
2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-1

Chapter 12: Inheritance

Objectives
Students should

• Understand the concept and role of inheritance.
• Be able to design appropriate class inheritance hierarchies.
• Be able to make use of inheritance to create new Java classes.
• Understand the mechanism involved in instance creation of a class inherited from

another class.
• Understand the mechanism involved in method invocation from a class inherited

from another class.

Inheritance: Creating Subclasses from Superclasses

Inheritance is an ability to derive a new class from an existing class. That new class is said to a
subclass, or derived class, of the class it is derived from, which is called superclass, or base class.
A subclass can be thought of as an extension of its superclass. It inherits all attributes and
behaviors from its superclass. However, more attributes and behaviors can be added to
existing ones of its superclass.

Let’s look at a simple example of how we create subclasses. Although it is not going to be
very useful in any real programs, this should serve as the first example of class inheritance
that gives you a first look at how corresponding class definition can be written. Suppose that
we have a class called L12A whose definition is:

public class L12A
{
 public int x;
 public double d;
 public double f(){
 return x*d;
 }
}

Now, let’s say that we would like to create a new class L12B that inherits all attributes and
behaviors from L12A with no extra attributes or behaviors added. Writing the class definition
of L12B does not involve repeating the code in L12A. We use the keyword “extends” to let Java
know that L12B inherits from L12A. With no additional attributes or behaviors, the class
definition of L12B can be simply written as:

public class L12B extends L12A
{
}

This very short code segment is already a valid class definition of L12B that we want. We
could now write a program that makes use of L12B. Consider the following program and its
output.

public class InheritanceDemo0 1
{ public static void main(String[] args) 2
 { 3
 L12B b = new L12B(); 4
 b.x = 2; 5
 b.d = 1.5; 6
 System.out.println("b.f() = "+b.f()); 7
 } 8
} 9

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-2

We can see from the above program that an object of the class L12B contains the instance
variables x and d, as well as f(), without having to explicitly write these attributes and
behaviors in the class definition of L12B. L12B is called a subclass of L12A. On the other hand,
L12A is called the superclass of L12B.

A class inheritance diagram can be used to show the relationship among classes. To show that
L12B is extended or inherited from L12A, a diagram in the figure below can be used.

However, the real benefit of inheritance is not creating a new class that behaves exactly the
same way as its superclass but creating a new class contains all attributes and behaviors of its
superclass together with some additional attributes and behaviors. For example, if we would
like to create a new class called L12C which has all the attributes and behaviors of L12A but
with a name for each instance of L12C, we could extends L12A with an additional instance
variable of type String as well as some appropriate methods. Such a class could be written as:

public class L12C extends L12A
{
 public String name;
 public String toString(){
 return name+":"+x+","+d;
 }
}

From the class definitions of the three classes: L12A, L12B, and L12C, their structures can be
depicted as the following figure.

int x;
double d;

String name;

L12A

int x;
double d;

existing
attributes

double f()

L12B

int x;
double d;

double f()

L12C

double f()

String toString()

existing
behavior

extended attributes

existing attributes

extended behavior

existing behavior

L12A

L12B

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-3

Now consider the following program and observe its output.

public class InheritanceDemo01 1
{ 2
 public static void main(String[] args) 3
 { 4
 L12C c = new L12C(); 5
 c.x = 5; 6
 c.d = 2.0; 7
 c.name = "An object with a name"; 8
 System.out.println("c.f() = "+c.f()); 9
 System.out.println("c.name = "+c.name); 10
 System.out.println(c); 11
 } 12
} 13

On line 5, a variable c is created and is referred to a new object of L12C. The statements line 6
and line 7 assign values to instance variables which are defined in the class definition of
L12A, the superclass of L12C. On line 8, the instance variable name which is a part extended in
L12C from L12A is assigned with a String. On line 9, the existing method f() in the superclass
is called, while on line 10, the instance variable name is used, and on line 11, Java
automatically calls toString() defined in L12C in response to System.out.println(c);.

Note that multiple-inheritance is not allowed. A subclass can only extend from a single
superclass, while a superclass can have more than one subclass inherited from the class.

A More Realistic Example

Suppose we have a class called CUStudent representing a student in Chulalongkorn
University. The class might have the structure as shown here.

Observing the structure, we can see that the class is designed so that it contains attributes and
behaviors that can be applied to all students in the university regardless of which
departments or faculties they enroll to.

CUStudent

String getId()
String getFullName()
double getGpa()
void updateGpa(double gpa)
void showInfo()
void assignAdvisor(CUStaff a)

String id;
String firstname, lastname;
double gpa;
CUStaff academicAdvisor;

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-4

Now, let’s consider creating a new class, called EngStudent, for representing students in
Chulalongkorn University who are in the faculty of Engineering. An engineering student is
still a student in Chulalongkorn University but probably with additional attributes and
behaviors. Here, we suppose that every student in the faculty of Engineering must have an
attribute showing which departments they are in. Therefore, this class should have all
attributes and behaviors that CUStudent has, together with additional attributes and
behaviors specific to EngStudent. We can create the class EngStudent by deriving or extending
from CUStudent. The desired structure might be like:

By its nature, an object of the class EngStudent can be thought of as a special case of the class
CUStudent. To define EngStudent, we need to create its class definition just like what we have
to when we would like to create a new class. However, we do not have to rewrite everything
in the class definition of EngStudent. We extend the class definition of CUStudent to obtain the
class definition of EngStudent.

The class inheritance diagram for CUStudent and EngStudent can be shown in the following
figure.

Suppose that CUStudent is defined as:

public class CUStudent 1
{ 2
 private String id; 3
 private String firstname, lastname; 4
 private double gpa; 5
 private CUStaff academicAdvisor; 6
 7
 public CUStudent(String id, String firstname, String lastname) 8
 { 9
 this.id = id; 10
 this.firstname = firstname; 11
 this.lastname = lastname; 12
 gpa = 0.0; 13
 academicAdvisor = null; 14

CUStudent

EngStudent

EngStudent

String getId()
String getFullName()
double getGpa()
void updateGpa(double gpa)
void showInfo()
void assignAdvisor(CUStaff a)

String getDepartment();
boolean setDepartment();

String id;
String firstname, lastname;
double gpa;
CUStaff academicAdvisor;

String department; extended attributes

existing attributes

extended behaviors

existing behaviors

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-5

 } 15
 public String getId(){ 16
 return id; 17
 } 18
 public String getFullName(){ 19
 return firstname+" "+lastname; 20
 } 21
 public double getGpa(){ 22
 return gpa; 23
 } 24
 public void updateGpa(double gpa){ 25
 this.gpa = gpa; 26
 } 27
 public void showInfo(){ 28
 System.out.println(); 29
 System.out.println("ID:"+getId()); 30
 System.out.println(getFullName()); 31
 System.out.println("Advisor:"+getAdvisor()); 32
 } 33
 public void assignAdvisor(CUStaff a){ 34
 academicAdvisor = a; 35
 } 36
 public CUStaff getAdvisor(){ 37
 return academicAdvisor; 38
 } 39
 public String toString(){ 40
 return "CUStudent:"+getFullName(); 41
 } 42
} 43

Note that private modifiers with instance variables on line 3 to line 6 are used so that the
access to these variables is limited to this class only. It means that these variables can be used
directly inside the class definition of CUStudent only.

To obtain the desired EngStudent, we can create its class definition as the following.

public class EngStudent extends CUStudent 1
{ 2
 private department; 3
 4
 public EngStudent(String id,String firstname,String lastname){ 5
 super(id,firstname,lastname); 6
 department = null; 7
 } 8
 9
 public String getDepartment(){ 10
 return department; 11
 } 12
 public boolean setDepartment(String dept){ 13
 if(validDepartment(dept)){ 14
 department = dept; 15
 return true; 16
 }else{ 17
 return false; 18
 } 19
 } 20
 private boolean validDepartment(String dept){ 21
 // This method returns true if the input String 22
 // is a valid department in Engineering school. 23
 … :
 // Implementation is omitted. :
 }
}

Observing the definition of EngStudent, we can see that only extended attributes and
extended behaviors, including the EngStudent constructor, are needed to be defined. We use
the keyword “extends” followed by the name of the desired base class, which in this case is
CUStudent, to let Java know that this class is derived from the specified class. Therefore,
EngStudent contains every attributes and behaviors that its base class has.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-6

Let’s look at the following example to see EngStudent in action.

public class InheritanceDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 EngStudent a 5
 = new EngStudent("4971234521","Alan","Smith"); 6
 CUStaff b 7
 = new CUStaff("3600","Alex","Ferguson"); 8
 a.assignAdvisor(b); 9
 a.showInfo(); 10
 if(a.setDepartment("ICE")) 11
 System.out.println(a.getDepartment()); 12
 } 13
} 14

On line 5, a is a variable referring to a new EngStudent object which is created by the new
statement written on line 6. This statement causes the invocation of the constructor of
EngStudent, which is defined on line 5 of the definition of EngStudent. The purpose of the
constructor is to initialize appropriate values to all of the attributes which, in this case,
consists of attributes existing in the superclass and extended attributes additionally defined in
the class definition of the subclass. To initialize attributes in the superclass, we usually call a
constructor of the superclass. The super() is used for referring to the corresponding
constructor of the superclass. Therefore, super(id,firstname,lastname); on line 6 of the
EngStudent class definition invokes the constructor with three String parameters defined on
line 8 in CUStudent class definition. Initialization of extended attributes for the subclass is
done via typical assignment statements, such as department = null; in this example.

Next in the program, an object of class CUStaff, whose definition is omitted here, is created
and referred to by a variable b. Then, on line 9, assignAdvisor() is called from an object of class
EngStudent. We can see that assignAdvisor() is not defined in EngStudent. However, this
method is defined in its superclass. Therefore, it is a behavior existing in CUStudent and
statements listed in the corresponding method (on line 34 in CUStudent) are performed.

The same applies to showInfo(). It is defined in CUStudent not in EngStudent. Always keep in
mind that an object of the class EngStudent has attributes and behaviors that its superclass has
even though they are not listed explicitly in the definition of the subclass. Thus, methods such
as assignAdvisor() and showInfo() can be called from an object of the class EngStudent without
any problems.

On line 11 and line 12 in the program, setDepartment() and getDepartment() are called from a.
These two methods are the ones extended from the superclass. They only exist for the
subclass only. Although we can access methods belonging to superclasses from objects of the
subclasses, we cannot access the method belonging to subclasses through objects of
superclasses. For example, if x is a variable referring to a CUStudent object, the program

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-7

cannot be compiled successfully when x.setDepartment(…) or x.getDepartment() is used. See
the following example and observed the compilation result.

public class InheritanceDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 CUStudent x 5
 = new CUStudent("4971234521","Alan","Smith"); 6
 CUStaff b 7
 = new CUStaff("3600","Alex","Ferguson"); 8
 x.assignAdvisor(b); 9
 x.showInfo(); 10
 if(x.setDepartment("ICE")) 11
 System.out.println(x.getDepartment()); 12
 } 13
} 14

Designing Class Inheritance Hierarchy

Using inheritance effectively in creating new classes does not involve only the Java syntax
used in defining the new class but also organizing classes in a hierarchical manner. A good
class hierarchy helps us understand the relationship among classes. Superclasses are always
more general than subclasses since a subclass possesses everything that its superclass has
while it can also possess additional attributes and behaviors. There is an is-a relationship
between a subclass and its superclass. We can say that an object of a subclass is also naturally
an object of its superclass. In the previous example, EngStudent is a subclass of CUStudent.
That means an engineering student “is a” student in Chulalongkorn University.

A subclass can be inherited further by other classes. This makes a hierarchy of classes. The
figure below shows an example of a hierarchy among some quadrilaterals.

Compilation error

Compilation error

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-8

Here are the definitions of the shape shown above.

• Quadrilateral: A polygon with four sides and four vertices.

• Convex quadrilateral: A quadrilateral whose every internal angle is at most 180 degrees and Every line
segment between two vertices of the quadrilateral remains inside or on the boundary of the quadrilateral.

• Concave quadrilateral: A quadrilateral that is not convex.

• Trapezoid: A convex quadrilateral in which one pair of opposite sides is parallel.

• Parallelogram: A trapezoid whose opposite sides have equal length, opposite angles are equal and the
diagonals bisect each other.

• Rectangle: A parallelogram where each angle is a right angle.

• Square: A rectangle where four sides have equal length.

A good class hierarchy must conform to that each single subclass ‘is a’ superclass. From the
above example, a square is a rectangle, a rectangle is a parallelogram, and so on. According to
the hierarchy, a square is also a quadrilateral, or we can say that a square is a more specific
case of a quadrilateral. A quadrilateral is the most general case of all the shapes in the
hierarchy. Therefore, each shape is a quadrilateral with additional attributes and behaviors.

Access Control

When data members and methods are declared or defined in a class, creator of the class can
give access right to each of them. We have seen the keywords public and private used in
front of the declaration of data members and methods. These two keywords determine which
classes can access those data members and methods. Class access rights regarding to three

Quadrilateral

ConvexQuadrilateral ConcaveQuadrilateral

Parallelogram

Rectangle

Trapezoid

Square

is a

is a

is a

is a

is a

is a

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-9

access levels used in Java: public, private, and protected, are listed in the table below. When
no explicit access levels are used, the access rights are the ones listed in the row labeled
“default”.

Accessing Class Access Level
current class subclass other

public
protected
default
private

A table cell marked with means that the corresponding accessing class can access resources
with the corresponding access level. In other words, the dot operator can be used in the code
listed inside the accessing class to access resources with the corresponding access level
directly. A table cell marked with means that we cannot use the dot operator inside the
accessing class in order to access resources with that access level directly.

Observe the following example.

public class MyDot2D
{
 private double x=0;
 private double y=0;

 public double getX(){
 return x;
 }
 public double getY(){
 return y;
 }
}

public class AccessLevelDemo1
{
 public static void main(String[] args)
 {
 MyDot2D p = new MyDot2D();
 System.out.println(p.x);
 System.out.println(p.y);
 }
}

The above program yields compilation errors since x and y have private access level and
attempts to access them directly using the dot operator are made inside a class
(AccessLevelDemo1) other than MyDot2D.

Keyword ‘super’

Data members or methods in a superclass having either public or protected access levels can be
accessed directly from inside the class definitions of its subclasses by referring to the name of
the data members or methods to be accessed. However, if referring by names alone causes

Compilation error

Compilation error

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-10

any confusion, for example, when names already used in the superclass are reused in the
subclass, we can use the keyword ‘super’ to identify explicitly that data members or methods
of the superclass are the ones desired. This keyword acts as a reference to the superclass
instance associated with the current instance of a subclass, in the same fashion as ‘this’ is used
as the reference to the current instance of the class it is used in.

Consider the following example and observe its output.

public class MySuperclass
{
 public int a = 1;
 public int b = 2;
 public void f(){
 System.out.println("\tf() of MySuperclass is called.");
 }
 public void g(){
 System.out.println("\tg() of MySuperclass is called.");
 }
}

public class MySubclass extends MySuperclass
{
 public int a = 9;
 public void f(){
 System.out.println("\tf() of MySubclass is called.");
 }
 public void test(){
 System.out.println("a = "+a);
 System.out.println("b = "+b);
 System.out.println("super.a = "+super.a);
 System.out.println("super.b = "+super.b);
 System.out.println("f()");
 f();
 System.out.println("g()");
 g();
 System.out.println("super.f()");
 super.f();
 System.out.println("super.g()");
 super.g();
 }
}

public class SuperDemo
{
 public static void main(String[] args)
 {
 MySubclass y = new MySubclass();
 y.test();
 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-11

Object Variables

A variable whose type is a class can refer to an object of that class as well as an object of any
one of its subclasses. However, the opposite is not true. A variable of a class cannot be used
to refer to an object of its superclass, just like when a variable cannot be used to refer an object
whose class is different from the variable type.

Recall the class hierarchy of L12A, L12B, and L12C. Each of the following code segments are
valid and compiled without errors.

 L12A a = new L12A();
 L12B b = new L12B();
 L12C c = new L12C();
 a = b;
 a = c;

 L12A a1 = new L12B();
 L12A a2 = new L12C();

 L12A [] a = new L12A[3];
 a[0] = new L12A();
 a[1] = new L12B();
 a[3] = new L12C();

However, the following program cannot be compiled successfully.

public class ObjectVariableInvalidDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 L12A a = new L12A(); 5
 L12B b = new L12B(); 6
 L12C c = new L12C(); 7
 b = a; 8
 c = a; 9
 b = c; 10
 } 11
} 12

Method Overriding and Polymorphism

When a method that has already been defined in a class is redefined in its subclass using the
same identifier and the same list of input arguments, it is called that the method defined in
the subclass overrides the one in its superclass. When this happens, which method to be
invoked, i.e. the one in the superclass or the one in the subclass, depends on the type of the
object from which the method is invoked.

Consider the following program and its output.

Compilation error

Compilation error

Compilation error

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-12

public class MethodOverridingDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 L12A a = new L12A(); 5
 a.x = 2; 6
 a.d = 1.0; 7
 8
 L12D d = new L12D(); 9
 d.x = 2; 10
 d.d = 1.0; 11
 d.y = 2.5; 12
 13
 System.out.println("a.f()="+a.f()); 14
 System.out.println("d.f()="+d.f()); 15
 16
 a = d; 17
 System.out.println("a.f()="+a.f()); 18
 } 19
} 20

The important points in this example is the methods invoked when a.f() and d.f() are
called. On line 5, a is made to refer to an L12A object. On line 9, d is made to refer to an L12D
object. Therefore, a.f() on line 14 invokes f() from L12A, and d.f() on line 15 invokes f() from
L12D. However, after that, a is made to refer to an L12D object (the same object that d refers
to), which is a valid operation since L12D is a subclass of L12A. Consequently, a.f() on line
18 invokes f() from L12D instead of f() from L12A.

In conclusion, you have to keep in mind that it is not the variable type that determines the
method invocation, but the type of object to which the variable refers.

Polymorphism is the ability of objects belonging to different types to respond to method calls
of methods with the same name, each one according to an appropriate type-specific behavior.
Java does not have to know the exact type of the object in advance, so this behavior can be
implemented at run time. This is called late binding or dynamic binding.

Consider the following class definitions.

public class BookItem
{
 protected String name;
 protected double listedPrice;

 public BookItem(String name,double price){
 this.name = name;
 listedPrice = price;
 }
 public double getSellingPrice(){
 return listedPrice;
 }
 public double getListedPrice(){
 return listedPrice;
 }
 public String toString(){
 return "BookItem:"+name;
 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-13

public class UsedBook extends BookItem
{
 protected double discountFactor;

 public UsedBook(String name,double price,double discountFactor){
 super(name,price);
 this.discountFactor = discountFactor;
 }
 public double getSellingPrice(){
 return (1-discountFactor)*listedPrice;
 }
 public String toString(){
 return "UsedBook:"+name;
 }
}

public class RareBook extends BookItem
{
 protected double premiumFactor;

 public RareBook(String name,double price,double premiumFactor){
 super(name,price);
 this.premiumFactor = premiumFactor;
 }
 public double getSellingPrice(){
 return (1+premiumFactor)*listedPrice;
 }
 public String toString(){
 return "RareBook:"+name;
 }
}

The three class definitions listed above show that the class BookItem is the superclass of the
other two classes, UsedBook and RareBook. Each of the three class has its own implementation
of getSellingPrice() and toString(). As mentioned, which implementation of these two methods
is invoked depends on the type of the object from which the method is called. The following
program uses the three classes we have just defined.

import java.io.*; 1
public class BookShop 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 BufferedReader stdin = 6
 new BufferedReader(new InputStreamReader(System.in)); 7
 System.out.print("Number of books:"); 8
 int nBooks = Integer.parseInt(stdin.readLine()); 9
 BookItem [] bookInventory = new BookItem[nBooks]; 10
 int i=1; 11
 while(i<=nBooks){ 12
 bookInventory[i-1] = getBook(i); 13
 i++; 14
 } 15
 showBookInfo(bookInventory); 16
 17
 } 18
 public static BookItem getBook(int i) throws IOException{ 19
 BufferedReader stdin = 20
 new BufferedReader(new InputStreamReader(System.in)); 21
 BookItem b; 22
 while(true){ 23
 System.out.println("----------------\nBook #"+i); 24
 System.out.print("Type(1=Regular,2=Used,3=Rare):"); 25
 int type = Integer.parseInt(stdin.readLine()); 26
 if(type<1 || type>3){ 27
 System.out.println("Invalid type."); 28
 continue; 29
 } 30
 System.out.print("Book name:"); 31
 String name = stdin.readLine(); 32
 System.out.print("Listed price:"); 33

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-14

 double price = Double.parseDouble(stdin.readLine()); 34
 double factor; 35
 switch(type){ 36
 case 1: 37
 b = new BookItem(name,price); 38
 break; 39
 case 2: 40
 System.out.print("Discount factor:"); 41
 factor = Double.parseDouble(stdin.readLine()); 42
 b = new UsedBook(name,price,factor); 43
 break; 44
 case 3: 45
 System.out.print("Premium factor:"); 46
 factor = Double.parseDouble(stdin.readLine()); 47
 b = new RareBook(name,price,factor); 48
 break; 49
 default: 50
 b = null; 51
 } 52
 break; 53
 } 54
 return b; 55
 } 56
 public static void showBookInfo(BookItem [] bookInventory){ 57
 System.out.println("####################################"); 58
 for(int i=0;i<bookInventory.length;i++){ 59
 System.out.println("Item #"+i+":\t"+bookInventory[i]); 60
 System.out.print("Listed Price:\t"); 61
 System.out.println(bookInventory[i].getListedPrice()); 62
 System.out.print("Selling Price:\t"); 63
 System.out.println(bookInventory[i].getSellingPrice()); 64
 System.out.println(); 65
 } 66
 System.out.println("####################################"); 67
 } 68
} 69

Let’s look at main() first. The program asks the user to input the number of books to be stored
in an array of BookItem. Then, the user is asked to input the information of each book. Finally,
the program prints out information associated with each element in the array. We can see that
at the compilation of the code, the program has no way to know the type of each element in
the array bookInventory except that it has to be of the type BookItem or one of its subclasses.

On line 12 to line 15, a while loop is used to gather information of each array element. Inside
the method getBook(), an object of type either BookItem, UsedBook, or RareBook is created and
returned from the method. The returned object is referred to as an element of bookInventory.
Notice that the return type of getBook() is BookItem, with which it is also perfectly correct for
the method to return an object of its subclass.

Polymorphism is used in showBookInfo() since the program does not know in advance about
the exact type of each object in bookInventory. For each element in the array, toString() is
called inexplicitly on line 60, getListedPrice() is called on line 62, and getSellingPrice() is called
on line 64. Late binding through polymorphism in Java makes the program know at run-time
which implementation of toString() and getSellingPrice() (i.e. the implementations in the
superclass or the subclass) to be invoked based on the type of the object from which the
methods are called. For getListedPrice(), it is only implemented in the superclass. Therefore,
there is no confusion on which method to be invoked.

Observe an output of BookShop.java shown below. Pay attention to the value of the selling
price for each element printed on screen.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-15

Note that we will not cover abstract classes and interface in this course. These concepts are
usually used with polymorphism in order to obtain more benefits from late binding.

Instance Creation Mechanism

When an instance or object of a class is created, if there is no explicit call of any constructors
of its superclass (like when super() is used in the constructor of EngStudent mentioned earlier),
the no-argument constructor of the superclass is called automatically before the execution of
any statements in the subclass’s constructor (if there are any).

To demonstrate this mechanism, let’s look at the following class definitions.

public class L12E
{
 public L12E(){
 System.out.println("\tL12E() is called.");
 }
}

public class L12F extends L12E
{
}

public class L12G extends L12E
{
 public L12G(){
 System.out.println("\tL12G is called.");
 }
 public L12G(String s){
 System.out.println("\tL12G(String s) is called.");
 }
 public L12G(int i){
 super();
 System.out.println("\tL12G(int i) is called.");
 }
}

L12F and L12G are subclasses of L12E. Let’s consider the following program. Pay attention to
messages printed on screen when each object is created.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 12-16

public class CreationDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 System.out.println("1)-----------------"); 5
 L12F f = new L12F(); 6
 System.out.println("2)-----------------"); 7
 L12G g1 = new L12G(); 8
 System.out.println("3)-----------------"); 9
 L12G g2 = new L12G("Hello"); 10
 System.out.println("4)-----------------"); 11
 L12G g3 = new L12G(8); 12
 } 13
} 14

When an object of L12F is created on line 5, since there is no implementation of any
constructor in L12F, the no-argument constructor of its superclass, L12E(), is invoked
automatically.

When an object of L12G is created, if either L12G() or L12G(String s) is called, the no-argument
constructor of its superclass, L12E(), is again invoked automatically since there is no explicit
call to the constructor of L12E. If L12G(int i) is called, the constructor of L12E is not called
automatically since it is explicitly called by the first statement of L12G(int i).

Keep in mind that, if you want to explicitly call any constructor of the superclass, the super()
statement has to be used in the first statement only. Otherwise, the class will not be compiled
successfully. The following class is an example of such a case that cannot be compiled
successfully.

public class L12H extends L12E
{
 public L12H(){
 System.out.println("\tL12H is called.");
 super();
 }
}

