

while still being appropriate for the player’s perceptual, cognitive and memory limits 

(Lazzaro & Keeker, 2004). Also, the player shouldn’t be burdened with tasks that 

don’t feel important (Fullerton, Swain & Hoffman, 2004). Finally, distractions from 

major game tasks during play should be minimised, by reducing non-game related 

interactions during play (e.g. setting options) and reducing the game interface to 

maximise the amount of screen taken up with game action occurring (Johnson & 

Wiles, 2003).  

 

7.2.2 Challenge  

Challenge is consistently identified as the most important aspect of good game design. 

Games should be sufficiently challenging, match the player’s skill level, vary the 

difficulty level and keep an appropriate pace (see Table 7.2). An important precursor 

of flow is a match between the person’s perceived skills and the challenges associated 

with an activity, with both skills and challenges being over a certain level (Johnson & 

Wiles, 2003; Sharafi, Hedmen & Montgomery, in press). If the challenges are greater 

than the skills then the result is anxiety and if the challenges are less than the skills the 

result is apathy (Johnson & Wiles, 2003). Games should have a variable difficulty 

level (Federoff, 2002) to meet all players with the correct level of challenge 

(Pagulayan et al, 2003). The difficulty level in games should also be varied, gradually 

increasing to maintain the interest of the player and provide more challenge as they 



 137  

develop mastery (Desurvire, Caplan, & Toth, 2004; Pagulayan et al, 2003). Pace is 

also an important aspect of challenge. The rate that players experience new game 

challenges and details can be paced to maintain appropriate levels of challenge and 

tension throughout the game (Pagulayan et al, 2003).  

 

7.2.3 Player Skills 

For games to be enjoyable, they must support player skill development and mastery 

(see Table 7.2). In order for the player to experience flow, their perceived skills must 

match the challenge provided by the game and both challenge and skills must exceed 

a certain threshold. Therefore, it is necessary that the player develops their skills at 

playing the game to truly enjoy the game. Players should be taught to play games 

through interesting and absorbing tutorials (Federoff, 2002) that allow the players to 

become involved quickly and easily (Desurvire et al, 2004). An alternative or 

accompaniment to tutorials is for players to learn as they play. When learning as they 

play, players learn and practice skills as part of accomplishing things they need and 

want to accomplish (Gee, 2004). Rewards are also an important part of learning to 

play a game. Players must be rewarded appropriately for continued play and the effort 

invested in a game should equal the rewards of success (Brown & Cairns, 2004).  

 

Players should have enough information to start playing the game upon initially 

turning it on (Desurvire et al, 2004) and should not need or be expected to use a 

manual to play (Desurvire et al, 2004; Federoff, 2002; Gee, 2004). Games should also 

include online help so that the player doesn’t need to stop playing the game to get 

help (Johnson & Wiles, 2003; Federoff, 2002). Players can also be given help in the 

form of hints (Federoff, 2002) or context sensitive help while playing (Desurvire et al, 

2004), on demand or just in time (Gee, 2004; Sweetser & Dennis, 2003). Player 

learning can also be supported by games that are easy to use and learn. 

 

7.2.4 Control 

In order to experience flow, players must be allowed to exercise a sense of control 

over their actions (see Table 7.2). Players should be able to adequately translate their 

intentions into in-game behaviour (Pagulayan et al, 2003) and feel in control of the 



 138  

actual movements of their character and the manner in which they explore their 

environment (Federoff, 2002). The player should be able to move their character 

intricately, effectively and easily through the world and easily manipulate the world’s 

objects, which become tools for carrying out the player’s goals (Gee, 2004). Players 

should also feel a sense of control over the game interface and game controls. The 

game controls should be basic enough to learn quickly and the player should be able 

to customise the controls (Federoff, 2002, Adams, 2004). The game shell should be 

easy to use, allowing the player to start the kind of game that they want (Pagulayan et 

al, 2003), turn the game on and off (Desurvire et al, 2004) and save the game in 

different states. The player should not be able to make mistakes that stop the game 

from working (Adams, 2004) and games should help players to recognise, diagnose 

and recover from errors (Federoff, 2002).  

 

It is important that players perceive a sense of impact onto the game world (Desurvire 

et al, 2004). Players should feel as though their actions and decisions are co-creating 

the world they are in and the experiences they are having (Gee, 2004). Players should 

feel a sense of control over their character (Desurvire et al, 2004) and be free to play 

games and solve problems in the way that they want (see Chapter 3). In short, the 

player should feel like they are playing the game, not being played by it (Kane, 2003). 

 

7.2.5 Clear Goals 

Game should provide the player with clear goals at appropriate times (see Table 7.2). 

Games must have an object or goal (Federoff, 2002), but to achieve flow these goals 

must also be clear (Csikszentmihalyi, 1990; Johnson & Wiles, 2003). Games should 

present the player with a clear overriding goal early in the game (Federoff, 2002), 

which is often done through an introductory cinematic that establishes the background 

story (Pagulayan et al, 2003). The goal should be conveyed to the player in a clear and 

straightforward way (Pagulayan et al, 2003). Also, each level should have multiple 

goals (Federoff, 2002) and games often use “briefings” to describe a “mission” that 

outlines immediate goals of the current part of the game and to suggest some of the 

obstacles that the player might face (Pagulayan et al, 2003).  

 



 139  

7.2.6 Feedback  

Players must receive appropriate feedback at appropriate times (see Table 7.2). 

During flow, concentration is possible because the task provides immediate feedback 

(Csikszentmihalyi, 1990). Games should use scores to tell players where they stand 

and players should always be able to identify their score and status in the game 

(Federoff, 2002). In-game interfaces and sound can be used to deliver necessary status 

feedback (Pagulayan et al, 2003; Federoff, 2002). Games should also provide 

immediate feedback for player actions (Desurvire et al, 2004; Johnson & Wiles, 2003). 

 

7.2.7 Immersion 

Players should experience deep but effortless involvement in a game (see Table 7.2). 

Immersion, engagement and absorption are concepts that are frequently discussed and 

highly important in game design and research. The element of flow that describes 

immersion is deep but effortless involvement, which can often result in loss of 

concern for self, everyday life and an altered sense of time (Csikszentmihalyi, 1990). 

Deep but effortless involvement is commonly reported by game-players and people 

who observe them (Johnson & Wiles, 2003). Players become less aware of their 

surroundings and less self-aware than previously (Brown & Cairns, 2004). Many 

game-players report devoting entire nights or weekends to playing games without 

being concurrently aware of doing so or consciously deciding to do so (Johnson & 

Wiles, 2003). Enjoyable games transport the player into a level of personal 

involvement emotionally and viscerally (Desurvire et al, 2004), drawing the player 

into the game and affecting their senses through elements such as audio and narrative 

(see Chapter 3). 

 

7.2.8 Social Interaction 

Games should support and create opportunities for social interaction (see Table 7.2). 

Social interaction is not an element of flow and can often even interrupt immersion in 

games as real people provide a link to the real world that can knock players out of 

their fantasy game worlds. However, it is clearly a strong element of enjoyment in 

games as people play games for social interaction, whether or not they like games or 

the game they are playing (Lazzaro, 2004). Therefore, social interaction is not a 



 140  

property of the task as are the other elements of flow, but the task is a means to allow 

social interaction. To support social interaction, games should create opportunities for 

player competition, cooperation and connection (Lazzaro, 2004; Pagulayan et al, 

2003). Game experiences should be structured to enhance player to player interaction 

and should create enjoyment of playing with others inside and outside of the game 

(Lazzaro, 2004). 

 

7.3 Evaluating EmerGEnT with GameFlow 

The EmerGEnT system was evaluated with the GameFlow criteria. The aim of this 

evaluation was to determine to what extent and in what ways the EmerGEnT system 

facilitates player enjoyment in games. The EmerGEnT system was evaluated against 

each GameFlow element and the system’s level of support for the criteria of each 

element was classified as “direct”, “indirect” or “unsupported”. 

 

7.3.1 Concentration 

Concentration is predominantly a game design issue, as it relates to the amount and 

variation of content that the game developer provides to attract the player’s attention 

and maintain their concentration. The EmerGEnT system indirectly supports this 

criterion, however, by allowing more interactions with the game environment and 

creating more secondary effects to capture the player’s attention (e.g. explosions can 

cause fires). Also, the use of the global approach to game design in the EmerGEnT 

system simplifies the creation of game content, making it easier for game developers 

to create more, varied content to populate the game world. In a conventional scripted 

system, the game developers would need to create each piece of content by hand, as 

well as the interactions between content, player interactions with content and game 

events. The need to plan and create everything in the game by hand can result in a 

reduced amount of game content in current games, giving the player less stimuli for 

concentration. The EmerGEnT system facilitates player enjoyment in terms of 

concentration by supporting game developers in creating content and allowing more 

interactions and effects to take place, which can give rise to more, varied stimuli that 

can maintain the player’s focus and increase the player’s workload (see Table 7.3). 

 



 141  

Table 7.3. Concentration in EmerGEnT 

Concentration Criteria Support 

- games should provide a lot of stimuli from different sources Indirect 

- games must provide stimuli that is worth attending to Unsupported 

- games should quickly grab the player’s attention and maintain their 

focus throughout the game 

Indirect 

- the player shouldn’t be burdened with tasks that don’t feel 

important 

Unsupported 

- games should have a high workload, while still being appropriate 

for the player’s perceptual, cognitive and memory limits 

Indirect 

- players should not be distracted from tasks that they want / need to 

concentrate on 

Unsupported 

 

7.3.2 Challenge 

The challenge criteria are also predominantly dependant on game design as they are 

related to the tasks and obstacles provided by the game developers. However, the 

EmerGEnT system can also indirectly support challenge as the player has many more 

options for action and more potential strategies to use. The players are able to extend 

their own repertoire at their own pace by creating new strategies and modifying old 

strategies to increase performance or fit new situations. In contrast, conventional 

scripted systems often require the game developer to hard code specific strategies for 

the player to use to solve problems. Therefore, the challenge level of the strategy is 

preset, as well as the task. With the use of the EmerGEnT system, the game 

developers can focus more on the tasks, as the strategies emerge as a product of the 

environment. The EmerGEnT system indirectly supports each of the challenge criteria 

as the player has many more possibilities for strategies, it is more likely that the 

strategy will match their skill level as they have formulated it and the player can 

extend and refine their strategies as they become more skilled (see Table 7.4). 

 

Table 7.4. Challenge in EmerGEnT 

Challenge Criteria Support 

- challenges in games must match the player’s skill level Indirect 

- games should provide different levels of challenge for different 

players 

Indirect 

- the level of challenge should increase as the player progresses 

through the game and increases their skill level 

Indirect 

- games should provide new challenges at an appropriate pace Indirect 

 



 142  

7.3.3 Player Skills 

There are two sides to the player skills criteria, teaching the player to play the game 

and the player being able to intuitively play the game. Teaching the player to play the 

game is related to game design and is accomplished through tutorials, help, manuals 

and play. Therefore, the criteria related to teaching the player to play are not 

supported by the EmerGEnT system. However, the criteria related to the mechanics of 

the game being easy to learn and use and the intuitiveness of the game are directly 

supported by the EmerGEnT system. The mechanics of the EmerGEnT system are 

easy to learn and use as the game world has consistent rules and properties. As 

discussed in Chapter 2, consistent game worlds facilitate player learning as the player 

is better able to build a mental model of how the game world works. Additionally, the 

EmerGEnT system is easier to learn and use as the physical rules and properties 

resemble real world rules and properties. As discussed in Chapter 2, this correlation 

between the real and game worlds gives the player an inherent understanding of how 

the game world works. For example, the player knows that a forest will burn as wood 

is flammable. Similarly, the EmerGEnT system supports the player being able to play 

the game without reading the manual as the game world is intuitive. These criteria are 

only partially supported by the EmerGEnT system as the game interface is also an 

important component of being able to learn and use the game. In summary, the 

EmerGEnT system supports the player skills criteria of intuitiveness, learnability and 

usability due to the reflection of the real world and consistency in the game world 

rules (see Table 7.5). 

 

Table 7.5. Player skills in EmerGEnT 

Player Skills Criteria Support 

- players should be able to start playing the game without reading the 

manual 

Direct 

- learning the game should not be boring, it should be part of the fun Unsupported 

- games should include online help so the player doesn’t need to exit 

the game 

Unsupported 

- players should be taught to play the game through tutorials or initial 

levels that feel like playing the game 

Unsupported 

- games should increase player skills at an appropriate pace as they 

progress through the game 

Unsupported 

- players should be rewarded appropriately for their effort and skill 

development 

Unsupported 

- game interfaces and mechanics should be easy to learn and use Direct 



 143  

7.3.4 Control 

The control criteria that are related to the player feeling a sense of control over the 

game interface, input devices and game shell are not relevant to the game engine and 

are not supported by the EmerGEnT system. Similarly, the criterion that is related to 

the player not being able to make errors and being supported in recovering from errors 

is related to game design and is not supported by the EmerGEnT system. The criterion 

that relates to the player feeling a sense of control over their character and its 

movements and interactions in the game world is partially related to narrative, in 

terms of the control that the player has over defining their character and deciding their 

fate. Additionally, this criterion is partially related to the degree of control that the 

player has over the input devices that are used to control the player’s character. 

Finally, this criterion is related to the game engine and mechanics, in terms of the 

degree of freedom the player has in performing the actions and interactions that they 

want and expect to be able to perform. The EmerGEnT system facilitates this criterion 

as it allows more interactions to take place and not just the interactions that have been 

predefined by the game developers. The interactions that are possible in the 

EmerGEnT system are dependent on the properties of the game elements and the rules 

for their interactions. Therefore, the more comprehensive the affordances and rules 

for interactions, the more freedom the player has in interacting in the way that they 

want. 

 

The control criterion that relates to the player feeling a sense of control and impact 

onto the game world is partially related to the choices that the player is given and the 

decisions that they are required to make and the extent to which these decisions affect 

the game world, including narrative, characters and events. This criterion also relates 

to decisions on a smaller scale, such as the individual actions of the player having an 

effect on the game world. These small scale effects are facilitated by the EmerGEnT 

system as the player’s actions have resulting reactions, which have secondary effects 

and so on. The EmerGEnT system facilitates a more reactive game world in which the 

reactions can have strategic (in the case of a strategy game) or significant impact. For 

example, burning down a forest costs the opponent a source of wood and 

compromises their defences. 

 



 144  

The final control criterion is related to the player feeling a sense of control over the 

actions that they take and the strategies that they use and the player being free to play 

the game in the way that they want. This criterion can be seen as a continuation of the 

criterion relating to control of individual interactions and is supported by the 

EmerGEnT system. If the player is able to control individual interactions then they are 

able formulate and use their own strategies, due to the degree of reactivity of the game 

world and the freedom of interacting in the world. The EmerGEnT system facilitates 

control over strategies as the player does not discover strategies set by the game 

developer, they make their own strategies. Additionally, the strategies that the player 

devises and expects to work do not fail as a result of their attempted interactions not 

working or not being foreseen by the game developer. The EmerGEnT system’s level 

of support for the control criteria is shown in Table 7.6. 

 

Table 7.6. Control in EmerGEnT 

Control Criteria Support 

- players should feel a sense of control over their character and its 

movements and interactions in the game world 

Direct 

- players should feel a sense of control over the game interface and 

input devices 

Unsupported 

- players should feel a sense of control over the game shell (starting, 

stopping, saving etc) 

Unsupported 

- players should not be able to make errors that are detrimental to the 

game and should be supported in recovering from errors 

Unsupported 

- players should feel a sense of control and impact onto the game world 

(like their actions matter and they are shaping the game world) 

Direct 

- players should feel a sense of control over the actions that they take 

and the strategies that they use and that they are free to play the game 

the way that they want (not simply discovering actions and strategies 

planned by the game developers) 

Direct 

 

7.3.5 Clear Goals 

Goals are usually related to the game’s narrative or specific conditions of victory. 

Therefore the clear goals criteria are not relevant to the game engine and are not 

supported by the EmerGEnT system (see Table 7.7). 

 



 145  

Table 7.7. Clear goals in EmerGEnT 

Clear Goals Criteria Support 

- overriding goals should be clear and presented early Unsupported 

- intermediate goals should be clear and presented at 

appropriate times 

Unsupported 

 

7.3.6 Feedback 

Giving the player feedback on their progress and score is related to game design and 

is not supported by the EmerGEnT system. However, in the EmerGEnT system, the 

player’s actions and interactions with the game environment and elements has various 

reactions, which provides implicit feedback to the player on their actions (see Table 

7.8). In many scripted games, the game developers must manually encode the game 

world’s reactions to the player’s actions. Therefore, if no reactions have been encoded 

for a specific element for a specific action then the player’s action will have no effect 

and hence no feedback is given to the player. This lack of reactivity may be deliberate 

for some game elements, such as pieces of scenery than cannot be interacted with. In 

this case, the player receives no feedback on whether their actions are working and 

why. Conversely, the lack of reactivity may not be deliberate and may occur because 

the developer missed a specific instance of a game element or specific reactions for 

that game element. This problem is a result of a specific approach to creating a game 

world and can be more damaging for the player’s learning and immersion as it causes 

inconsistencies. 

 

Table 7.8. Feedback in EmerGEnT 

Feedback Criteria Support 

- players should receive feedback on their progress to their goals Unsupported 

- players should receive immediate feedback on their actions Direct 

- players should always know their status or score Unsupported 

 

7.3.7 Immersion 

Immersion in games is usually associated with elements such as narrative, sound and 

graphics and is therefore not supported by the EmerGEnT system (see Table 7.9). 

However, immersion can occur as a result of deep concentration or involvement in a 

game. If the EmerGEnT system is used to facilitate concentration and other elements 

of GameFlow then it is likely that the player will become immersed in the game. 



 146  

Additionally, it is difficult to evaluate the EmerGEnT system in terms of how it would 

facilitate immersion as immersion is heavily related to not only game design, but the 

game as a whole product. Therefore, even if the EmerGEnT system were successfully 

used to facilitate immersion, it is possible that other aspects of the game could prevent 

the player from becoming immersed. 

 

Table 7.9. Immersion in EmerGEnT 

Immersion Criteria Support 

- players should become less aware of their surroundings Unsupported 

- players should become less self-aware and less worried about 

everyday life or self 

Unsupported 

- players should feel emotionally involved in the game Unsupported 

- players should feel viscerally involved in the game Unsupported 

 

7.3.8 Social Interaction 

The GameFlow social interaction criteria are different from the other elements of 

GameFlow as the game is no longer the task. The social interaction becomes the task 

and the game becomes the medium for the social interaction. As a result, most of the 

criteria for social interaction are not only separate to the game engine, but are separate 

to the gameplay as well, such as supporting game communities and social interaction 

outside of the game. The remaining social interaction criteria are related to supporting 

cooperation, competition and interaction between players through various gameplay 

mechanisms and are therefore not related to the game engine and not supported in the 

EmerGEnT system (see Table 7.10). 

 

Table 7.10. Social interaction in EmerGEnT 

Social Interaction Criteria Support 

- games should support competition and cooperation between players Unsupported 

- games should support social interaction between players (chat etc) Unsupported 

- games should support social communities inside and outside the 

game 

Unsupported 

 

7.4 Discussion and Conclusions 

The aim of the study reported in this chapter was to evaluate the EmerGEnT system 

with respect to player enjoyment, to determine the extent to which and how it 

facilitates player enjoyment in games. The method used in this study was to conduct 



 147  

an evaluation of the EmerGEnT system using the criteria for GameFlow, an extension 

to the commonly accepted model of enjoyment, flow. The EmerGEnT system was 

evaluated against the criteria for each of the elements of GameFlow, including 

concentration, challenge, player skills, control, clear goals, feedback, immersion and 

social interaction.  

 

Overall, the evaluation indicated that the EmerGEnT system directly supports six, 

indirectly supports seven and does not support 22 out of the 35 criteria of GameFlow 

(a summary is shown in Table 7.11). The EmerGEnT system directly supports criteria 

in player skills, control and feedback and indirectly supports criteria in concentration 

and challenge. The system does not support any of the criteria in clear goals, 

immersion and social interaction. 

 

Table 7.11. GameFlow in EmerGEnT. The number of GameFlow criteria that were 

directly, indirectly or unsupported by the EmerGEnT system. 

Element Direct Indirect Unsupported 

Concentration  3 3 

Challenge  4  

Player Skills 2  5 

Control 3  3 

Clear Goals   2 

Feedback 1  2 

Immersion   4 

Social Interaction   3 

Total 6 7 22 

 

The elements of concentration and challenge are indirectly supported by the 

EmerGEnT system. Concentration is predominantly a game design issue as it relates 

to the amount and variety of content provided by the game developer. However, the 

EmerGEnT system indirectly supports concentration by allowing more and a greater 

variety of interactions with the game world, creating more interactions and effects 

within the game world and simplifying content creation for game developers. 

Similarly, challenge is predominantly a game design issue as it relates to the tasks and 

obstacles provided by the game developer. However, the EmerGEnT system 

indirectly supports each of the challenge criteria as the player has many more 

possibilities for strategies, the player’s strategy is more likely to match their skill level 



 148  

as they have formulated it themselves and the player can extend and refine their 

strategies as they become more skilled. 

 

Components of the elements of player skills, control and feedback are directly 

supported by the EmerGEnT system. There are two sides to player skills, teaching the 

player to play the game and the game being easy to learn and use. The EmerGEnT 

system does not support teaching the player to play the game as this is a game design 

issue. However, it directly supports the game being easy to use and learn as the game 

rules reflect real world rules and are consistent. Control is partly associated with game 

design issues, such as the game interface, input devices, game shells, errors and 

narrative, which are not supported by the EmerGEnT system. However, the 

EmerGEnT system directly facilitates control as the player has more freedom in 

performing actions and interactions that they want and expect to be able to perform. 

Also, the player’s actions have an impact and the player feels a sense of control over 

their actions and strategies and can play the way that they want. Giving the player 

feedback on their progress and score is related to game design and is not supported by 

the EmerGEnT system. However, the EmerGEnT system directly supports feedback 

as the game world immediately reacts to player actions, providing implicit feedback.  

 

The elements of clear goals, immersion and social interaction are not supported by the 

EmerGEnT system. The clear goals criteria are not supported by the EmerGEnT as 

they are related to game design and rely on narrative and victory conditions. 

Immersion is not supported by the EmerGEnT system as it relates more to game 

design elements and is a product of a complete game system. However, it is possible 

that the EmerGEnT system could facilitate immersion through concentration. Finally, 

the social interaction criteria are not supported by the EmerGEnT system as they are 

related to game design, as well as player interactions outside the game world.  

 

In conclusion, there is a clear split in the criteria between elements of player 

enjoyment that are related to game design and elements that are related to the game 

world. The EmerGEnT system is not a tool for creating narrative, interfaces, goals or 

tasks and therefore cannot directly support criteria that are related to game design, 

such as clear goals, immersion and social interaction. Conversely, the EmerGEnT 

system is able to directly facilitate elements of player enjoyment that relate to the 



 149  

game world and player interactions within the game world, such as player skills, 

control and feedback. Furthermore, the EmerGEnT system can indirectly facilitate 

aspects of player enjoyment related to game design that are dependent on interactions 

in the game world, such as concentration and challenge.  

 

The EmerGEnT system directly or indirectly facilitates approximately one third of the 

criteria of player enjoyment, where conventional scripted systems provide no support 

other than what the game developer hard-codes. Consequently, the EmerGEnT system 

fulfils its aim of supporting player enjoyment through emergent behaviour and 

gameplay and has the potential to provide significant improvements over scripted 

systems. The importance of game design and gameplay was made apparent by the 

evaluation, including narrative, tasks, goals and interface. The creation of these 

elements mostly relies on the game developer’s creativity, design ability and thorough 

testing. However, further tools could be designed to assist in supporting or 

maximising these aspects of enjoyment, but these aspects are out of the scope of the 

EmerGEnT system. In short, the EmerGEnT system facilitates player enjoyment by 

supporting concentration, challenge, player skills, control and feedback, as it allows 

more intuitive, consistent and emergent interactions with the game world. 



150 



151 

 

 

 

 

8 
General Discussion  

and Conclusions 
 

 

 

 

The goal of the research reported in this thesis was to investigate an emergent 

approach to designing game worlds and the resulting implications for game 

developers and the enjoyment of game players. The aims of this research were to 

define the issues associated with player enjoyment in current game worlds from the 

players’ perspective, to investigate the potential and validity of using cellular 

automata to facilitate emergence in game worlds, and to determine how an emergent 

game system based on cellular automata affects developing and playing games. 

Multiple approaches were taken to achieve these aims, which resulted in the thesis 

being divided into three major components: (i) identifying the player-centred issues of 

interacting in game worlds, (ii) designing, implementing and testing the EmerGEnT 

system, and (iii) evaluating the facilitation of player enjoyment in the EmerGEnT 

system. This discussion argues the thesis that developing emergent game worlds 

based on cellular automata is valid and has the potential to provide an alternative to 

the current scripted approach and allow the development of more enjoyable games by 

facilitating emergent behaviour and gameplay. 

  

8.1 Part I: Identifying the Player-Centred Issues of 

Interacting in Game Worlds 

The player-centred studies (see Chapter 3) aimed to identify the aspects of current 

game worlds that affect player enjoyment from the players’ perspective. Two studies 



152 

were conducted, a focus group to identify and define the issues and a questionnaire to 

determine how the issues affect different groups of players. The outcome was a set of 

five issues that affect player enjoyment in game worlds: consistency, freedom of 

expression, intuitive interactions, immersion and physics. This research provides the 

first empirical evidence of the issues that affect player enjoyment when interacting in 

game worlds. Previously, the only knowledge of interacting in game worlds was in 

the form of anecdotal evidence from game developers. Considerations for the studies 

are that the results are only based on self-report and the samples were skewed towards 

experienced players. Further research is needed to delve deeper into the identified 

issues, particularly practical studies that do not rely solely on self-report and that 

examine different groups of players. 

 

From the player-centred studies, it is apparent that gameplay (i.e. the player 

interacting with the game) is central to enjoyment and realism of the game. Four of 

the five issues (intuitiveness, consistency, freedom of expression and physics) 

identified in the player-centred studies relate to how the player interacts in the game 

world and how the game world reacts to the player. Each of these issues is inherent or 

supported in emergent game worlds, whereas they are unsupported or difficult to 

achieve in scripted games. Emergent games are inherently consistent and support 

game developers in providing greater freedom of expression, intuitive interactions and 

better physics. Conversely, scripted game worlds have many inconsistencies, limit 

player freedom and creating intuitive interactions and realistic physics depends solely 

on good design and manual effort. The remaining issue, immersion, relates to the 

scripted and designed elements of the game world, such as audio and narrative and is 

therefore the same in emergent and scripted games. It was evident from the player-

centred studies that players are dissatisfied with many of the static, unintuitive, 

inconsistent and unrealistic elements of current scripted games and that they are 

looking for more interactivity, realism and control in game worlds. Consequently, the 

validity of striving to create emergent game worlds is supported by this research as 

emergence provides the opportunity to enhance player enjoyment by creating game 

worlds that allow consistency, freedom, intuitiveness and realistic physics.  

 



153 

8.2 Part II: Designing, Implementing and Testing the 

EmerGEnT System 

The second stage of the project (see Chapters 4 to 6) aimed to investigate an emergent 

approach to designing game worlds, including environments (Chapter 4), objects 

(Chapter 5) and agents (Chapter 6). Each component of the EmerGEnT system 

(environment, objects and agents) was evaluated with four possible strategy game 

scenarios. One scenario was used to evaluate each of the major systems (heat, 

pressure and fluid flow). The final scenario was used to evaluate the integrated design, 

including each of the major systems. In each tested scenario, the EmerGEnT system 

displayed advantages related to its ability to dynamically determine and accommodate 

the specific state of the game world (e.g. number, type and position of entities, terrain 

and external effects), due to the underlying properties of the cells, objects and agents. 

The properties of materials allowed new materials to transfer heat and burn in 

reasonable ways that were not predetermined. The rules, height field of cells and 

affordances of objects and cells allowed fluid flow over contours and with object 

structures that were not predefined. Explosions occurred spontaneously (not triggered) 

and second order fire effects occurred spontaneously. Interactions occurred in cells by 

the rules of heat, pressure and fluid and these simple interactions summed to give 

emergent effects (e.g. it was not specified that water puts out fire, but water reduces 

heat and raises the flashpoint and therefore prevents or stops burning). 

 

It was shown that an integrated game system design (including cells, objects and 

agents), based on cellular automata, can facilitate emergent environmental effects and 

complex behaviour in a limited domain. The EmerGEnT system presented in this 

thesis modelled heat, fire, rain, fluid flow, pressure and explosions in a game 

environment. It was shown that the use of a cellular automata, as well as property-

based materials, objects, agents and rules can give rise to behaviour that is not 

specifically scripted into the system. Specifically, the behaviour of heat, fire, fluid 

flow, pressure and explosions was shown to respond dynamically to the changing 

game world and give rise to second order effects that were not directly specified. An 

important contribution was that the EmerGEnT system successfully modelled an 

emergent game world (i.e. the environment itself, as well as objects and agents), 



154 

rather than emergent game objects only. Emergent worlds allow many more 

interactions and greater complexity than emergent objects alone.  

 

8.2.1 Implications for Cellular Automata in Games 

The EmerGEnT system constituted the first investigation of the application of cellular 

automata to real-time games. The research provided evidence that cellular automata 

are suitable algorithms to form the basis of emergent game worlds. The grid-based 

structure of cellular automata allows them to be easily integrated into game systems, 

which are often divided into grids. Also, the computational complexity of two-

dimensional cellular automata proved appropriate for use in a game engine, such as 

the Auran Jet. However, the EmerGEnT system was not tested within a complete 

game and it is therefore not possible to conclude whether its computational 

complexity is acceptable for use within a game. It is likely that the limitations of a 

real game environment would require the EmerGEnT system to be significantly more 

efficient, which was outside the scope of this project.  

 

The cellular automata used in the EmerGEnT system proved able to facilitate 

emergent behaviour of environmental systems (water, heat and pressure) and effects 

(explosions, fire) with cells of different terrain, objects of different material and 

structure, and reactive agents of different type, material and structure. Cellular 

automata were shown to be able to facilitate emergence in games in terms of the 

behaviour of an environmental system and the corresponding effects on cells, objects 

and agents. It was also shown that property-based objects and influence maps can be 

easily integrated with cellular automata to allow intelligent and reactive object 

behaviour and agent decision-making, as well as increasing the complexity and 

emergence of the game world. 

 

8.2.2 Emergence as an Approach to Game Design 

Various issues need to be considered when developing emergent game systems, 

including level of creative control for game developers, effort in designing, 

implementing and testing, effort in modifying and extending, issues related to 

uncertainty and quality assurance (knowing the system won’t break) and ease of 



155 

feedback and direction to players. The EmerGEnT system studies (Chapters 4 to 6) 

allowed these issues to be examined in more detail, adding insight and depth to the 

current literature. 

 

8.2.2.1 Level of Creative Control 

Scripted systems give the game developer complete creative control, as the game 

developer decides what will happen and when. However, emergent systems allow a 

more approximate control, in that the game developer guides the player, providing 

boundaries for gameplay rather than dictating specifically what will happen. In an 

emergent system, the developer can set goals, but cannot specify how the player will 

get there. The EmerGEnT system studies did not investigate the level of creative 

control as the system did not include creative content. However, the method of 

developing rules and properties to approximate the desired behaviour provided insight 

into the issues that would be present when trying to control creative content. Getting a 

simple environment to behave in a desired way was difficult and involved significant 

tuning. With a full scale world, there would be sufficient problems in getting the 

world to behave reasonably, even without the added complication of controlling the 

narrative flow. Considerable future work is required to determine how narrative can 

be used effectively in emergent systems. 

 

8.2.2.2 Effort in Designing, Implementing and Testing 

As discussed throughout Chapters 4 to 6, both scripted and emergent systems have 

considerations for effort in development. The EmerGEnT system involved substantial 

initial effort in planning the rules and properties that would govern the behaviour of 

the system. It was difficult to decide how certain behaviour should be modelled and 

what rules and properties best capture the behaviour. Subsequently, the system 

required substantial testing and tuning to get the rules to generate behaviour that was 

desirable or acceptable. 

 

Scripted systems also require considerable effort in planning, as well as implementing 

and testing. As discussed in Chapters 4 to 6, scripted systems involve every game 

element to be set up manually. Not only the goals need to be set, but the ways to 



156 

achieve the goals must also be specified. In an emergent system, the game problems 

can be determined and the player can find their own solution. However, in a scripted 

system, the problem and solution must both be set and the player must find the 

developer’s preset solution. 

 

Both types of systems have considerations for the effort required in development, but 

the emergent approach would definitely be favourable as the size of the game grows 

and it becomes impossible to predict, plan and code everything. Games are now very 

large, in terms of the size of the worlds and the amount of content, and they will 

continue to grow. Scripting everything is already infeasible and some game 

developers have found that the initial outlay of effort to get an emergent game world 

working is a superior solution to creating the entire world manually (e.g. Valve’s 

Half-Life 2). But so far, these games have been limited to game companies with 

extensive resources, experience and time, and only the objects (rather than the 

environments) have been emergent. 

 

8.2.2.3 Effort in Modifying and Extending 

The effort in modifying and extending was one of the major benefits of the 

EmerGEnT system, as well as emergent systems in general. The use of properties for 

different materials and objects made it simple to add new materials and objects to the 

system. The system dynamically retrieves the properties of the material or object and 

feeds them into the rules. Consequently, the system was data driven and adding new 

materials or objects and making changes to game scenarios did not involve changing 

any internal code or rules. Ease of modification and extension is a very important 

benefit as it allows developers to easily add more content, create expansion packs for 

their games (currently a big source of revenue for games), quickly release patches to 

fix bugs in the games and allow players to make modifications and create additional 

content. On the other hand, modifying and extending a scripted system is difficult and 

time-consuming. As mentioned previously, once the initial work was done in the 

EmerGEnT system, setting up new scenarios was a simple process that involved 

dropping in types of objects, agents and terrain and setting any desired events and 

letting the system run. 

 



157 

8.2.2.4 Uncertainty and Quality Assurance 

Uncertainty is the predominant purpose of emergent systems, as it gives rise to new 

and unexpected behaviour. Ironically, it is also the main drawback of emergence in 

games. When human players are introduced into an emergent system, they have the 

ability to use the system in ways it was not meant to be used, change things in the 

game that the developer had not expected and play the game in ways that could not be 

foreseen. Furthermore, human players seem to have a perverse drive to intentionally 

push the game to its limits, exploit its weaknesses and to make it break. Consequently, 

game developers’ fears of using emergent systems are justified, in that if a game has 

loopholes, exceptions or problems then the players will not only find them, but will 

actively seek them out and exploit them. 

 

No unwanted uncertainty arose in the EmerGEnT system. However, it was a relatively 

small, controlled system and there were no humans interacting in the environment. 

The larger an emergent system (more entities, rules etc), the more complex it will 

become and the more variations in behaviour that will be exhibited. With the size of 

current games (e.g. role-playing games), the use of an emergent approach would 

require a different approach to game development. It would not be possible to predict 

every way the players will interact with the game and ensure that it works. 

Conducting extensive player testing would catch most of the problems and it would 

be necessary to focus on problems that will break the game or make it less fun.  

 

8.2.2.5 Ease of Feedback and Direction to Players 

Giving feedback and direction to players is simple in scripted systems. The player is 

simply moving through pieces of the game in a prescribed way. They are given goals, 

narrative and objectives and then play for a while. The player is led through a 

prescribed story, with pre-planned intervals of gameplay with very specific objectives. 

It is easy to give the players feedback and direction because it will be mostly the same 

for every player and the required feedback is easily identified as the possible and 

correct actions are known. 

 

Giving feedback and direction is a much bigger problem in emergent games. In 

emergent game systems, the range of possible interactions and actions by the player is 



158 

far more extensive and there is a lot more uncertainty. Consequently, the problem in 

giving feedback and direction in emergent games arises because players require a lot 

more feedback in these games, while at the same time feedback is much more difficult 

to give. This issue was not investigated in the EmerGEnT system as there were no 

players interacting and no goals or objectives. 

 

8.2.3 Levels of Emergence – the Scripting-Emergence Continuum 

In the literature review (Chapter 2), the idea of a continuum between scripted and 

emergent systems was proposed. Game systems do not need to be entirely scripted or 

completely emergent. There are many possible levels between these extremes. The 

balance between emergence and scripting will determine the degree of the creative 

control the game developer possesses and the level of freedom and variation for the 

player. A truly emergent system will have little to no creative control and complete 

freedom for the player. As discussed throughout this thesis, scripted systems provide 

complete creative control for the developer, but no freedom for the player. However, 

between these two extremes there are scripted systems with emergent elements (e.g. 

Half-Life 2), which allow much more creative control for the developers than in 

entirely emergent systems and greater freedom and variation for the player in 

interacting in the game world. This middle-ground provides a more balanced game in 

which the developer can tell a story, design challenges and tasks and maintain a 

reliable and enjoyable game, while the player still has freedom, control and variation. 

 

The ways that emergence can be incorporated into games depends on the genre of the 

game and the level of creative control that is required. Emergence can be incorporated 

into games via emergent objects, agents or entire game worlds. Alternatively, game 

narrative could be made emergent (as a function of the player’s interactions in the 

game world), as could conversations with game characters and game quests, 

objectives and puzzles. Role-playing games could include emergence in the form of 

characters that have general rules for behaviour, conversation and goals, rather than 

specifically scripted dialogue. First-person shooter games could include emergent 

objects, enemies and buildings. Finally, as shown in this thesis, strategy games can 

include emergent environmental effects, as well as active and reactive buildings, units 

and terrain. 



159 

8.2.4 Narrative in Emergent Game Worlds – A New Genre 

It was proposed in the introduction (Chapter 1) that better games would result from 

allowing open, emergent gameplay within scripted narrative. As discussed in the 

previous section, emergent elements can be integrated into current scripted games to 

provide more flexibility and variation in gameplay, while still following a scripted 

narrative. However, the scripted structure of current games limits the extent to which 

these games can be made emergent. Although the gradual advent of emergence in 

games might result in enjoyable games in the short term, it is likely that there will be a 

need for fully emergent games in the future. The need for fully emergent games will 

necessitate the creation of a new game genre that will allow emergence and narrative 

to coexist in games. 

 

The research discussed in this thesis shows that emergence in game worlds is possible. 

However, incorporating narrative into emergent game worlds is not simple. The 

game’s storyline, goals and problems will need to be designed in a way that emergent 

gameplay won’t violate the narrative flow of the game. Alternately, the narrative itself 

could be emergent and be generated by the gameplay, so that the player constructs 

their own story as they interact in the emergent game world. However, it would still 

be necessary to give the player goals and conditions for winning, otherwise it would 

not be a game and they would have no drive to keep playing. A game with emergent 

narrative would require very strong artificial intelligence as the story would be a 

product of the player’s interactions in the world and with the game characters. Each 

character would need a comprehensive world model and extensive range of 

interactions with the player. It is almost certain that the use of emergent game worlds 

would involve the game developer letting go of some of their creative control and 

prohibit the use of linear storylines. There would also be problems involving the use 

of narrative elements, such as cutscenes and dialogue. It is also possible that game 

worlds will only ever be semi-emergent, holding with the current game model. 

However, the advent of fully emergent game worlds seems to be a natural progression 

of game development that will be driven by player demand. 

 



160 

8.3 Part III: Evaluating the Facilitation of Player 

Enjoyment in the EmerGEnT System 

The final component of the project involved evaluating the EmerGEnT system against 

a set of criteria for player enjoyment in games. This evaluation allowed the 

EmerGEnT system’s role in facilitating player enjoyment to be clearly defined, 

outlining exactly how and where the EmerGEnT system fits in designing games that 

players will enjoy. It was found that incorporating an emergent game environment, 

such as the EmerGEnT system, into a games engine would allow the direct or indirect 

facilitation of approximately one third of the criteria of player enjoyment in the 

GameFlow model. Conversely, conventional scripted systems provide no support for 

game developers to facilitate player enjoyment. The game developers must hard-code 

all interactions and scenarios manually, only getting out exactly what they put in.  

 

The EmerGEnT system facilitates player enjoyment by supporting concentration, 

challenge, player skills, control and feedback, as it allows more intuitive, consistent 

and emergent interactions with the game environment. The system does not directly 

support criteria that are related to game design (clear goal, social interaction and 

immersion), but is able to directly facilitate elements of enjoyment that relate to the 

game environment and interactions within the game environment (player skills, 

control and feedback). Additionally, the system can indirectly facilitate aspects of 

player enjoyment related to game design that are dependent on interactions in the 

game world (concentration and challenge) by supporting game developers in creating 

emergent behaviour and gameplay. 

 

As tests were not conducted with the system as part of a complete game, it was not 

possible to directly measure the impact that an emergent game world has on the issues 

of player enjoyment. However, the potential effect on players was indirectly measured 

by assessing the EmerGEnT system with respect to the affordances it would give 

game developers in creating game environments. Ultimately, the ideal evaluation of 

the EmerGEnT system in terms of player enjoyment would be to actually incorporate 

it into a game, so that player enjoyment could be measured directly from the players. 

However, at this early stage, the method used was appropriate and useful as it 



161 

provided insight into how the EmerGEnT system could potentially facilitate player 

enjoyment in games. 

 

8.3.1 Gameplay versus Game Design 

The evaluation study identified which aspects of player enjoyment are related to game 

design (i.e. elements crafted by game developers) and which are related to gameplay 

(i.e. player interactions with and in the game world). The aspects of player enjoyment 

that are related to game design are not affected by the game world being emergent or 

scripted. Every element of player enjoyment is in some way related to game design. 

Clear goals, immersion and social interaction are solely related to game design, 

whereas concentration, challenge, control, player skills and feedback are only partly 

related to game design. Unlike the game design issues, the aspects of player 

enjoyment related to gameplay are affected by the game world being scripted or 

emergent. The aspects of player enjoyment that are related to gameplay can directly 

affect the player’s enjoyment (player skills, control, feedback) or they can support the 

game developer in creating more enjoyable games (challenge, concentration).  

 

The evaluation study not only shows that both game design and gameplay are highly 

important for player enjoyment, but that they are tightly interwoven. For a game to be 

exceptional, the game developer must design a game with story, conflict, detail, goals, 

problems and a good interface, and the player must be able to interact freely in this 

world, feeling central and influential. It is not possible, however, to conclude how 

much each element contributes to player enjoyment (e.g. is challenge more important 

than control?). Also, it is likely that each element affects individual players differently 

and that different game genres will manifest the elements in different ways.  

 

Emergence definitely has a place within the current model of games, as it can enhance 

player enjoyment in elements where scripting is weak (e.g. giving the player more 

control). However, the game design (i.e. scripted) aspect of current games is central to 

player enjoyment and compromising on well-placed scripted elements is likely to 

reduce the enjoyability of a game. Therefore, the most enjoyable games in the near 

future will involve a good balance of scripting and emergence. However, it is possible 



162 

that with the development of a new emergent game genre that the elements of player 

enjoyment will shift or be manifest in new, unforseen ways. 

 

CONCLUSIONS 

The EmerGEnT system serves as a proof of concept that emergent game worlds based 

on cellular automata can provide an alternative to currently scripted game worlds and 

facilitate the development of more enjoyable games, by giving rise to emergent 

behaviour and the potential to be incorporated into complete games to provide 

emergent gameplay.  

 

Cellular automata can facilitate emergence in game worlds in terms of the behaviour 

of environmental systems and the corresponding effects on terrain, objects and agents. 

Also, games can have varying levels of emergence, which can be thought of as a 

scripting-emergence continuum. The most enjoyable games are likely to fall between 

the two extremes of the continuum. Emergence can also be incorporated into games in 

different ways. In this thesis, it was shown that game worlds can be emergent, 

including the environment, objects and agents. It was also theorised that game 

narrative could be emergent, in terms of interactions with characters or gameplay-

generated narrative. 

 

Players are dissatisfied with the static, unintuitive and unrealistic worlds in current 

games and emergence provides the opportunity to enhance player enjoyment with 

game worlds that allow consistency, freedom, intuitiveness and realistic physics. 

Player enjoyment is affected by both gameplay and narrative (or game design) and 

emergence has the potential to improve player enjoyment in terms of gameplay, by 

increasing player control, challenge, skills, concentration and feedback. As games 

incorporate more emergent components or become fully emergent, getting the 

narrative and emergence to work together will be a critical problem. It is likely that 

the most enjoyable games will result from carefully-designed, scripted game elements 

integrated seamlessly into emergent game worlds. The future of game development 

lies is finding the means to integrate and balance scripting and emergence and 



163 

different combinations thereof to produce a variety of game genres that result in more 

valuable game playing experiences. 

 

FURTHER WORK 

The EmerGEnT system demonstrated the potential of emergent game worlds, within a 

limited domain and a controlled environment. The next step would be to incorporate 

an emergent system into a complete game environment. This would allow a better 

understanding of the limitations imposed on emergent systems in games (e.g. 

computational time available), the amount of tuning required and the complications 

that would arise from integrating an emergent system into a game. Additionally, once 

the emergent system is successfully incorporated into a complete game, it would be 

possible to introduce players into the system. This would serve two purposes: (1) the 

effect of the human factor on the emergent system could be gauged (e.g. how much 

complexity and uncertainty is introduced by human players?) and (2) the effect of 

emergent gameplay on player enjoyment could be directly measured. 

 

Not only is it important to integrate an emergent system into a complete game, it is 

also necessary to test varying levels of emergence in games. As discussed, emergence 

is starting to make its way into games, such as emergent object behaviour or 

emergence through sheer world size and number of options. It was also discussed that 

there is likely to be a limit on the amount of emergence that can be incorporated into 

the current game model, without compromising on player enjoyment or sacrificing 

developers’ creative control. Therefore, it is necessary to investigate different ways to 

incorporate emergence into games (e.g. through agents, environments, narrative), 

investigate different levels of scripting and emergence in games and the effects on 

developers and players, and find the limitations of emergence in games. The ultimate 

goal would be to determine how emergence can be best used in games to maximise 

player enjoyment and whether it will be necessary to develop a new game model that 

supports full emergence, while ensuring integrity and enjoyment. 



164 



165 

References 
 

 
Adams, E. (2004) The Designer’s Notebook: Bad Game Designer, No Twinkie! 

Gamasutra, June 11, 2004. Retrieved online 1 February, 2005, at 

http://www.gamasutra.com/features/20040611/adams_01.shtml 

 

Artz, J. (1996) Computers and the Quality of Life: Assessing Flow in Information 

Systems. Computers and Society 26 (3), pp. 7-12. 

 

Bar-Yam, Y. (1997) Dynamics of Complex Systems. Reading, Mass.: Addison-Wesley. 

 

Barros, F., and Mendes, M. (1997) Forest fire modelling in the DELTA environment. 

Simulation Practice and Theory 5, pp. 185-197. 

 

Berger, L. (2002) Scripting: Overview and Code Generation. In S. Rabin (Ed.), AI 

Game Programming Wisdom. Hingham, Mass.: Charles River Media, Inc., pp. 

505-510. 

 

Brown, E., and Cairns, P. (2004) A Grounded Investigation of Game Immersion. 

Extended Abstracts of the 2004 Conference on Human Factors in Computing 

Systems. New York, NY: ACM Press, pp. 1297-1300. 

 

Church, D. (2002) Simulation, Emulation, and the Game Design/Development 

Process. Presented at the Australian Game Developers Conference, Melbourne, 

Australia, 6-8 December, 2002. Retrieved online 13 April, 2005, at 

http://www.agdc.com.au/about/archive_2002_schedule.php#Sunday 

 

Consolini, G., and De Michelis, P. (2001) A revised forest-fire cellular automaton for 

the nonlinear dynamics of the Earth’s magneotail. Journal of Atmospheric and 

Solar-Terrestrial Physics 63, pp. 1371-1377. 

 

Csikszentmihalyi, M. (1990) Flow: The Psychology of Optimal Experience. New 

York: Harper Perennial. 

 

Desurvire, H., Caplan, M., and Toth, J.A. (2004) Using Heuristics to Evaluate the 

Playability of Games. Extended Abstracts of the 2004 Conference on Human 

Factors in Computing Systems. New York, NY: ACM Press, pp. 1509-1512. 

 

Drennan, P., Viller, S. and Wyeth, P. (2004) Engaging Game Characters: Informing 

Design with Player Perspectives. Entertainment Computing - ICEC 2004: Third 

International Conference, Lecture Notes in Computer Science, 3166, pp. 355-358. 

 

Federoff, M. (2002) Heuristics and Usability Guidelines for the Creation and 

Evaluation of Fun in Video Games. Unpublished thesis, Indiana University, 

Bloomington. Retrieved online 1 February, 2005, at 

http://www.melissafederoff.com/thesis.html 



166 

 

Fedkiw, R., Stam, J., and Wann Jensen, H. (2001) Visual Simulation of Smoke. 

Proceedings of the 28th annual conference on Computer graphics and interactive 

techniques, pp. 15-22. 

 

Forsyth, T. (2002) Cellular Automata for Physical Modelling. In D. Treglia (Ed.), 

Game Programming Gems 3. Hingham, Mass.: Charles River Media, Inc., pp. 

200-214. 

 

Frasca, G. (2003) Ludologists love stories, too: notes from a debate that never took 

place. Proceedings of Levelup 2003, DIGRA, pp. 92-99.  

 

Fullerton, T., Swain, C., and Hoffman, S. (2004) Improving Player Choices. 

Gamasutra, March 10, 2004. Retrieved online 1 February, 2005, at 

http://www.gamasutra.com/features/20040310/fullerton_01.shtml 

 

Garneau, P. (2002) Emergence: Making Games Deeper. Retrieved online 24 July, 

2003, at http://www.pagtech.com/Articles/Emergence.html 

 

Gee, J.P. (2004) Learning by Design: Games as Learning Machines. Gamasutra, 

March 24, 2004. Retrieved online 1 February, 2005, at 

http://www.gamasutra.com/gdc2004/features/20040324/gee_01.shtml 

 

Hargrove, W., Gardner, R., Turner, M., Romme, W, and Despain, D. (2000) 

Simulating fire patterns in heterogeneous landscapes. Ecological Modelling 135, 

pp. 243-263. 

 

Haykin, S. (1994) Neural Networks: A Comprehensive Foundation. Maxwell 

Macmillan International. 

 

Hecker, C. (2000) Physics in Computer Games. Communications of the ACM 43 (7), 

pp. 34-37. 

 

Holland, J. (1998) Emergence: from Chaos to Order. Oxford: Oxford University 

Press. 

 

Jennings, M. (2000) Theory and Models for Creating Engaging and Immersive 

Ecommerce Websites. Proceedings of the 2000 ACM SIGCPR Conference on 

Computer Personnel Research, pp. 77-85. 

 

Johnson, S. (2001) Emergence: the Connected Lives of Ants, Brains, Cities and 

Software. New York: Scribner. 

 

Johnson, D., and Wiles, J. (2001) Computer Games with Intelligence. Australian 

Journal of Intelligent Information Processing Systems 7, pp. 61-68. 

 

Johnson, D., and Wiles, J. (2003) Effective affective user interface design in games. 

Ergonomics 46 (13/14), pp. 1332-1345. 

 



167 

Juul, J. (2000) What computer games can and cannot do. Presented at the Digital Arts 

and Culture Conference, Bergen, 2-4 August, 2004. Retrieved online 2 February, 

2005, at http://www.jesperjuul.dk/text/WCGCACD.html 

 

Juul, J. (2004) Working with the Player’s Repertoire. International Journal on 

Intelligent Games and Simulation 3 (1), pp. 54-61. 

 

Kane, B. (2003) Postcard from GDC 2003: 34 Ways to Put Emotions into Games. 

Gamasutra. March 8, 2003. Retrieved online 1 February, 2005, at 

http://www.gamasutra.com/gdc2003/features/20030308/kane_emotion_01.htm 

 

LaMothe, A. (1999) Tricks of the Windows Game Programming Gurus. Indianapolis, 

Ind.: SAMS. 

 

Lazzaro, N. (2004) Why we Play Games: Four Keys to More Emotion without Story. 

Retrieved online 1 February, 2005, at 

http://www.xeodesign.com/whyweplaygames/xeodesign_whyweplaygames.pdf 

 

Lazzaro, N., and Keeker, K. (2004) What’s My Method? A Game Show on Games. 

Extended Abstracts of the 2004 Conference on Human Factors in Computing 

Systems. New York, NY: ACM Press, pp. 1093-1094. 

 

Leonard, T. (2003) Building an AI Sensory System: Examining the Design of Thief: 

The Dark Project. Gamasutra, March 7, 2003. Retrieved online 2 February, 2005, 

at http://www.gamasutra.com/gdc2003/features/20030307/leonard_pfv.htm 

 

Mateas, M (2002) Interactive Drama, Art and Artificial Intelligence. Ph.D. Thesis. 

Technical Report CMU-CS-02-2006, School of Computer Science, Carnegie 

Mellon University, Pittsburgh, PA, 2002. Retrieved online at 2 February, 2005, at 

http://www-2.cs.cmu.edu/~michaelm/publications/CMU-CS-02-206.pdf 

 

Mitchell, M. (1998) An Introduction to Genetic Algorithms. Cambridge, Mass.: MIT 

Press. 

 

McLean, J. (2002) Conversations from GDC Europe: Bill Fulton, Zeno Colaco, 

Harvey Smith. Gamasutra, September 11, 2002. Retrieved online 2 February, 

2005, at http://www.gamasutra.com/features/20020911/mclean_01.htm  

 

Pachet, F., and Addressi, A.R. (2004) Music: When Children Reflect on their own 

Playing Style: Experiments with Continuator and Children. Computers in 

Entertainment 2 (1), pp. 14. 

 

Pagulayan, R., Keeker, K., Wixon, D., Romero, R., and Fuller, T. (2003) User-

Centered Design in Games. In J.A. Jacko and A. Sears (Eds.), The Human-

Computer Interaction Handbook: Fundamentals, Evolving Techniques and 

Emerging Applications. Mahwah, NJ: Lawrence Erlbaum Associates., pp. 883-

905. 

 

Perla, P., Markowitz, M., Nofi, A., Weuve, C., Loughran, J., and Stahl, M. (2000) 

Gaming and Shared Situation Awareness. Technical Report CRM 



168 

D0002722.A2/Final, Centre for Naval Analyses, November 2000. DOD 

Document. 

 

Poiker, F. (2002) Creating Scripting Languages for Nonprogrammers. In S. Rabin 

(Ed.), AI Game Programming Wisdom. Hingham, Mass.: Charles River Media, 

Inc., pp. 520-529. 

 

Rabin, S. (2000) Designing a General Robust AI Engine. In M. DeLoura (Ed.), Game 

Programming Gems. Hingham, Mass.: Charles River Media, Inc., pp. 221-236. 

 

Rabin, S. (2002) Implementing a State Machine Language. In S. Rabin (Ed.), AI 

Game Programming Wisdom. Hingham, Mass.: Charles River Media, Inc., pp. 

314-320. 

 

Rabin, S. (2004) Common Game AI Techniques. In S. Rabin (Ed.), AI Game 

Programming Wisdom 2. Hingham, Mass.: Charles River Media, Inc., pp. 3-14. 

 

Reynolds, C. (1987) Flocks, Herds, and Schools: A Distributed Behavioural Model. 

Computer Graphics 21 (4), pp. 25-34. 

 

Russel, S. and Norvig, P. (2003) Artificial Intelligence: A Modern Approach (Second 

Edition). New Jersey: Prentice Hall. 

 

Sharafi, P., Hedman, L., and Montgomery, H. (in press) Using information 

technology: engagement modes, flow experience, and personality orientations. 

Computers in Human Behaviour. Retrieved online 9 April, 2004, at 

http://www.sciencedirect.com 

 

Smith, H. (2002) Systemic Level Design. Presented at the Game Developers 

Conference, San Jose, CA, March 21-23, 2002. Retrieved online 13 April, 2005, 

at http://www.gdconf.com/archives/2002/ 

 

Smith, H. (2001) The Future of Game Design: Moving Beyond Deus Ex and Other 

Dated Paradigms. Retrieved online July 23, 2003, at 

http://www.planetdeusex.com/witchboy/ articles/thefuture.shtml. 

 

Stam, J. (2000) Interacting with Smoke and Fire in Real Time. Communications of the 

ACM 43 (7), pp. 77-83. 

 

Stam, J. (2003) Flows on Surfaces of Arbitrary Topology. ACM Transactions on 

Graphics (TOG) 22 (3): Proceedings of SIGGRAPH 2003, pp. 724-731. 

 

Stripinis, D. (2001) The (Not So) Dark Art of Scripting for Artists. Game Developer 

Magazine, pp. 40-45. 

 

Sweetser, P. (2004a) Strategic Decision-Making with Neural Networks and Influence 

Maps. In S. Rabin (Ed.), AI Game Programming Wisdom 2. Hingham, Mass.: 

Charles River Media, Inc., pp. 439-446. 

 



169 

Sweetser, P. (2004b) How to Build Neural Networks for Games. In S. Rabin (Ed.), AI 

Game Programming Wisdom 2. Hingham, Mass.: Charles River Media, Inc., pp. 

615-625. 

 

Sweetser, P. (2004c) How to Build Evolutionary Algorithms for Games. In S. Rabin 

(Ed.), AI Game Programming Wisdom 2. Hingham, Mass.: Charles River Media, 

Inc., pp. 627-637. 

 

Sweetser, P. & Dennis, S. (2003). Facilitating Learning in a Real Time Strategy 

Computer Game. Entertainment Computing: Technologies and Applications (eds. 

Ryohei Nakatsu and Junichi Hoshino). Kluwer Academic Publishers, Boston., pp. 

49-56. 

 

Sweetser, P., Johnson, D., Sweetser, J. and Wiles, J. (2003) Creating Engaging 

Artificial Characters for Games. Proceedings of the Second International 

Conference on Entertainment Computing. Pittsburgh, PA: Carnegie Mellon 

University., pp. 1-8. 

 

Sweetser, P. and Wyeth, P. (in press) GameFlow: A Model for Evaluating Player 

Enjoyment in Games. To be published in ACM Computers in Entertainment 3 (3). 

 

Tozour, P. (2001) Influence Mapping. In M. Deloura (Ed.), Game Programming 

Gems 2. Hingham, MA: Charles River Media, Inc., pp. 287-297. 

 

Treuille, A., McNamara, A., Popović, Z., and Stam, J. (2003) Keyframe Control of 

Smoke Simulations. ACM Transactions on Graphics (TOG) 22 (3): Proceedings 

of SIGGRAPH 2003, pp. 716-723. 

 

Vass, M., Carroll, J., and Shaffer, C.A. (2002) Supporting Creativity in Problem 

Solving Environments. Proceedings of the Fourth Conference on Creativity and 

Cognition, pp. 31-37. 

 

Walker, R. (2004) The Design and Production of Half-Life 2. Presented at the 

Australian Game Developers’ Conference, Melbourne, 2-4 December, 2004. 

Retrieved online 13 April, 2005, at 

http://www.agdc.com.au/about/arch04_schedule_sat.php 

 

Woodcock, S. (2000) Game AI: The State of the Industry. Gamasutra, November 1, 

2000. Retrieved online 2 February, 2005, at 

http://www.gamasutra.com/features/20001101/woodcock_01.htm 

 

Woodcock, S. (2003) Games Making Interesting Use of Artificial Intelligence 

Techniques. Retrieved online 2 February, 2005, at http://www.gameai.com 

 



170 

Games 
 

Bethseda (2002) The Elder Scrolls III: Morrowind. Available online 2 February, 2005, 

at http://www.morrowind.com 

 

Electronic Arts (2000) The Sims. Available online 2 February, 2005, at 

http://thesims.ea.com/ 

 

Microsoft (2002) Age of Mythology. Available online 2 February, 2005, at 

http://www.microsoft.com/games/ageofmythology/egypt_home.asp 

 

Smart, D. (1996) BattleCruiser: 3000AD. Available online 2 February, 2005, at 

http://www.3000ad.com/home.shtml 

 

Valve (1998) Half-Life. Available online 2 February, 2005, at 

http://www.planethalflife.com/half-life/ 

 

Valve (2004) Half-Life 2. Available online 2 Feburary, 2005, at 

http://www.planethalflife.com/half-life2/ 

 

 



171 

Appendix A 
 

Questionnaire on Interaction in Games 

 



172 



173 

Interaction in Games Questionnaire 

Penny Sweetser, School of ITEE, University of Queensland. 

This questionnaire will take approximately 5-10 minutes to complete. It is part of a 

research project for my PhD. If you have any questions then feel free to contact me 

on the above email. You are free to exit at any time, but please press the submit 

button at the bottom of the screen so that the data is saved. Thank you for your time. 

 

 
  

Section 1 

 
Age 

Gender 

Nationality 
 

 

 

Approximately how experienced would you rate yourself at playing computer 

games? 

 
 

 

What is your favourite type of game? (if you have more than one favourite, 

choose the one you have played most recently) 

 
Please answer the rest of the questionnaire with respect to this type of game. 

 

  

Approximately how frequently do you play this type of game? 

 
 

Comments on frequency (optional): 
 

 

 

What games of this type have you played? 

 
  

 



174 

Section 2: Questions 1-7 (of 28) 

1. How do objects that look the same but that cannot be used in the same way 

affect your enjoyment of your preferred type of game (eg one barrel can be 

broken but another cannot)? 

 
  

2. How does not being able to use game objects because they are only scenery 

affect your enjoyment of your preferred type of game (eg a piece of furniture 

cannot be moved)? 

 
  

3. How does not being able to use game objects in the way that you would expect 

to be able to use them affect your enjoyment of your preferred type of game (eg 

a bucket can be kicked but not picked up)? 

 
  

4. How does being able to use objects in the same way as you would in the real 

world affect your enjoyment of your preferred type of game? 

 
 

5. How does being able to use objects in the same way as you have in previous 

games affect your enjoyment of your preferred type of game? 

 
 

6. How does having a wide variety of possible ways to use objects in the game 

environment affect your enjoyment of your preferred type of game? 

 
  

7. How does having new and unique ways of using objects affect your enjoyment 

of your preferred type of game? 

 
 

Any other comments: 

 



175 

Section 3: Questions 8-14 (of 28) 

 8. How does a moving and powerful soundtrack affect your enjoyment of your 

preferred type of game? 

 
  

9. How do sound effects that set the mood (eg build up suspense) affect your 

enjoyment of your preferred type of game? 

 
 

10. How do sound effects that cause an emotional response (eg fear or happiness) 

affect your enjoyment of your preferred type of game? 

 
 

11. How do life-like graphics affect your enjoyment of your preferred type of 

game? 

 
  

12. How do graphics with obvious inconsistencies (eg a body sticking through a 

wall) affect your enjoyment of your preferred type of game? 

 
 

13. How does an introduction that sets the scene for the game affect your 

enjoyment of your preferred type of game? 

 
 

14. How does a strong storyline affect your enjoyment of your preferred type of 

game? 

 
 

Any other comments: 

 
 



176 

Section 4: Questions 15-21 (of 28) 

 15. How does only having one way to perform a task or solve a problem affect 

your enjoyment of your preferred type of game? 

 
 

16. How does needing to figure out what the game developer wanted you to do to 

perform a task or solve a problem affect your enjoyment of your preferred type 

of game? 

 
 

17. How does being able to perform a task or solve a problem in your own way 

affect your enjoyment of your preferred type of game? 

 
  

18. How does needing to use trial and error to perform a task or solve a problem 

affect your enjoyment of your preferred type of game? 

 
 

19. How does not being able to perform a task or solve a problem within a 

reasonable period of time affect your enjoyment of your preferred type of game? 

 
  

20. How does not being able to perform a task or solve a problem at all affect 

your enjoyment of your preferred type of game? 

 
 

21. How does needing to get help from the internet or another person in order to 

solve a problem affect your enjoyment of your preferred type of game? 

 
 

Any other comments: 

 
 



177 

Section 5: Questions 22-28 (of 28) 

22. How does being affected by the laws of gravity affect your enjoyment of your 

preferred type of game (eg you can jump in a realistic way or take falling 

damage)?  

 
 

23. How do objects that follow the laws of gravity in a realistic way affect your 

enjoyment of your preferred type of game (eg bouncing, falling, rolling down 

hills)?  

 
 

24. How does momentum affect your enjoyment of your preferred type of game 

(eg being pushed backwards when hit)?  

 
  

25. How does water that behaves in a realistic way affect your enjoyment of your 

preferred type of game (eg flows, wets, cools, current)?  

 
 

26. How do objects that are affected by water in a realistic way affect your 

enjoyment of your preferred type of game (eg weapons cannot work 

underwater)?  

 
 

27. How does fire that behaves in a realistic way affect your enjoyment of your 

preferred type of game (eg burns, ignites, heats)?  

 
 

28. How do objects that are affected by fire in a realistic way affect your 

enjoyment of your preferred type of game (eg flammable objects burn or 

explosives explode when they come in contact with fire)?  

 
 



178 

 

Any other comments: 

 

Please press submit to save your answers: 

 

 
  

 

 



179 

Appendix B 
 

Pseudo-code for Environment in EmerGEnT System 

 



180 



181 

Heat 

// get the heat capacities of the cell and the neighbour 

HCCell = material(cell).SHC * cell.Mass; 

HCNeigh = material(neigh).SHC * neigh.Mass; 

// calculate the difference in temp between the cell and neighbour 

EnergyFlow = cell.Temp – neigh.Temp; 

// convert from heat to energy 

EnergyFlow *= HCCell; 

// multiply by a constant for cell update speed 

EnergyFlow *= ConstantEnergyFlowFactor; 

// heat doesn’t flow against wind 

if (neigh isn’t against wind) 

{ 

// cell has higher heat than neigh 

if (EnergyFlow > 0) 

{ 

 // heat flow into neighbour 

 neigh.Temp += EnergyFlow / HCNeigh; 

 // heat flows from cell 

 cell.Temp -= EnergyFlow / HCCell; 

} 

// detect and kill oscillations 

if ((EnergyFlow > 0) && (neigh.Temp < cell.Temp)) 

{ 

 // find average temp of cell and neigh 

 TotalEnergy = (HCCell * cell.Temp) + (HCNeigh * neigh.Temp); 

 AverageTemp = TotalEnergy / (HCCell + HCNeigh); 

 // set cell and neigh to average temp 

 cell.Temp = AverageTemp; 

 neigh.Temp = AverageTemp; 

 // increase heat flow with wind 

 if (neighbour is with wind) 

{ 

  cell.Temp /= (1 + (windspeed * wind_const)); 

  neigh.Temp *= (1 + (windspeed * wind_const)); 

 } 

} 

} 

 



182 

Fluid Flow  

// neighbour lower than cell 

if ((neigh.Height < cell.Height) &&  

   // cell has the max fluid it will hold, modified by the slope – easier to flow downhill 

   (cell.Fluid > (material(cell).MaxFluid * (neigh.Height / cell.Height)))) 

{ 

// flow equals the difference between fluid in cell and neigh divided by four 

flow = (cell.Fluid – neigh.Fluid) * 0.25; 

// flow is increased proportionally to slope 

flow = flow * (cell.Height / neigh.Height) * flow_const; 

// flow cannot be less than zero 

if (flow < 0) flow = 0; 

// update cell and neigh with flow 

cell.Fluid -= flow; 

neigh.Fluid += flow; 

// cell.Fluid cannot be less than zero 

if (cell.Fluid < 0) cell.Fluid = 0; 

}  

// neighbour higher than cell 

else if ((neigh.Height > cell.Height) &&  

   // cell has the max fluid it will hold, modified by slope – harder to flow uphill 

   (cell.Fluid > (material(cell).MaxFluid * (neigh.Height / cell.Height)))){ 

// flow equals difference between the fluid in cell and neigh divided by four 

flow = (cell.Fluid – neigh.Fluid) * 0.25; 

// flow is decreased proportionally to slop 

flow = flow * (cell.Height / neigh.Height) / flow_up_const; 

// flow cannot be less than zero 

if (flow < 0) flow = 0; 

// update cell and neigh with flow 

cell.Fluid -= flow; 

neigh.Fluid += flow; 

// cell fluid cannot be less than zero 

if (cell.Fluid < 0) cell.Fluid = 0; 

} 

// neighbour on same level 

// fluid in cell must exceed max fluid cell can hold 

else if (cell.Fluid > material(cell).MaxFluid) 

{ 

// flow equals difference between cell and neigh divided by four 

flow = (cell.Fluid – neigh.Fluid) * 0.25; 

// flow cannot be less than zero 

if (flow < 0) flow = 0; 

// update cell and neigh with flow 

cell.Fluid -= flow; 

neigh.Fluid += flow; 

// cell fluid cannot be less than zero 

if (cell.Fluid < 0) cell.Fluid = 0; 

} 

 



183 

Pressure 

// if there is more pressure in cell than in neighbour 

if (cell.Pressure > neigh.Pressure) 

{ 

// calculate the pressure ratio between cell and neigh 

pressure_ratio = cell.Pressure / neigh.Pressure; 

// if pressure ratio is more than explosion ration then explode 

if (pressure_ratio > explosion_ratio) 

{ 

 // release heat proportional to pressure ratio 

 cell.Temp += (explosion_const * pressure_ratio) * 0.25; 

} 

// calculate pressure difference between cell and neigh 

PressureFlow = cell.Pressure – neigh.Pressure; 

// pressure diffuses to neighbour 

neigh.Pressure += PressureFlow * 0.25; 

cell.Pressure -= PressureFlow * 0.25; 

// detect and remove oscillations 

if ((PressureFlow > 0) && (neigh.Pressure < cell.Pressure)) 

{ 

 // calculate the average pressure of cell and neigh and distribute evenly 

 TotalPressure = cell.Pressure + neigh.Pressure; 

 AveragePressure = TotalPressure / 2; 

 cell.Pressure = AveragePressure; 

 neigh.Pressure = AveragePressure; 

} 

} 

 

Fire 

// temperature is the difference between the temp of the cell and the flashpoint of the  

// material in the cell and the wetness of the cell 

Temp = cell.Temp – (material(cell).FlashPoint + cell.Wetness); 

// damage the cell 

if (Temp > 0) cell.Damage = ((Temp * material(cell).BurnRate)  - cell.Wetness) * 

burn_const; 

// convert to actual burning value 

if (Temp > (material(cell).MaxBurn * 2)) Burn = material(cell).MaxBurn; 

else if (Temp > 0) Burn = (1.0 – ((0.25 * Temp) / material(cell).MaxBurn)) * Temp; 

// burn cannot exceed MaxBurn 

if (Burn > material(cell).MaxBurn) Burn = material(cell).MaxBurn; 

// reduce burn by amount of damage in cell (less fuel to burn when damaged) 

Burn -= cell.Damage; 

// burn cannot be less than zero 

if (Burn < 1) Burn = 0; 

// Heat the cell up from the burning 

cell.Temp += Burn * material(cell).BurnTemp; 

cell.Burn = Burn; 



184 

 



185 

Appendix C 
 

Pseudo-code for Objects in EmerGEnT System 

 



186 



187 

Heat (obj) 

// Find current heat capacities 

HCObj = material(obj).SHC * obj.Mass; 

HCCell = material(cell).SHC * cell.Mass; 

EnergyFlow = cell.Temp  - obj.Temp; 

  

// Energy flowing from cell to object 

if (EnergyFlow > 0){ 

 // Convert from heat to energy 

 EnergyFlow *= HCCell; 

 // A constant according to cell update speed 

 EnergyFlow *= ConstantEnergyFlowFactor; 

 cell.NewTemp -= (EnergyFlow / HCCell); 

 obj.NewTemp += (EnergyFlow / HCObj); 

 

 // Detect and kill oscillations   

 if (cell.NewTemp < obj.NewTemp){ 

  TotalEnergy = (HCObj * obj.NewTemp) + (HCCell * cell.NewTemp); 

  AverageTemp = TotalEnergy / (HCObj + HCCell); 

  obj.NewTemp = AverageTemp; 

  cell.NewTemp = AverageTemp; 

 } 

} 

 

// Energy flowing from object to cell 

else if (EnergyFlow < 0){ 

 EnergyFlow *= -1; 

 // Convert from heat to energy  

 EnergyFlow *= HCObj * ConstantEnergyFlowFactor; 

 cell.NewTemp += (EnergyFlow / HCCell); 

 obj.NewTemp -= (EnergyFlow / HCObj); 

 

 // Detect and kill oscillations   

 if (obj.NewTemp < cell.NewTemp){ 

  TotalEnergy = (HCObj * obj.NewTemp) + (HCCell * cell.NewTemp); 

  AverageTemp = TotalEnergy / (HCObj + HCCell); 

  obj.NewTemp = AverageTemp; 

  cell.NewTemp = AverageTemp; 

 } 

} 

 

 

 

 



188 

Fluid Flow (obj) 

// will flow into object if cell has any fluid and if object is not full of water 

if ((cell.Fluid > 0) and (obj.Fluid < (material(obj).MaxFluid * obj.Mass/cell.Mass))  

 // and object affords flowing 

 and AffordsFlow(obj)) 

{ 

 // should fill obj with same proportion of fluid as in cell 

 flow = (cell.Fluid - obj.Fluid) * 0.25 * (obj.Mass/cell.Mass); 

 if (flow < 0) flow = 0; 

 cell.NewFluid -= flow; 

 obj.NewFluid += flow; 

 if (cell.NewFluid < 0) cell.NewFluid = 0; 

} 

 

// will flow from obj to cell if obj is over-full 

excess = obj.Fluid – material(obj).MaxFluid; 

if ((excess > 0)  

 // object affords flowing 

 && AffordsFlow(obj)) 

{ 

// objects are smaller than cells 

  flow = excess * (obj.Mass / cell.Mass);  

  cell.NewFluid += flow; 

  obj.NewFluid -= flow; 

 } 

} 

 

 

Fire (obj) 

//Burning temperature 

Temp = obj.Temp - (material(obj).FlashPoint + obj.Wetness); 

//Damage the cell 

if (Temp > 0){ 

 obj.NewDamage += ((Temp * material(obj).BurnRate) - obj.Wetness) * const; 

} 

//Convert to actual burning value 

if (Temp > (material(obj).MaxBurn * 2)) Burn = material(obj).MaxBurn; 

else if (Temp > 0) Burn = ((1.0 - ((0.25 * Temp) / material(obj).MaxBurn)) * Temp); 

if (Burn > material(obj).MaxBurn) Burn = material(obj).MaxBurn; 

Burn -= obj.Damage; 

if (Burn < 1) Burn = 0; 

// Heat the object up from the burning 

obj.NewTemp += (Burn * material(obj).BurnTemp) * BurnHeatConst; 

obj.Burn = Burn; 

 

 



189 

Pressure (obj) 

// high absolute pressure in cell immediately damages object 

if (cell.Pressure > high_pressure){  

 obj.NewDamage += (cell.Pressure * pressure_damage_const); 

}  

  

// cell pressure is higher than object pressure and object affords flowing 

if ((cell.Pressure > obj.Pressure) and AffordsFlow(obj)) 

{ 

 // flow of pressure: cell to object 

 PressureFlow = (cell.Pressure - obj.Pressure) * obj.Mass/cell.Mass; 

 obj.NewPressure += PressureFlow; 

 cell.NewPressure -= PressureFlow; 

} 

   

// high pressure in object -- causes explosion 

if (obj.Pressure > cell.Pressure){ 

 

 // ratio of object pressure to cell pressure - modified by obj material 

 pressure_ratio = (obj.Pressure / cell.Pressure); 

 

 // if pressure difference is great enough then explode 

 if ((pressure_ratio > (explosion_ratio * material(obj).Strength)) 

  and AffordsExploding(obj)){ 

  cell.NewTemp += (explosion_const * pressure_ratio); 

  PressureFlow = obj.Pressure - cell.Pressure; 

  cell.NewPressure += PressureFlow; 

  obj.NewPressure -= PressureFlow; 

 } 

   

 // flow of pressure: object to cell 

 else  

 // object affords flowing out of 

 if (AffordsFlow(o)){  

  PressureFlow = (obj.Pressure - cell.Pressure) * obj.Mass/cell.Mass; 

  obj.NewPressure -= PressureFlow; 

  cell.NewPressure += PressureFlow; 

 } 

} 

 

 

 

 



190 



191 

Appendix D 
 

Pseudo-code for Agents in EmerGEnT System 
 

 



192 



193 

GetComfort(x, y) 

// Comfort = (temp * const) + (burn * const) + (pressure * const) + (wetness * const) 

// burn > temp > pressure > wetness 

comfort = (cells[x,y].Temp * tempconst) + (cellx[x,y].Burn * burnconst) +  

                 (cells[x,y].Pressure * pressconst) + (cellx[x,y].Wetness * wetconst); 

if (comfort > 1.0) comfort = 1.0; 

return comfort; 

 

 

React(ai) 

comfort = GetComfort(ai.x, ai.y); 

 

// neighbourhood size = 3 

n = 3;  

 

// if comfortable – stand still 

if (comfort < 0.1) StopMove(); 

 

// if uncomfortable – move 

else if (comfort < 0.3){ 

 // set speed – 1, animation walk 

 speed = 1.0f; 

 // move – to dest 

 GoalDest(comfort, ai, speed, n); 

} 

// if distressed – move quickly 

else if (comfort < 0.6){ 

 // set speed – 2, animation run 

 s = 2.0f; 

 // move – to dest 

 GoalDest(comfort, ai, s, n); 

} 

else { 

 // set speed – 3, animation run 

 s = 3.0f; 

 // move – to dest 

 GoalDest(comfort, ai, s, n); 

} 

 

 



194 

CalcDesire(goalx, goaly) 

for area around goal 

 // distance = city block distance of x,y from goal 

 distance =  abs(x - goalx) + abs(y - goaly); 

 

 // desire of x,y is multiplied by 0.7 for each step out from goal 

 Desire[x][y] += pow(0.7, distance); 

} 

 

 

GoalDest(comfort, ai, speed, n) 

for agents local neighbourhood (n=3) 

{ 

 // only calculate if not previously calculated and store 

 if (Comfort[x][y] == NULL) Comfort[x][y] = GetComfort(x,y); 

 

 this_comfort = Comfort[x][y]; 

 

 // add in desire from influence map 

 this_comfort = (Comfort[x][y] * 0.5) + ((1 - Desire[x][y]) * 0.5); 

 

 // set destination to the most comfortable cell in neighbourhood 

 if (this_comfort < comfort){ 

  comfort = this_comfort; 

  destx = x; 

  desty = y; 

 } 

} 

// find destination within immediate neighbourhood (n=1) 

ImmDest(comfort, ai, speed, 1, destx, desty); 

 



195 

ImmDest(comfort, ai, speed, n, goalx, goaly) 

comfort = (comfort * 0.5) + ((abs(goalx - ai.x) + abs(goaly - ai.y)) / 8.0f); 

 

for local neighbourhood around agent (n=1){ 

 

 // 50% weighting = divide by 8 

 goal_dist = (abs(goalx - x) + abs(goaly - y)) / 8.0f; 

 

 // 50% weighting = multiply by 0.5 

 this_comfort = (Comfort[x][y] * 0.5) + goal_dist; 

 

 // set immediate destination to most comfortable cell in neighbourhood 

 if (this_comfort < comfort){ 

  comfort = this_comfort; 

  destx = x; 

  desty = y; 

 } 

} 

// move to destination 

Move(a, destx, desty, s); 

 



196 



197 

Appendix E 
 

Contents of Accompanying CD 

 

 
 

 

 

This icon indicates that there is further information or a demonstration on 

the accompanying CD. 

 

 

 

The accompanying CD includes two folders: Papers and Demos. 

 

The Papers folder includes a set of papers that are relevant to this thesis and a list of 

the references for these papers. 

 

The Demos folder includes demonstrations of the EmerGEnT system and a README 

file. The README includes a list of the demonstrations on the CD and instructions 

for using the EmerGEnT system. 

 


