
Learning from Games:
HCI Design Innovations in Entertainment Software

Jeff Dyck1, David Pinelle1, Barry Brown2, and Carl Gutwin1
1HCI Lab, Deptartment of Computer Science

University of Saskatchewan
Saskatoon, SK, Canada, S7N 5A9

jeff.dyck@usask.ca; http://hci.usask.ca

2Department of Computer Science
University of Glasgow

Glasgow, Scotland
barry@dcs.gla.ac.uk

ABSTRACT
Computer games are one of the most successful application
domains in the history of interactive systems. This success
has come despite the fact that games were ‘separated at
birth’ from most of the accepted paradigms for designing
usable interactive software. It is now apparent that this
separate and less-constrained environment has allowed for
much design creativity and many innovations that make
game interfaces highly usable. We analyzed several current
game interfaces looking for ideas that could be applied
more widely to general UIs. In this paper we present four
of these: effortless community, learning by watching, deep
customizability, and fluid system-human interaction. These
ideas have arisen in games because of their focus on user
performance and user satisfaction, and we believe that they
can help to improve the usability of other types of
applications.

Keywords
Computer games, game interfaces, user communities,
interface customization, interface design

INTRODUCTION
Computer games are an enormously popular and successful
type of interactive software. This success has occurred
even though game interfaces and interaction paradigms are
very different from those of other applications. Because of
their focus on system performance over consistency, games
have nearly always ignored the windowing systems, the
standard widget libraries, and the toolkits that define the
look and feel of conventional systems. In this way, game
UIs were ‘separated at birth’ from their siblings, and grew
up in a very different design environment.
In particular, this environment does not place restrictions
on how things must look or how interaction must be carried
out with the user, but it does strongly reward innovation
and performance. The driving forces in game design are
user performance, satisfaction, and novelty: gamers have
come to expect new, cool features that they have never
seen before, features that help them play in more efficient
and more interesting ways. As a result, games have both
become early adopters of new HCI technologies as well as
innovators in the area of HCI interaction design.
Examples of early adoption are many, and include
transparent overlays in Diablo II (studied in [2]),
transparent menus in Everquest ([9]), radar views in
Warcraft ([8]), gestural commands in Black and White

([18]), speed-coupled flying in Grand Theft Auto ([16]),
and radial menus in Neverwinter Nights ([11]). However,
games do not just adopt; the competitiveness of the market
and the expectations of the player communities lead game
designers to produce both variations on old techniques as
well as completely new ones. This paper is about the
innovations that have grown up entirely in the game world
– techniques and approaches that can now help to advance
the design and usability of conventional applications.
HCI researchers have considered games before: in the early
1980s, Tom Malone looked at what makes games
compelling and how these properties could be applied to
applications [14]. In the ensuing 20 years, however, games
have evolved enormously, but their progress has gone
largely unnoticed. A second look at the design and
interaction innovations – this time in modern games – was
long overdue.
We have taken this look by carrying out a design review of
fourteen state of the art PC games from several genres. Our
goal was to identify novel contributions that provide clear
benefits to users in game domains, contributions that could
be also be employed to help improve usability in
conventional applications. In this paper, we introduce four
of these innovations:
• effortless community – games make it easy to form,

join, and participate in communities of users;
• learning by watching – games help people learn the

application by watching ‘over the shoulder’ of more
experienced users as they work;

• deep customizability – games give users the power to
modify and extend any aspect of the UI, and allow
them to share those modifications with others;

• fluid system-human interaction – games communicate
information to users in ways that do not demand the
user’s attention and do not interrupt the flow of work.

Even though games are often seen as being “just for kids”
or “just for entertainment,” games have had to address
many of the same interaction and interface issues that affect
more conventional systems. The design ideas that we
present below are eminently applicable to everyday
situations with regular software; and we suggest that
reuniting the separated siblings can have distinct
advantages for both software usability and HCI research.

METHODOLOGY
We examined fourteen recently released, commercially
successful games (see Table 1). We looked at games from
several of the main game genres, selecting titles that have
not only been successful in the marketplace but that have
also been highly commended with reviews and awards.

Game Genre Play
Warcraft III Strategy S, M
Ghost Recon 1st-person shooter, strategy S, M
Rogue Spear 1st-person shooter, strategy S, M
Half-Life 1st-person shooter S, M
FIFA World Cup Sports S, M
Medal of Honor 1st-person shooter S, M
EverQuest Role playing M
Diablo II Action, role playing S, M
The Sims Simulation, strategy S
Neverwinter Nights Role playing S, M
Comanche 4 Simulation S, M
MechWarrior 4 Action, strategy S, M
Grand Theft Auto Action S
Black and White Strategy S, M
Table 1. Games studied. S=Single player, M=Multiplayer.
The games were explored with a variety of methods. First,
we played the games, both as individuals and groups, and
kept diaries of our game playing experiences1. Second, we
held group analysis sessions for each game, where we
catalogued its interaction techniques, critiqued its interface,
and looked at each main element of the game’s design.
Third, we observed (in person) how players other than
ourselves used the interfaces, and watched (on-line) the
text conversations of groups playing on-line games.
Finally, we collected game reviews and discussions from
review sites.
From these activities, we produced a list of game design
elements and approaches that are novel and that could be
useful in conventional applications: effortless community,
learning by watching, deep customizability, and fluid
system-human interaction. In the next sections, we will
discuss what each of these innovations are, how they work
in different game situations, and how they can be applied to
the interfaces of conventional systems.

EFFORTLESS COMMUNITY
Games make it easy to participate in online user
communities and easy to form groups within them. User
communities are extremely valuable resources that help
people resolve problems and provide collaborators for new
projects. However, these interactions require a critical mass
of users who are available on-line [17], and also require

1 Despite the arduous nature of the research, there was

reasonable enthusiasm for this phase of the work.

that people be able to find (or form) the right subgroups for
their specific interests and needs [6, 3]. Because games are
intrinsically interested in multi-user interaction, they have
had to address these requirements, and have become very
successful at meeting them. They make it easy to obtain
critical mass; they make it trivial for users to connect to the
community; and they make it easy for users to form and
find subgroups within the community. Even though
conventional applications come from a single-user mindset,
using the techniques that games have developed can help
them to make better use of the natural community of users.

Getting to critical mass: the natural community
The users of any application form a natural community
with an obvious common interest. The graphic designers
who use Photoshop form a natural community, as do the
Java programmers using JBuilder, and the architects who
use AutoCAD. These communities get together – if they do
at all – on line, most often in newsgroups and websites.
The communities can also be large: for example, the
comp.graphics.apps.photoshop group contains more than
140,000 discussion threads. For many applications, there
are enough concurrent users worldwide to form a natural
community that is large enough for people to find answers
to questions, to comment on content, or to find
collaborators for an upcoming task.
However, conventional applications do not make direct use
of this natural community – users are disconnected from
one another and unaware of others who are using the
system. When communities do exist, participation occurs
outside of the application and asynchronously (as in
newsgroups). Users who want to participate in
communities must use third party tools to find and
communicate with each other. Not only does this require
extra effort, but it also takes discussion out of the context
of the application, which can make communication more
difficult (e.g. describing the specifics of an interface
problem).
In contrast, multiplayer games have successfully integrated
the natural community with the applications themselves.
This integration guarantees that there is a critical mass of
users (assuming that there are enough users in total) that
participate in the same location and that are available for
collaboration. Games do two things in particular that
enable and manage community involvement: they make it
trivial to connect to the online user community, and they
make it easy to locate collaborators and form subgroups.

Effortless connection to community
Games provide simple and direct access to their online
communities through the application itself. Usually, games
require only a single click and a login for a user to connect
to others. Making a connection to the community, of
course, is a requirement for multi-player games, and the
simplicity of that connection process has arisen from the
frequency of the task. However, even though CSCW
researchers know about the problem of getting connected

(e.g. [Greenberg & Cockburn]), it has never been
adequately solved outside of games.
Games make the connection process simple by ensuring
that dedicated, reliable game servers are always available
as contact points for the user community. Some games also
allow users to host communities on their own game servers,
which similarly requires just a few clicks from within the
application itself. By making participation easy, games
successfully attract large numbers of users to their online
communities. Everquest currently has the largest user
community of any game, with as many as 100,000 people
connected at once; and when online, these people interact
not only as players in the game, but also users of the
Everquest application (see figure 2).
Effortless connection solves the problems of getting to the
community and achieving critical mass; but once users are
online with a large group, the problem is not finding
people, but finding the right people – those with common
interests and particular knowledge.

Identifying and forming groups with collaborators
Games make it easy to locate and form groups with
potential collaborators from within a large community of
online users. Many games have thousands of concurrent
online users at any time, but people usually have different
requirements about who they wish to collaborate with
depending on their current tasks. For example, a general
question about a workaround for a system bug might be
directed to a wide group or to anyone who is nearby; but in
most situations people need to find collaborators with (e.g.)
compatible personalities, similar levels of expertise, and
common interests. Games provide rich support for finding
and forming groups with collaborators. There are two
distinct approaches: meeting places, and in-game grouping.
Meeting places are portals where people can get to know
each other, look over potential collaborators using statistics
and stored profiles, discuss strategy, and solve technical
problems with the game. These are generally used for
games that are oriented around small group play and
limited-time interactions. For example, Battle.net is a
network meeting place integrated into Warcraft III that
provides discussion forums and player statistics, allows
people to create custom games and advertise for players,
lets people join custom games, and provides an automated
matchmaking service that groups compatible players (see
figure 1).
The second approach to group formation is to have people
form groups through the interaction mechanisms of the
game itself. This approach is used for massively
multiplayer games in which thousands of people play in the
same game world and where there is no defined end to the
game. The on-going nature of these games allows people to
build up an identity within the world, and these identities
help people to find appropriate partners:

• guilds: users can form or join guilds which have
specific purposes and exclusive membership criteria

• location: the spatial nature of the game provides a
natural grouping mechanism, since people in a
particular place likely have something in common;

• conversation channels: games allow people to create
and join chat channels with specific purposes (such as
discussing how to reduce network lag);

• friend lists: games provide ‘friend lists’ for easy access
to particular groups, and ‘block lists’ to exclude
others;

• explicit teams: games allow the creation of explicit
groups of up to six people (which restricts
communication and enables tracking mechanisms) for
carrying out tightly coupled tasks in the world;

• visual identity: games with avatars enable users to
show their skills, loyalties, and expertise in a visual
form through the appearance of the avatar, giving
others an easy way to assess potential collaborators.

Figure 1: Battle.net, the meeting place for Warcraft III
players. Players can chat, view each others’ rankings, build
custom games, join games, or use a matchmaking service to
automatically find collaborators based on preferences.

Using natural community in conventional applications
Connecting the natural communities within conventional
applications is a radical concept – since most applications
do not think of themselves as ‘groupware’ – but it is one
with tremendous potential. Although game players have
additional motivations for being online, gamers and
workers share many reasons for collaborating. All users
need to build expertise, have questions answered, discuss
approaches, and solicit feedback. These tasks can all be
performed through collaboration with the user community,
if that community is easily accessible and can be
partitioned appropriately. Games have not only been very
successful in building communities and grouping people
with common interests, they have shown the value of real-
time online communities in getting tasks done efficiently.
Consider the potential of the natural community in an
application like Photoshop. With the number of concurrent
users, it would be easy to build a large real-time

community with a population in the tens or hundreds of
thousands. With integrated community mechanisms inside
the application, Photoshop users could get answers to
questions, find out about new features, discuss problems,
and (as discussed further below) learn from watching
others at work.

Figure 2: Everquest can have in excess of concurrent
100,000 users. This figure shows 2 palettes of customized
interface components, the macro builder (see figure 3), and
a scrolling message window. Out of focus components are
more transparent and the in-focus macro builder is less
transparent.

LEARNING BY WATCHING
One aspect of community that games support very well is
the idea of learning from other more experienced users. In
communities, individuals regularly learn by observing
others. However, when those individuals are distributed
and do not see each other face-to-face, this type of
observational learning can be difficult. Computer
applications have the opportunity to provide users with
support for observing remote users so that they can benefit
from their expertise. However, most applications do not
provide a straightforward way in which this type of
observation can take place. Even in groupware
applications, the support for embodiment and workspace
awareness may not be adequate enough to allow users to
easily understand the actions of others at a fine-grained
level [10].
In contrast to conventional applications, many multi-player
computer games provide strong support for learning by
allowing users to observe others who are present in the
shared game world. This learning is usually made possible
through the use of real-time awareness and embodiment
information that provides each user with a detailed
understanding of the specific actions that are being carried
out by others. For example, GhostRecon represents each

user using a 3D avatar. The avatar can crouch, crawl, jump,
run, open doors, and pick up items; combinations of these
and other activities are all observable, and by observing
this a novice can learn from an expert. Support for this type
of observational learning in this case is tied to the use of an
avatar; however, it is the conveyance of the embodiment,
awareness, and task based information that allows for this
type of learning to occur, regardless of the mode of
conveying the information. Therefore, observational
learning can reasonably be transferred to other applications
by allowing remotely located users to observe the actions
of others, and by providing rich embodiment and
awareness information that allows for the easy
interpretation of fine grained actions.
While shared views of workspaces and activity awareness
have been explored in groupware literature [7], this type of
learning has never been considered for applications that are
traditionally considered as single-user systems. The success
of desktop sharing applications such as VNC suggests that
there is a need for this type of observational learning, both
at the operating system level and at the application level.
However, since these desktop sharing applications are
general tools, they do not always provide adequate
information for others to interpret task-specific activities
that are carried out in specific applications. To adequately
support observational learning, games show us that a fine
grained understanding of action sequences is required.
Taken a step further, desktop applications can convey
awareness of interactions with the workspace (i.e. mouse
pointers, drop-down menu selections), but also information
about the specific interaction events that are used to trigger
events at the application level. For example, information
about specific key sequences used by the expert user can be
displayed to the observer in order to allow them to learn
common shortcuts and keyboard-based command
sequences.

DEEP CUSTOMIZABILITY
Games consider modifying and extending the UI to be a
commonplace and necessary part of using the system. They
give users a set of simple but powerful mechanisms for
changing the UI to better support particular styles, tasks,
and situations. Although most conventional applications
offer some type of customizability, their facilities are
limited and require considerable effort to use. Games, in
contrast, take an extreme view of interface customization:
in many games, the form and content of the UI is almost
completely under the user’s control. We found three
innovative customization mechanisms in games that could
be applied to conventional applications: anything-goes UI
malleability, natural extensibility, and portable
customizations.

Anything-goes interface malleability
Game interfaces are plastic; they are designed to be
changed. Gamers have learned that different interface
configurations can greatly affect performance in different

game situations, and that no single configuration can be
appropriate for all tasks. This is equally true of complex
conventional applications like Word or Photoshop; the
difference is that gamers see the extra effort required for a
suboptimal interface configuration as the difference
between victory and defeat, or life and death.
The malleability of game interfaces can be seen in two
areas: interface layout, and mappings from controls to
functions.
Everquest is a good example of layout malleability. There
are many functions in the system, and different ones are
more or less useful in different scenarios (e.g. attacking,
defending, exploring, or buying and selling). As a result,
UI elements in Everquest have been designed to be picked
up and moved or copied. When a user holds the mouse
button down over an element for a longer-than-normal
time, the element detaches from its base and sticks to the
mouse cursor. The user can then put it down in a new
location anywhere on the interface. In addition, the game
makes it simple to create a new container for commands, so
that a custom palette of tools for a particular purpose can
be set up and located ready to hand in seconds, and with
only a few mouse clicks (see figures 2 and 3).
Game players use this capability all the time – and an
indication of its simplicity is that they use it not just to
satisfy long-term preferences, but also to address short-
term situations that may last only a few minutes.
The second type of malleability involves the ability to
remap the functions of UI controls. This practice arose
from the need to set the functions of input devices
(joysticks, mice, command keys), but has since been
adopted for visual controls as well.
Users can both change and add to the functions that
controls execute, and the latter is particularly common. For
example, some players in perspective shooter games remap
the ‘move left’ and ‘move right’ keys to add a ‘crouch
down’ function. This type of remapping begins to look like
a macro capability, which is discussed further in the next
section. Having complete power over remapping may
sometimes lead to chaos (e.g. remapping well-known
buttons or letters on the keyboard) but undo and reset
functionality allows users to play with the plasticity of the
system, and encourages them to try many new
configurations to see which if any will provide a benefit.

Natural extensibility
In addition to modifying the interface, games reduce the
threshold of effort needed to extending the UI to the point
where extensions become a natural and common part of the
user experience. Extending a system’s capabilities is a
powerful concept that has been around since early editors
like Emacs; however, in most conventional applications,
extensions are difficult to build and difficult to use [13].
Macros in games are easy to build, and once built, are put
into the interface as a normal command. An exemplar of

natural extension capabilities is Everquest. The game
comes with a number of ‘button blanks’ that act as
containers for command extensions and macros. Within
two mouse clicks, the user can be recording the actions
that they want stored in the new button; and once they are
finished, the new command is already part of the
interface and ready to test or use.

Figure 3: Everquest’s easy to use macro builder (right),
palettes of customized components (left), and a component
stuck to the mouse pointer being dragged to a new location.
In contrast, even though MS Word has powerful macro
capabilities, creating a macro requires seven actions
before starting, some of which are counter-intuitive (e.g.
pressing a button marked “Close” to start recording). Five
more actions are then needed place the macro onto a
toolbar for use.
As with its layout-modification capabilities, the
effectiveness of the Everquest macro capability is evident
in its popularity: users define new commands as a matter
of course, and do so even for a few minutes’ worth of
activity.

Portable customizations
Games have implemented their customization capabilities
in a way that allows modifications and extensions to be
saved, moved, and shared with others. This portability
allows for an entirely new approach to customization, one
in which users can have powerful situation-specific
interface configurations, without having to do any work
at all to build them.
In many games, macros, scripts, and layouts can be saved
as ordinary XML files. This means that customizations
can be edited and changed outside of the system – but
more importantly, it means that they are portable and can
be posted and traded within the user community. For
example, within three months of XML functionality
being added to Everquest, there were dozens of web sites
with hundreds of modifications available for download.
In addition, several ‘mod kits’ have appeared that greatly
simplify the creation, editing, and installation of
extensions, layouts, and skins. Users with little or no
experience in the game can now use (and improve if

necessary) interfaces that have been built by experts and
proven through hundreds of hours of use.
How much power to give the user in terms of customizing
an interface has long been an issue in HCI. On the one
hand, the argument goes, we should build the interface well
in the first place, rather than depend on the user to fix the
designer’s usability errors (and it is likely that one reason
that customizations became popular in gaming is that
earlier interfaces were not very well designed). On the
other hand however, complex applications that support
more and more tasks will always run into the problem that
no one interface setup will be optimal for any specific task
[19]. Games’ focus on performance and productivity has
led them to favour the second of these two hands, and it is
likely that for conventional applications that support many
functions and expert users, it will be a valuable approach as
well.

FLUID SYSTEM-HUMAN INTERACTION
Games deliver information in ways that minimize
disruption to the user’s work flow. The push for user
performance in games has led the games industry to
develop innovative communication strategies that demand
less user attention and less user effort. Games use three
novel approaches that result in a more fluid workflow:
calm messaging, attention-aware interface elements, and
context-aware view behaviours.

Calm messaging
Games deliver messages to the user in an unobtrusive way
that does not require users to dismiss, acknowledge, or
address them. In contrast, the approach taken by other
applications often interrupts workflow: for example,
notifications in modal dialog boxes demand attention and
must be explicitly acknowledged. Although there are times
when this can be justified, conventional applications often
use these heavyweight mechanisms for all system-human
communication. Games have shown that reducing demands
on the user’s attention can aid performance; through the
use of sound, speech, transient text, and animation, games
communicate in a calm manner that promotes a fluid,
uninterrupted workflow.
Audio. Audio is an effective way to convey information to
the user without adding visual clutter or breaking workflow
[5], and games do this by using recorded voice
notifications and by using spatialized environmental sound.
Many games have libraries that contain thousands of high
quality voice recordings and symbolic sounds that are used
to communicate events. In Comanche 4, for example,
recorded voice messages are used to convey information
while the user controls the game’s virtual helicopter. This
approach is necessary, since the game requires timely
responses from the user, and any delay introduced by the
application would be unacceptable. This approach shows
the potential for audio to inform the user of background
information, with relatively little interference with the
current task.

Transient text. Games make extensive use of transient text
messages, which are automatically dismissed by the
application and do not require any effort from the user.
Some games display text for a predetermined period of
time, and then it gradually fades from the user’s view (e.g.
MechWarrior 4). Others provide a message area that scrolls
older messages out of view as new messages appear (e.g.
Neverwinter Nights). These transient text techniques
promote fluid interaction since action is not required to
acknowledge or dismiss messages.
Animation. In games, subtle animation is commonly used
to draw the user’s eyes to a screen location that is
associated with an event and to convey other additional
information about the event. These animations are carefully
crafted to match their level of visibility with the importance
of the message that they are delivering. The ease with
which animation is able to indicate direction, location, and
priority allows messages to be conveyed very efficiently
without interrupting workflow.
Most games combine a variety of these calm messaging
techniques. For example, figure 4 shows how Warcraft III
uses animation, transient text, and audio to deliver
information to the user.

Figure 4: Calm messaging in Warcraft III. Text messages
fade after a short time. Animated red concentric circles and
arrows show the user where an event is taking place and
recorded voice is used to communicate the type of event.
Some applications could benefit greatly from the fluid
workflow that calm messaging provides; however, the
addition of these techniques to other applications must be
carefully considered. Game players do not typically have
more than one active window open at once, so it is a
reasonable assumption that they will see transient messages
and animation that is generated by a game, whereas
application users commonly have multiple windows open
concurrently. Application users often don’t pay attention to
the applications that they have running (i.e. all windows are
not necessary maximized and viewable), so messages could

be missed. Therefore, calm messaging may not be
appropriate for delivering anything critical or urgent.
However, for non-critical messages, calm messaging has
the potential to improve user performance.

Attention-aware interface elements
Games use user interface elements that automatically
modify themselves based on the amount of attention users
are paying to them. This technique is effective at reducing
visual clutter in areas of non-interest and increases the size
of the useable workspace.
A new windowing system that was recently released for
Everquest provides a particularly innovative example of
attention-aware components. Each window has two user
definable settings for transparency; one for when the
window is in focus, and one for when the window is not.
This allows the user to define the relative level of interest
for each of the components. When the user enters the
window area with their mouse pointer, the window
automatically adjusts its transparency level to
accommodate the increased interest in that area. A lower
level of awareness of other more transparent windows is
still maintained while not occluding the view of the game
world (figure 2).

Context-aware view behaviours
Games automatically zoom, pan, and rotate the view of the
workspace to best suit the task at hand. This reduces both
the amount of effort required from the user to navigate and
adjust the view of the workspace. For example,
Neverwinter Nights allows the user to choose between
three camera behaviours, which each automatically modify
the view in a different way. Each of these camera
behaviours is suitable for different types of tasks. Users can
(and do) quickly toggle between behaviours using
keyboard shortcuts to select the best behaviour that
minimizes the amount of work they have to perform to
navigate and adjust their view. Mastering the use of view
behaviours greatly improves the playability of the game,
and the importance of these behaviours is noted by their
placement in the interactive tutorial, which teaches users
how camera behaviours work as one of the first lessons.
This technique may not initially seem to be applicable to a
2D application. However, consider its potential use in a
drawing application like Photoshop. Imagine adding a view
behaviour that automatically scrolls when the user nears the
edge of the screen and another that automatically zooms to
keep the entire workspace in view regardless of what
elements are added or removed. If the user could quickly
toggle between these context-aware views, they could use
the behaviour that automatically scrolls for navigating and
performing touch ups in a detailed area without using the
scrollbars, and the behaviour that automatically zooms
could be used to build prototypes without having to adjust
the zoom control to keep the whole area in view.

Fluid system-human interaction in applications
These techniques all have the potential to improve
conventional application performance. Replacing non-
critical message dialogs with calm messages would reduce
the number of targeting tasks for the user and would not
steal focus from their active window. Making interface
elements attention-aware would result in fewer actions like
resizing, opening, closing, minimizing, and maximizing
windows. Context-aware view behaviours would reduce
the amount of effort required to modify views and navigate
the workspace. Applying these techniques to operating
systems and applications would undoubtedly result in
improved user performance in some situations.

DISCUSSION
In this paper, we identified novel design approaches in
games and suggested how these innovations might be
applied to other classes of software. Our success in finding
transferable techniques reflects two facts about games that
are often overlooked because of their isolation from
traditional UI design. First, games operate on the same
principles as other interactive systems, they share the same
design criteria of effectiveness, efficiency and satisfaction,
and they have had to solve many of the same interface
problems that conventional applications face. Second,
games are no longer played only by teenaged boys – 40%
of frequent PC game players are older than 36, and 38%
are female – and the ‘gamer demographic’ is becoming
indistinguishable from that of the ‘ordinary’ users who use
conventional applications.
Although we believe that the innovations we have
introduced will help to improve the usability of
conventional applications, there are issues of applicability
and risk, particularly in that some of the ideas radically
change the outlook of the application. In the next sections,
we review some of the issues for each of the four main
areas discussed earlier.
Effortless community. Porting the concept of natural
community to conventional applications poses three main
challenges: distraction, privacy, and security. Synchronous
collaboration has the potential to be distracting, and can
interfere with users’ individual work. There are also
substantial privacy and security issues involved with
adding this type of support, particularly when the user’s
workspace contains sensitive or proprietary content.
Although these issues must definitely be addressed, they go
with the territory. The advantages of collaboration and
community must be weighed against the compromises, but
there are many situations where the benefits will outweigh
the risks.
Learning by watching. Two main challenges in porting
observational learning to applications are privacy and
visibility. People will be less comfortable with letting
others watch them work than they will when playing
games. A carefully designed protocol for requesting and
granting permission to be observed is a prerequisite for this

type of technique to be effective and acceptable to users.
The other challenge is being able to show the observer
what is happening in a rich way that does not hinder the
expert. Nevertheless, the technique has great potential
because it is very beneficial to the observer while requiring
little or no work from the expert, something that many
groupware systems have difficulty with [6].
Deep customizability. Customizability in games is typically
used to increase performance on common tasks and to
accommodate user preferences. This goal is quite general,
and for that reason, the customizability concepts we have
presented in this paper can be reasonably transferred to a
range of applications. While better performance is
desirable, there are potential tradeoffs in memorability and
consistency. Additionally, it is not entirely clear whether
users of more conventional applications would embrace the
level of customizability that is available in games. For
example, it is not clear how scriptable interfaces and
portable customizations would be used or accepted by
users of conventional applications, and whether these users
would be as motivated as game users to modify the UI.
Fluid system-human interaction. There are a number of
risks associated with implementing the approaches games
take to fluid system human interaction in other
applications. First, it is unclear whether using sound rather
than written text to convey information would be too
distracting in office settings. Also, the use of sound and
fading messages can cause important information to be
missed, since these messages are not persistent. Finally, it
is not clear how users will respond to context aware view
behaviours and whether they will be willing to relinquish
total control of their view to the system.
There seem to be many instances where these techniques
could increase performance through a more fluid
workflow. The challenge now is to determine where and
when these techniques are appropriate.

CONCLUSION
Our exploration to find design innovations in games has
identified radical and novel interaction concepts and has
produced a wealth of ideas for future work. Games have
already shown that these approaches are beneficial to the
user through success in real-world use. The potential for
applications to benefit from adopting these novel
contributions is realistic because games and applications
share many commonalities. Further research into how these
innovations can be generalized, and a continued interest in
the progress of the game domain, will hopefully lead to
usability benefits for users of all applications.

REFERENCES
1. Abowd, G.D., Beale, R. Users, systems and interfaces: a

unifying framework for interaction. In HCI’91: People
and Computers VI, pages 73-87. 1991.

2. Cox, D.A, Chugh, J.S., Gutwin, C., Greenberg, S. The
usability of transparent overview layers, Proc. CHI’98,
pp. 301-302.

3. Donath, J.S. Visual Who: animating the affinities and
activities of an electronic community, Proc. ACM
Multimedia 1995, pp. 99-107.

4. GameSpot.http://gamespot.com/gamespot/misc/userrevi
ew/explained.html

5. Gaver, William. W. “The SonicFinder: An Interface
that Uses Auditory Icons.” Hum.-Comp. Inter. 4(1)
(1989).

6. Grudin, J. Groupware and social dynamics: eight
challenges for developers. Communications of the
ACM, 37(1), 1994, ACM Press, p.92-105.

7. Gutwin, C., Greenberg, S. Design for individuals,
design for groups: tradeoffs between power and
workspace awareness. Proc. CSCW’98, pp. 207-216.

8. Gutwin, C., Greenberg, S., Roseman, M. Workspace
awareness support with radar views, Proc. CHI’96, pp.
210-211.

9. Harrison, B.L., Vicente, K.J. An experimental
evaluation of transparent menu usage, Proc. CHI’96,
pp. 391-398.

10. Hindmarsh, J., Fraser, M., Heath, C., Benford, S.,
Greenhalgh, C. Fragmented interaction: establishing
mutual orientation in virtual environments, Proc.
CSCW’98, pp. 217-226.

11. Hopkins, D. The Design and Implementation of Pie
Menus. Dr. Dobb’s Journal, December, 1991, pp. 16-
26.

12. Interactive Digital Software Association, Essential facts
about the computer and video game industry, available
at http://www.idsa.com/IDSABooklet.pdf

13. Mackay, W.E. Triggers and barriers to customizing
software, Proc. CHI’91, pp. 153-160.

14. Malone, Thomas W. “Heuristics for designing
enjoyable user interfaces.” Proc. of the first major
conference on Human factors in computers systems
March 1982.

15. Norman, D.A. The Psychology of Everyday Things.
Basic Books, New York, 1988.

16. Tan, D.S., Robertson, G.G, & Czerwinski, M.
Exploring 3D Navigation: Combining Speed-coupled
Flying with Orbiting. Proc. CHI 2001, 498--505.

17. Whittaker, S. Talking to strangers: an evaluation of the
factors affecting electronic collaboration,
Proc.CSCW’96, pp. 409-418.

18. Wolf, C.C. A comparative study of gestural, keyboard,
and mouse interfaces. Behaviour and Information
Technology, 1992, v.1(1), pp. 13-23.

19. Woods, D.D. The price of flexibility, Proc. Intelligent
user interfaces, 1993, pp.19-25.

