
2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

Chapter 2: Programming Concepts

Objectives
Students should

• Know the steps required to create programs using a programming language and
related terminology.

• Be familiar with the basic structure of a Java program.
• Be able to modify simple Java program to obtain desired results.

Programming Languages

A program is a set of instructions that tell a computer what to do.

We execute a program to carry out the instruction listed by that program.

Instructions are described using programming languages.

High-level programming languages are programming languages that are rather natural for
people to write. Examples of high-level programming languages include Java, C, C++, C#,
Visual Basic, Pascal, Delphi, FORTRAN, and COBOL.

The most primitive type of programming language is a machine language or object code. Object
code is a set of binary code that is unique to the type of CPU. Each instruction of the object
code corresponds to a fundamental operation of the CPU. That means it usually requires
many object code instructions to do what can be done in one line of high-level language code.
Writing object code directly is tedious and error-prone.

High-level language code does not get executed on a computer directly. It needs to be
translated from the high-level language to suitable machine language first. Such a translator
program is normally referred to as a compiler.

The input of a compiler is referred to as source code. Source code is compiled to by a compiler to
obtain target code.

Running a Java Program

Unlike other programming languages, compiling Java source code does not result in a
machine language program. Instead, when Java source code is compiled, we get what is
called Java bytecode. Java bytecode is a form of machine language instructions. However, it is
not primitive to the CPU. Java bytecode runs on a program that mimics itself as a real
machine. This program is called the Java Virtual Machine (JVM).

This architecture makes Java bytecode runs on any machines that have JVM, independent of
the OSs and CPUs. This means the effort in writing Java source code for a certain program is
spent once and the target program can run on any platforms. (E.g. Windows, MacOS, Unix,
etc.)

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

Figure 1: Platform-independent architecture of Java language

Typical Programming Cycle

During the implementation of a program, programmers always run into a typical cycle, as
shown in the figure below.

Figure 2: Typical cycle in Java programming

It normally starts with the coding step, in which the source code is written in any text editors
or integrated programming environment. In Java, source code files are usually saved with
.java extension. Once the Java source code is saved, it is compiled using a java compiler, such
as javac, to obtain the resulting Java bytecode, which is also called a Java class. The actual Java
class file is created with .class extension. Then, the program is executed by running the
command ‘java’ on the class file. If the result appears as expected, the cycle terminates.
Otherwise, the source code has to be edited, then compiled and executed again. The process
of fixing the source code in order to obtain the right result is called ‘debugging’.

Java Basic Program Structure

Let’s look at a source code named “MyFirstProgram.java” below. Note that the number at the
end of each line indicates line number. They are not part of the source code.

Java program

Java program

Java program

OS

Machine

JVM

.java .class
edit compile run

source code java bytecode

01010110
01101101

Hello!

output

debug

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

public class MyFirstProgram 1
{ 2
 //This program just shows message on a console. 3
 public static void main(String [] args) 4
 { 5
 System.out.print("Hello World!"); 6
 } 7
} 8

When compiled, this program shows the message “Hello World!” on screen. Now we will
investigate the structure of this Java source code in order to get familiar with the basic
structure.

First of all, we can observe that there are two pairs of curly brackets {}. The opening curly
bracket on line 2 and the closing curly bracket on the last line make a pair. The ones on line 5
and line 7 make another pair locating inside the first one. Here, we will refer to the content
between a pair of curly bracket together with its associated header, i.e. public class

MyFirstProgram for the outer pair or public static void main(String [] args)for the inner
pair, as “block”. The idea of looking at the program structure as blocks can be illustrated
below.

public class MyFirstProgram 1
{ 2
 //This program just shows message on a console. 3
 public static void main(String [] args) 4
 { 5
 System.out.print("Hello World!"); 6
 } 7
} 8

Block 1 is the definition of the program. Block 2 is a part of the definition which is called the
main() method. The symbol // is used for indicating that any texts after that until the end of
the line are comments, which are ignored by the compiler. They are just there for
programmers to make notes for themselves or other people reading their source code. Thus,
we can say that the definition of this program consists of a comment on line 3 and the main()
method from line 4 to 7.

The main() method is the program’s entry point. Program is executed following the
commands listed in the main method, starting from the top. From this example, when the
program is executed, it is the statement on line 6 that prints the message “Hello World!”
(without double quotes) on screen.

 In Java, what we do all the time is creating what are called classes. In this MyFirstProgram
.java source code, we create a class named MyFirstProgram. Each class that is created in Java
can have one or more methods, which are units of code that perform some action. They are
generally similar to functions, procedures, or subroutines in other programming languages. A
class whose definition contains the main() method can be executed, or, in other words, is a
program. Classes that do not have the main() method cannot be executed. They are there for
other program to use.

Now that you have heard about the term class, Block 1 in the above example is called the class
definition of the class names MyFirstProgram, which is a Java program since it has the main()
method. The statement public class MyFirstProgram indicates the starting of the class
definition, while the statement public static void main(String [] args)explains how the
method named main() should be used. We will go into details about these later.

Note that Java requires the source code to be saved using the same name as the class
contained in the file (with the extension .java). Only one class can be in each .java file.

Block 1

Block 2

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

Below is an example of a Java program that is perfectly correct but seems to do nothing at all.

public class MyLazyProgram 1
{ 2
 public static void main(String [] args) 3
 { 4
 } 5
} 6

Syntax, Keywords, and Identifiers

Writing program in Java, or other computer programming languages, is like writing in any
human spoken language but a lot more formal. When writing in a sentence in a human
language, we need to follow its grammar. Programming languages also have syntax or rules
of the language and they have to be followed strictly.

Keywords are words that are reserved for particular purpose. They have special meanings and
cannot be changed or used for other purposes. For example, from the class definition header
in the last example, public class MyFirstProgram , the word “public” and “class” are
keywords. Thus, both words cannot be used in Java programs for naming classes, methods,
or variables.

Identifiers are names that programmers give to classes, methods, and variables. There are
certain rules and styles for Java naming, which we will discussed in details later in this
course. For the previous example, public class MyFirstProgram, the word “MyFirstProgram”
is a Java identifier selected as the name of the class.

Note that Java is a case-sensitive language. Uppercase and lowercase letters are not
considered the same. Java keywords are only consisted of lowercase letters.

Comments

It is a good practice to always add meaningful comments into the source code. There are two
ways of commenting in Java source code. The first way is called single line commenting. It is
done by using double slashes // as shown in the previous example. Any texts between and
including // and the end of the line are ignored by the compiler.

The second way is called block commenting. In contrary to the first way, this can make
comment span more than one line. Any texts that are enclosed by a pair of the symbol /* and
*/ are ignored by the compiler, no matter how many lines there are.

The following program, MyCommentedProgram.java, yields the same result as
MyFirstProgram.java. The green (lighter) texts are the parts commented out.

// An example of how to add comments 1
// This is a part of chapter 2 of 2140101 class notes 2
// Written by Atiwong Suchato 3
 4
public class MyCommentedProgram 5
{ 6
 //Program starting point 7
 public static void main(String [] args) 8
 { 9
 System.out.print(“Hello World!”); 10
 //This part of code is commented out. 11
 /* 12
 System.out.print(“Hello again.”); 13
 System.out.println(); 14
 */ 15
 }//end of main() 16
}// end of class 17

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

Be Neat and Organized

Whitespace characters between various elements of the program are ignored during the
compilation. Together with comments, good programmers use space, new line, and
indentation to make their program more readable.

Observe the different between the following two source code listings.

public class ExampleClass{
public static void main(String [] args){
 double x=5;double z,y=2;z=x+y;
System.out.println(z);
}}

public class ExampleClass
{
 public static void main(String [] args)
 {
 double x=5;
 double z,y=2;
 z=x+y;
 System.out.println(z);
 }
}

Both perform exactly the same task. Still, it is obvious that the bottom one is easier to read
and follow. Indentation is used in the bottom one, so that the lines in the same block have the
same indentation. And, the indentation increases in deeper blocks. Curly brackets are aligned
so that the pairing is clear. Also, the programmer tries to avoid multiple operations on the
same line.

First Look at Methods

Just a reminder, we mentioned that methods are units of code that perform some actions.
Here, without going too deep into the details, we will take a look at two frequently-used
methods. They are the method print() and println().

You might notice that when we talk about methods, there is always a pair of brackets ()
involved. It is not wrong to say that when you see identifiers with brackets, you can tell right
away that they are method names. When invoking a method, we put arguments that are
required for the action of that method inside the associated bracket. What to put in there and
in which order is defined when the method is made. Right now, we will not pay attention to
the making of methods just yet.

The method print() and println() are methods that print some messages onto the screen. They
are defined in a standard Java class called System. When we say standard, it means that we
can just use them and the compiler will know where to look for definitions of those standard
methods. The print() and println() method are invoked by using:

System.out.print(<message you want to print>);
System.out.println(<message you want to print>);

If you want to show a string of character on screen, replace <message you want to print> with
that string of character enclosed in double quotes. If you replace <message you want to print>
with a numeric value without double quotes, both methods will show the number associated
with that numerical value. The different between the two methods is that method println()
makes the screen cursor enter the next line before executing other instructions.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

More Examples

public class PrintDemo
{
 public static void main(String [] args)
 {
 System.out.println("");
 System.out.println(" X");
 System.out.println(" * *");
 System.out.println(" * *");
 System.out.println(" * o *");
 System.out.println(" * v *");
 System.out.println(" * v *");
 System.out.println(" * o *");
 System.out.println(" ***********");
 System.out.println(" ___|_|___");
 }
}

public class PrintDemo2
{
 public static void main(String [] args)
 {
 System.out.print(" ");
 System.out.println(299);
 System.out.println("+ 800");
 System.out.println("-------------");
 System.out.print(" ");
 System.out.println(299+800);
 System.out.println("=============");
 }
}

In the class PrintDemo2, notice that different types of value are used as inputs for the print()
and println() methods. A sequence of characters enclosed by double quotes is called a
“string”. Strings are used as inputs on lines 5, 7, 8, 9, and 11. On lines 6 and 10, numeric
values are used as inputs to the println() method.

Escape Sequences

An escape sequence is a special character sequence that represents another character. Each of
these special character sequences starts with a backslash, which is followed by another
character. Escape sequences are used to represent characters that cannot be used directly in a
string (double quoted message). Some escape sequences are listed in the table below.

Escape sequence Represented character Escape sequence Represented character

\b Backspace \\ Backslash

\n Newline \” Double quote

\t Tab \’ Single quote

\r Carriage return

Table 1: Escape sequences

The following Java code shows an example of how escape sequences work.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

public class EscapeSeq
{
 public static void main(String [] args)
 {
 System.out.print("\n");
 System.out.println("Name\tHeight\tGender");
 System.out.println("-----------------------");
 System.out.println("Anna\t5\'4\"\tF");
 System.out.println("Artit\t6\'2\"\tM");
 System.out.println("Bina\t5\'7\"\tF");
 }
}

In this example, \n is used for entering a new line and \t is used for inserting tab to format
the output.

Variable at a Glance

Variables are symbolic names of memory locations. They are used for storing values used in
programs. We will discuss Java types of values and variables later in this course. In many
programming languages including Java, before a variable can be used, it has to be declared so
that its name is known and proper space in memory is allocated. Syntax used for declaring
variables can be observed from the example below.

int x;
double y;
String myText;

On the first line, a variable x is created for storing an int (integer) value. On the second line, a
variable y is created for storing a double (double-precision floating point) value. On the last
line, a variable myText is created for storing a reference to String (a Java standard class
representing double quoted text) object. The name x, y, and myText are Java identifiers. int and
double are Java keywords. String is the name of a Java class.

Variables are normally used with the assignment operator (=), which assign the value on the
right to the variable on the left. For example:

x = 3;
y = 6.5;
myText = “Java Programming”;

int z;
z = x;

On the first three lines, values are assigned to the three variables according to their types. On
the last two lines, a variable z is declared and then assigned the value of the variable x.

Declaration and value assignment (initialization) could be done in the same expression. For
example:

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

int i = 1;
double f = 0.0;
String mySecondText = “Java is fun.”;

Naming Rules and Styles

There are certain rules for the naming of Java identifiers. Valid Java identifier must be
consistent with the following rules.

An identifier cannot be a Java reserve word.

An identifier must begin with an alphabetic letter, underscore (_), or a dollar sign ($).

If there are any characters subsequent to the first one, those characters must be alphabetic
letters, digits, underscores (_), or dollar signs ($).

Whitespace cannot be used in a valid identifier.

An identifier must not be longer than 65,535 characters.

Also, there are certain styles that programmers widely used in naming variables, classes and
methods in Java. Here are some of them.

Use lowercase letter for the first character of variables’ and methods’ names.

Use uppercase letter for the first character of class names.

Use meaningful names.

Compound words or short phrases are fine, but use uppercase letter for the first character of
the words subsequent to the first. Do not use underscore to separate words.

Use uppercase letter for all characters in a constant. Use underscore to separate words.

Apart from the mentioned cases, always use lowercase letter.

Use verbs for methods’ names.

Here are some examples for good Java identifiers.

Variables: height, speed, filename, tempInCelcius, incomingMsg, textToShow.

Constant: SOUND_SPEED, KM_PER_MILE, BLOCK_SIZE.

Class names: Account, DictionaryItem, FileUtility, Article.

Method names: locate, sortItem, findMinValue, checkForError.

Not following these styles does not mean breaking the rules, but it is always good to be in
style!

Statements and Expressions

An expression is a value, a variable, a method, or one of their combinations that can be
evaluated to a value. For example, each of the following is an expression.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

3.857
a + b – 10
8 >= x
p || q
“go”
System.out.print(“go”)
Math.sqrt(2)
squareRootTwo = Math.sqrt(2)

A statement is any complete sentence that causes some action to occur. A valid Java statement
must end with a semicolon. For example, each of the following is a statement.

int k;
int j = 10;
double d1, d2, d3;
k = a + b – 10;
boolean p = (a >= b);
System.out.print(“go”);
squareRootTwo = Math.sqrt(2);

Each of the following is not a valid Java statement since it does not cause any action to occur
or syntactically incorrect.

i;
2 <= 3;
1 + 2 + 3 + 4;
“go”;
Math.sqrt(2);

Simple Calculation

Numeric values can be used in calculation using arithmetic operators, such as add (+),
subtract (-), multiply (*), divide (/), and modulo (%). Assignment operator (=) is used to
assign the result obtained from the calculation to a variables. Parentheses are used to define
the order of the calculation.

The following program computes and prints out the average of the integers from 1 to 10.

public class AverageDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 double avg, sum; 5
 sum = 1.0+2.0+3.0+4.0+5.0+6.0+7.0+8.0+9.0+10.0; 6
 avg = sum/10; 7
 System.out.println(avg); 8
 } 9
} 10

More operators will be presented later in the next chapter.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORNUNIVERSITY

ATIWONG SUCHATO 2006

Exercise
1. What are the differences between machine languages and high-level programming

languages?
2. Explain why Java is said to be a platform-independent language.
3. Describe the benefit(s) of using proper indentation.
4. Write a complete Java program that shows your first name and last name on screen.
5. Write a complete Java program that shows the pattern similar to the following.

******* *******
 * * *
 ******* *******

6. Change this source code as little as possible, so that it gets compiled successfully?

public class Ex2_6
{
 public static void main(String [] args)

 System.out.println("What’s wrong with me?)
 }
}

7. Show how to use method print() once in order to print the following message on
screen.

 He called Clancy at headquarters and said:
 “There’s a family of ducks walkin’ down the street!”

8. Which of the following identifiers are not valid?

google $money company_motto java.org
12inches money$ X-Ray CC
Item3 $$money !alert_sign entry point
public main Class _piece
JavaApplet fillForms “Gorilla” _1234

9. List every keywords and identifiers appeared in the class definition of AverageDemo.

10. Modify the source code of the class AverageDemo so that the program shows both the

summation and the average of the integer 1 to 5 as the following.

 The sum of 1 to 5 is 15.
 The average of 1 to 5 is 3.

