
2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-1

Chapter 11: Creating Classes

Objectives
Students should

• Recall the meaning of classes and objects in Java
• Know the components in the definition of a Java class
• Understand how constructors work
• Be able to create class and object methods
• Be able to create new Java classes and use them correctly

Define Your Own Data Type

Recall that there are two categories of data in Java, namely primitive data type and class. As
mentioned earlier, we cannot create a new primitive data type. However, most of the time
programmers want to create new data types; they can do so by creating new classes
containing attributes and behaviors of the desired data types. Creating a new class, we write a
class definition associated with that class in specific Java syntax, and save the definition in a
separated .java file named after the name of the class. Once the definition is created, other
programs can utilize the newly created data type or class in a similar fashion to the primitive
data types or other existing classes. Go back and consult Chapter 5 if you cannot recall the
meaning of “objects” and how they are related to classes.

Suppose that we would like to create a new data type for representing points in a Cartesian
co-ordinate, we could create a new class called MyPoint, whose definition follows the
following structure.

public class MyPoint
{
 // a blank class definition
 // there’re no details yet
}

This definition has to be saved using the name MyPoint.java. Then, we can write another
program that makes use of this class. For example, we could create another program that
looks like:

public class TestMyPoint1 1
{ 2
 public static void main(String[] args) 3
 { 4
 MyPoint p, q; 5
 p = new MyPoint(); 6
 q = new MyPoint(); 7
 } 8
} 9

In the above program, variables p and q are declared as variables of the type MyPoint on line 5
using a similar syntax as when variables of other types are declared. On line 6 and line 7, p
and q are assigned with, or in other words, are made to refer to, new instances, or objects, of
the class MyPoint using the keyword new. This program just shows us a valid way to make
use of the newly created class. It has not done anything useful since we did not define
anything inside the definition of MyPoint.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-2

Notice that source codes of Java programs that we have written so far, they take the same
structure as class definitions. Actually, they are in fact class definitions. However, Java
programs are classes that contain the methods named main() which make the class executable.

In reality, we want to put something useful in the definition of our classes so that they are not
just blank as it appears in MyPoint above.

Components of Class Definitions

The main functionality of a class definition is to define attributes and behaviors of that class.
Attributes are entities defining properties of an object. Behaviors are actions (or reactions) of
an object. The table below shows example attributes and behaviors of some objects.

Object type Attributes Behaviors
Point in a 2D space The x coordinate

The y coordinate
etc.

Moving the point a specified location
Calculating distance from the point to a specified location
etc.

Graphical line in a
3D space

Location of the starting
point
Location of the ending
point
Color
etc.

Calculating the length of the line
Moving the starting point to a specified location
Moving the ending point to a specified location
Changing the color of the line
etc.

Complex number Value of the real part
Value of the imaginary
part
etc.

Adding the object with another complex object,
Multiplying the object with another complex object
Finding the conjugate of the object
Setting the real part to a specific number
Showing String representation of the object
etc.

Matrix Members
etc.

Adding elements to the object
Finding determinant
Adding the object with another matrix object
Finding the inverse of the object
Raising to the power of n
etc.

Car Body color
Dimensions
Weight
Number of doors
Manufacturer
Engine status
etc.

Starting the engine
Shutting down the engine
Showing the name of its manufacturer
Accelerating
Decelerating
etc.

Bank account Account name
Owner
Account type
Balance
etc.

Showing the current balance
Showing all info associated with the account
Withdrawing money from the account
Depositing to the account
Closing the account
etc.

Customer Customer ID
First name
Family name
Credit line
Gender
Favorite products
etc.

Showing all info of the customer
Changing the credit line
Checking whether the customer’s favorite product consists of a
specified product
etc.

To describe attributes and behaviors of objects of the class, a class definition can consist of the
following components.

1. data member or fields
2. methods
3. constructors

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-3

An object’s attribute is represented using a data member. Variables used for storing data
members are called instance variables. The behaviors of an object are described using methods.
Constructors are special methods invoked whenever objects of the class are created.

The class definition shown below serves as an example aiming at giving you a very broad
overview the structure and syntaxes of a class definition. Details are reserved for next
sections.

public class OrderedIntPair
{
 private int x;
 private int y;

 public OrderedIntPair(){
 this(0,0);
 }
 public OrderedIntPair(int x,int y){
 this.x = x;
 this.y = y;
 }
 public int getX(){
 return x;
 }
 public int getY(){
 return y;
 }
 public void setX(int x){
 this.x = x;
 }
 public void setY(int y){
 this.y = y;
 }
 public void setValue(int x, int y){
 this.x = x;
 this.y = y;
 }
 public double d(OrderedIntPair p){
 double diffXSquare = Math.pow((p.getX()-x),2);
 double diffYSquare = Math.pow((p.getY()-y),2);
 return Math.sqrt(diffXSquare+diffYSquare);
 }
 public String toString(){
 return "("+x+","+y+")";
 }
}

Data Members

Instance variables are used for storing data members. Instance variables can be declared, and
possibly initialized, using the same syntax used with variables in methods (such as int x;,
String s;, double [] d = {1.0, 2.0};, and etc.). Furthermore, modifiers determining access
rights, including public, private, and protected, can be used to determine which classes are
allowed to access the data members in those instance variables. For example, an object of the
class MyPoint can have two double values representing the x-coordinate and the y-coordinate
of the point represented by that object. Therefore, the class definition could look like:

public class MyPoint
{
 public double x;
 public double y;
}

The modifier public identifies that anyone can access the two instance variables using the dot
operator. The following example program demonstrates the accessing of the instance
variables.

data fields

constructors

methods

Class Definition
of
OrderedIntPair

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-4

public class TestMyPoint2 1
{ 2
 public static void main(String[] args) 3
 { 4
 MyPoint p = new MyPoint(); 5
 MyPoint q = new MyPoint(); 6
 p.x = 2; 7
 p.y = 3; 8
 q.x = 0.5; 9
 q.y = -0.5; 10
 System.out.println("("+p.x+","+p.y+")"); 11
 System.out.println("("+q.x+","+q.y+")"); 12
 } 13
} 14

On line 5 and line 6, the variables named p and q are created. Each of them is made to refer to
a new MyPoint object. The instance variable x of the object referred to by p is set to 2 while y is
set to 3 on line 7 and line 8. On the next two lines, the instance variable x of the object referred
to by q is set to 0.5 while y is set to -0.5. The code on line 11 and line 12 print the output on the
screen. They use the values of x and y in both objects through p.x, p.y, q.x, and q.y.

Now if we change the class definition of MyPoint to:

public class MyPoint
{
 private double x;
 private double y;
}

Compiling TestMyPoint2.java again will lead to compilation errors as shown in the picture
below.

The modifier private makes instance variables private to the class they are declared. That
means the instance variables can be used or accessed by that class or in the class definition of
that class only. Errors occur whenever the private instance variables x and y of any instances
of MyPoint are accessed directly by other classes. In this case, the class trying to access those

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-5

variables is TestMyPoint2. The modifier private allows the creator of the class to hide data
members from the outside world. Doing this is crucial to the data encapsulation concept in
Object-Oriented Programming (OOP). However, we do not intend to elaborate on OOP
concepts in this course.

Another modifier determining access levels is the modifier protected. Protected elements
cannot be access by any classes other than the class they are declared and their subclasses.
Subclasses will be discussed in the next chapter. The default access level for Java is protected.
That means if no access level is specified, it is, by default, protected.

Data members of a class can be objects of other classes, both standard and user-defined. For
example, let’s suppose we would like to create a class representing polygons, each of which
has its associated text label. We might decide that its data members include an array of
MyPoint objects for storing the location of every vertex of the polygon, and a String object
representing the label. The class definition could be listed as the code below.

public class MyLabelledPolygon
{ private MyPoint [] vertices;
 private String label;

 // ... other elements are omitted ...
}

Static and Non-static Data Members

Data members can be either static or non-static. Non-static data members are attributes of
instances of the class, while static data members are attributes of the class itself. In other
words, each instance of the class has its own copy of non-static data members, while static
data members are shared among every instances of the class. Data members are non-static by
default. To make a data member static, we use the modifier static in front of the declaration
of variables storing the data members. Therefore, to be precise, we will not call variables
storing static data members instance variables since the variables are not the attributes of any
specific instances but they are shared among every instances.

The following example shows how static and non-static variables are declared and used.

public class L11A 1
{ 2
 public static int i; 3
 public int j; 4
} 5

public class StaticDataMemberDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 L11A x = new L11A(); 5
 L11A y = new L11A(); 6
 L11A z = new L11A(); 7
 x.j = 5; 8
 y.j = 10; 9
 z.j = 15; 10
 System.out.println("x.j = "+x.j); 11
 System.out.println("y.j = "+y.j); 12
 System.out.println("z.j = "+z.j); 13
 x.i = 0; 14
 y.i++; 15
 z.i += 3; 16
 System.out.println("x.i = "+x.i); 17
 System.out.println("y.i = "+y.i); 18
 System.out.println("z.i = "+z.i); 19
 } 20
} 21

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-6

On line 5, line 6, and line 7, three instances of L11A are created and referred to by x, y and z.
On line 8, line 9, and line 10, the values of 5, 10, and 15 are assigned to the instance variables j
belonging to the objects referred to by x, y, and z, respectively. These objects do not share the
value of j. However, the variable i is shared by the three objects. The statement x.i = 0 on
line 14 assign 0 to i. Note that at this point y.i and z.i are also 0 since they refer to the same
thing. i can be modified via any objects. Therefore, we can see that the resulting value of i,
shared by x, y and z, is 4.

Methods

Methods describe behaviors of objects of the class. We have learned how to use methods
defined in existing classes in Chapter 5. In Chapter 5, we also mentioned that there were two
types of methods: static (class) methods and non-static (instance) methods. A (public) method
defined in a class definition is by default non-static and it can be invoked by other classes via
the instance name of an object of that class using the dot operator. To make a method static,
the keyword static is put in the method header. This way, the method can be invoked using
the dot operator with the name of the class. The general syntax of defining a method in a class
is similar to what we have already been familiar with in Chapter 8. This time, we will look at
the syntax in a more general view. The syntax follows:

(public|private|protected) (static) returnType methodName(argumentList){
 methodBody
}

An access level modifier (either public, private, or protected) can be specified at the
beginning of the method header. It determines whether which classes can make use of this
method. The access levels specified by public, private, and protected are similar to when
they are used with data members. If this modifier is not specified, the default access level is
protected.

The keyword static makes the method static, or a class method. If omitted, the method is
considered as non-static, or an instance method.

The other parts of the method definition are the same as what we discussed in Chapter 8.

We can define as many methods as we would like in the class definition. If the definition
contains a public method named main(), the class can be executed. In other words, the class is
in fact a Java program.

Accessor , Mutator Methods

Typically, in OOP, data members in a class are defined as private to prevent users of the class
accessing the data members directly. Instead, the creator of the class usually provides public
methods for reading or changing some data members. Methods provided for other classes to

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-7

read the values of data members are called “accessor methods”, while methods provided for
changing the values of data members are called “mutator methods”.

toString()

Whenever an object of a class needs to be converted to its String representation, Java
automatically calls a specific method called toString(). Therefore, in order to provide a
meaningful String representation of the class we create, it is sensible to provide the method
named exactly as toString() that returns the String representation we want.

Example

The following code shows a more complex class definition of MyPoint. The definition provide
appropriate methods, including mutator methods, accessor methods, toString() as well as
some other useful methods.

public class MyPoint 1
{ 2
 // data members 3
 private double x; 4
 private double y; 5
 6
 // accessor methods 7
 public double getX(){ 8
 return x; 9
 } 10
 public double getY(){ 11
 return y; 12
 } 13
 14
 // mutator methods 15
 public void setX(double x){ 16
 this.x = x; 17
 } 18
 public void setY(double y){ 19
 this.y = y; 20
 } 21
 22
 // other methods 23
 public void setLocation(double x, double y){ 24
 this.x = x; 25
 this.y = y; 26
 } 27
 public double distanceTo(MyPoint p){ 28
 double diffXSquare = Math.pow((p.getX()-x),2); 29
 double diffYSquare = Math.pow((p.getY()-y),2); 30
 return Math.sqrt(diffXSquare+diffYSquare); 31
 } 32
 public String toString(){ 33
 return "("+x+","+y+")"; 34
 } 35
} 36

The methods getX() and getY() declared on line 8 and line 11 allows other classes to read the
values of the private variables x and y, respectively. These are accessor methods. The methods
setX() and setY() declared on line 16 and line 19 allows other classes to set the values of the
private variables x and y. These are mutator methods.

You should notice the usage of this. this is a reference used for referring to the current
instance of the class. On line 17 and line 20, this.x and this.y refer to the instance variables x
and y of the current instance, i.e. the instance from which the methods are invoked.

Now, let’s use this class. Observe the following program and its output.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-8

public class TestMyPoint3 1
{ 2
 public static void main(String[] args) 3
 { 4
 MyPoint p = new MyPoint(); 5
 MyPoint q = new MyPoint(); 6
 p.setX(6.0); 7
 p.setY(5.0); 8
 q.setLocation(p.getX(),p.getY()); 9
 System.out.println("q="+q); 10
 p.setLocation(10.0,2.0); 11
 System.out.print("Distance from "+p+" to "); 12
 System.out.println(q+" is "+p.distanceTo(q)); 13
 } 14
} 15

On line 7, setX() is invoked from p. This set the value of x belonging to the MyPoint object
referred to by p to the value input to the method. Similarly, the value of y belonging to the
MyPoint object referred to by p is set to 5.0 on line 8.

On line 9, p.getX() and p.getY() return the value of the instance variables x and y belonging
to the MyPoint object referred to by p. These values are used as input parameters to
setLocation() invoked from q, in which the instance variable x of the object referred to by q is
assigned with the first input parameter to the method, while the instance variable y of the
object referred to by q is assigned with the other input parameter.

Whenever the String representation of a MyPoint object is needed, for example in argument
lists of print() and println() on line 10, line 12, and line 13, toString() of that object is invoked.

Example

Static methods are also useful when we would like to build a class providing useful
functionalities to be used by other classes or programs, such as the standard Math class. Such
a class is not commonly instantiated, or in other words, it is not common to create an object of
such a class. Therefore, the functionalities are provided through its public static methods.

Here is a sample class made up for providing some functionality for int array manipulations.
Note that this class serves as an example when static methods are used. There are some
smarter ways to manipulate arrays.

public class MyIntArrayUtil 1
{ 2
 public static int [] createRandomElements(int n,int min, int max){ 3
 int [] a = new int[n]; 4
 for(int i=0;i<n;i++){ 5
 a[i] = (int)Math.round(Math.random()*(max-min)+min); 6
 } 7
 return a; 8
 } 9
 public static void showElements(int [] a) 10
 { 11
 System.out.print("["+a[0]); 12
 for(int i=1;i<a.length;i++){ 13
 // continue on the next page

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-9

 System.out.print(", "+a[i]); 14
 } 15
 System.out.print("]\n"); 16
 } 17
 public static int [] removeAt(int [] a,int n){ 18
 if(n<0 || n>a.length-1) return a; 19
 int [] b = new int[a.length-1]; 20
 for(int i=0;i<n;i++){ 21
 b[i] = a[i]; 22
 } 23
 for(int i=n+1;i<a.length;i++){ 24
 b[i-1] = a[i]; 25
 } 26
 return b; 27
 } 28
 public static int [] insertAt(int [] a, int n, int k){ 29
 if(n<0 || n>a.length) return a; 30
 int [] b = new int[a.length+1]; 31
 for(int i=0;i<n;i++){ 32
 b[i] = a[i]; 33
 } 34
 b[n] = k; 35
 for(int i=n;i<a.length;i++){ 36
 b[i+1] = a[i]; 37
 } 38
 return b; 39
 } 40
} 41

The class MyIntArrayUtil created here contains four public static methods. The first one
defined on line 3 creates an int array of length n whose elements are integer randomly chosen
from min to max, inclusively. The method defined on line 10 prints all elements of the input
array on screen. The method defined on line 18 removes the element at a specified position.
Defined on line 19, the method inserts a given value to a specified position of the input array.

The following program makes use of the public static methods in MyIntArrayUtil. Observe
the output of the program by yourself.

public class TestMyIntArrayUtil 1
{ 2
 public static void main(String[] args) 3
 { 4
 System.out.print("\nOriginal array:\t\t"); 5
 int [] a = MyIntArrayUtil.createRandomElements(5,1,10); 6
 MyIntArrayUtil.showElements(a); 7
 System.out.print("insert 6 at 0:\t\t"); 8
 a = MyIntArrayUtil.insertAt(a,0,6); 9
 MyIntArrayUtil.showElements(a); 10
 System.out.print("insert 9 at 3:\t\t"); 11
 a = MyIntArrayUtil.insertAt(a,3,9); 12
 MyIntArrayUtil.showElements(a); 13
 System.out.print("insert 1 after:\t\t"); 14
 a = MyIntArrayUtil.insertAt(a,a.length,1); 15
 MyIntArrayUtil.showElements(a); 16
 System.out.print("remove at 2:\t\t"); 17
 a = MyIntArrayUtil.removeAt(a,2); 18
 MyIntArrayUtil.showElements(a); 19
 System.out.print("remove at 0:\t\t"); 20
 a = MyIntArrayUtil.removeAt(a,0); 21
 MyIntArrayUtil.showElements(a); 22
 System.out.print("remove the last:\t"); 23
 a = MyIntArrayUtil.removeAt(a,a.length-1); 24
 MyIntArrayUtil.showElements(a); 25
 } 26
} 27

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-10

Constructors

Constructors are special methods invoked whenever an object of the class is created.
Constructors are defined in the same fashion as defining methods. However, constructors
must have the same name as the class name, there must not be any return types specified at
the header of the constructors, and they have to be public. Constructors are usually for
initializing or setting instance variables in that class. How they are set is described in the
body of the constructor.

Below is an example of a no-argument (no input) constructor for MyPoint.

public MyPoint(){
 x = 1.0;
 y = 1.0;
}

Adding this constructor to the class definition of MyPoint, we obtain:

public class MyPoint
{
 // data members
 private double x;
 private double y;

 // constuctors
 public MyPoint(){
 x = 1.0;
 y = 1.0;
 }

 // …………………………………………… Here, details are omitted…………………………………

 public String toString(){
 return "("+x+","+y+")";
 }
}

Once MyPoint is defined this way, let’s observe the result of the following program.

public class TestMyPoint4
{
 public static void main(String[] args)
 {
 MyPoint p = new MyPoint();
 System.out.println(p);
 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-11

From the output, we can see that the values of x and y belonging to the MyPoint object
referred to by p are both 1.0. The values are set in the constructor when it is called due to the
creation of a new MyPoint instance. It should be obvious now that operations that should be
performed once an instance of the class is created can be put in a constructor.

Constructors can be overloaded just like methods. A class can have multiple constructors
with different input arguments. Which constructor to be called when an instance of the class
is created depends on the input arguments of the new statement. Considered a new class
definition of MyPoint listed below when overloaded constructors are added.

public class MyPoint
{
 // data members
 private double x;
 private double y;

 // constructors
 public MyPoint(){
 x = 1.0;
 y = 1.0;
 System.out.println("MyPoint() is called.");
 }
 public MyPoint(double x,double y){
 this.x = x;
 this.y = y;
 System.out.println("MyPoint(double,double) is called.");
 }
 public MyPoint(MyPoint p){
 x = p.getX();
 y = p.getY();
 System.out.println("MyPoint(MyPoint) is called.");
 }

 // …………………………………………… Here, details are omitted…………………………………

 public String toString(){
 return "("+x+","+y+")";
 }
}

The first constructor, MyPoint(), does not take any input arguments. Therefore, it is called via
the statement new Mypoint(). Such a constructor is usually called a no-argument constructor.
MyPoint(double x, double y) is a constructor that takes two double values as its input. It is
called via the statement new Mypoint(a,b), where a and b are any double values. This
constructor initializes the instance variables to the input values. Such a constructor that
requires the values of the instance variables as its input is usually referred to as a detailed
constructor. The last constructor shown above is MyPoint(MyPoint q). This constructor is
invoked as a response to the statement new Mypoint(c), where c is an instance of MyPoint. In
this constructor the value of x is set to the value of x from the instance of MyPoint supplied as
the input to the constructor, and the value of y is set to the value of y from the same instance.
Such a constructor that copies all attributes from the input instance is usually referred to as a
copy constructor. Just like method overloading, you should notice that constructors are not
limited to the ones shown in this example. Also note that we add an invocation of println()

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-12

inside each of the constructor to observe that which one of the constructors is invoked when
each instance is created.

Observe the output of the following program by yourself. Pay attention to the order of
constructors invoked through the messages printed out on the screen.

public class TestMyPoint5
{
 public static void main(String[] args)
 {
 MyPoint p = new MyPoint();
 System.out.println("p-->"+p);
 MyPoint q = new MyPoint(2.0,5.0);
 System.out.println("q-->"+q);
 MyPoint r = new MyPoint(q);
 System.out.println("r-->"+r);
 }
}

When there is no constructor provided, Java automatically adds a default no-argument
constructor, inside which all variables in the class are initialized with default values based on
their data types (zero for numeric data type, false for boolean, and null for non-primitive
types). However, if there is at least one constructor defined in the class, the default no-
argument will not be added automatically.

The following code runs fine since the compiler automatically adds a default no-argument
constructor which is called in response to new L11C().

public class L11C
{
 private int a;

 public int getA(){
 return a;
 }
}

public class TestL11C
{
 public static void main(String[] args)
 {
 L11C x = new L11C();
 System.out.println(x.getA());
 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-13

However, the following code leads to compilation error since the compiler cannot find any
constructors for new L11C(). The compiler does not add a default no-argument constructor
automatically since a constructor has already been defined.

public class L11D
{
 private int a;

 public L11D(int a){
 this.a = a;
 }

 public int getA(){
 return a;
 }
}

public class TestL11D
{
 public static void main(String[] args)
 {
 L11D x = new L11D();
 System.out.println(x.getA());
 }
}

Calling a Constructor from Other Constructors

A constructor can be invoked within another constructor using this([argument list]), where
[argument list] is the list of arguments corresponding to the argument list of the constructor
to be called. Given a detailed constructor, other constructors can be implemented by purely
calling the detailed constructor. There is one limitation that you need to keep in mind. If the
invocation of a constructor via this() statement is used, the statement must be the first
statement in the constructor. Otherwise, it will lead to a compilation error. The constructors
of MyPoint listed below works in a similar fashion to the one described in the last example
(except for the omission of println()).

 // constructors
 public MyPoint(){
 this(1.0,1.0);
 }
 public MyPoint(double x,double y){
 this.x = x;
 this.y = y;
 }
 public MyPoint(MyPoint p){
 this(p.getX(),p.getY());
 }

Example

Consider the class definition listed below.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-14

public class L11B
{
 private int a,b,c;
 public L11B(){
 this(1,2,3);
 System.out.println("Inside L11B()");
 }
 public L11B(int a,int b, int c){
 this.a = a;
 this.b = b;
 this.c = c;
 System.out.println("Inside L11B(int,int,int)");
 }
 public L11B(double a,double b,double c){
 this((int)Math.round(a),(int)Math.round(b),(int)Math.round(c));
 System.out.println("Inside L11B(double,double,double)");
 }
 public L11B(L11B x){
 this(x.a,x.b,x.c);
 System.out.println("Inside L11B(L11B)");
 }
}

Now observe the program listed below and make sure you can follow series of constructor
invocation through what are printed on the screen.

public class TestL11B 1
{ 2
 public static void main(String[] args) 3
 { 4
 System.out.println("\nExecuting: L11B x = new L11B();"); 5
 L11B x = new L11B(); 6
 System.out.println("\nExecuting: L11B y = new L11B(1.0,1.0,1.0);"); 7
 L11B y = new L11B(1.0,1.0,1.0); 8
 System.out.println("\nExecuting: L11B z = new L11B(new L11B());"); 9
 L11B z = new L11B(new L11B()); 10
 } 11
} 12

Example

A complex number is of the form a+jb, where a and b are real numbers, and j is a quantity
representing 1− . We would like to define a new class for complex numbers. Complex
numbers are added, subtracted, and multiplied by formally applying the associative,
commutative and distributive laws of algebra, together with the equation j2 = −1. Therefore,

)()())((
)()()()(
)()()()(

adbcjbdacjdcjba
dbjcajdcjba
dbjcajdcjba

++−=++

−+−=+−+

+++=+++

.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-15

The reciprocal or multiplicative inverse of a complex number can be written as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
=−+ 2222

1)(
ba

bj
ba

ajba ,

when the complex number is non-zero.

Division between two complex numbers is defined as:

1))((
)(
)(−++=

+
+ jdcjba

jdc
jba

.

Complex conjugate of a complex number a+jb is a-jb, while the magnitude of a+jb is

calculated by)22(ba + .

Here is an example of the class definition for Complex, a class we use for representing complex
numbers.

public class Complex
{
 // attributes: (re) + j(im)
 private double re;
 private double im;

 // constructors
 public Complex(){
 this(0,0);
 }
 public Complex(double r, double i){
 re = r;
 im = i;
 }
 public Complex(Complex z){
 this(z.getRe(),z.getIm());
 }

 //accessor methods
 public double getRe(){
 return re;
 }
 public double getIm(){
 return im;
 }

 //mutator methods
 public void setRe(double r){
 re = r;
 }
 public void setIm(double i){
 im = i;
 }

 //other methods
 public Complex adds(Complex z){
 return new Complex(re+z.getRe(),im+z.getIm());
 }
 public Complex subtracts(Complex z){
 return new Complex(re-z.getRe(),im-z.getIm());
 }
 public Complex multiplies(Complex z){
 double r = re*z.getRe()-im*z.getIm();
 double i = im*z.getRe()+re*z.getIm();
 return new Complex(r,i);
 }

 // continue on the next page

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 11-16

public Complex divides(Complex z){

 return this.multiplies(z.multInverse());
 }
 public Complex multInverse(){
 double den = Math.pow(this.magnitude(),2);
 return new Complex(re/den,-im/den);
 }
 public Complex conjugate(){
 return new Complex(re,-im);
 }
 public double magnitude(){
 return Math.sqrt(re*re+im*im);
 }
 public String toString(){
 if(im>=0)
 return re+"+j"+im;
 else
 return re+"-j"+(-im);
 }
}

The following program shows the class Complex in action.

public class TestComplex
{
 public static void main(String[] args)
 {
 Complex p = new Complex(1,1);
 Complex q = new Complex(3,4);
 System.out.println("p="+p+", q="+q);
 System.out.println("p+q="+p.adds(q));
 System.out.println("p-q="+p.subtracts(q));
 System.out.println("p*q="+p.multiplies(q));
 System.out.println("p/q="+p.divides(q));
 System.out.println("conjugate of p="+p.conjugate());
 System.out.println("magnitude of q="+q.magnitude());
 }
}

