
2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

Chapter 5: Using Objects 

Objectives 
Students should 

• Understand classes and objects. 
• Be able to use class methods and data from existing classes. 
• Be familiar with the String class and be able to use its methods. 
• Be able to use the BufferedReader class to get users’ input from keyboards. 
• Be able to process keyboard input as String and numeric values. 

Classes and Objects 

Classes are non-primitive data types in Java. New classes can be made while there are no such 
things as new primitive data types. An object is an instance of a class. Consider the following 
Java statements. Note that, as we have mentioned, String is a class in Java. 

String s1; 
s1 = “Chocolate Chip”; 

 

In the first statement, a variable named s1 is declared as a variable that is used for storing an 
object of the class String. In the second statement, an object of class String is created with the 
content “Chocolate Chip” and assigned to the variable s1. In other words, s1 is made to point 
to the String object “Chocolate Chip”. What have occurred can be depicted as the following 
figure. 

 

Using Data and Methods provided in Classes 

An object of a class contains data and methods. For example, there is a Java class names 
Rectangle, which is a data type used for representing a rectangle. The data contained in each 
object of this Rectangle class are height, width, x, and y, which stores necessary attributes that 
define a rectangle. Apart from data, the class also provides several methods related to using 

s1 

 

s1 

 

- 

- “Chocolate Chip”

s1 

 “Chocolate Chip”

String s1; 

s1 is created. It does not 
contain anything yet. 

s1 = “Chocolate Chip”; 

A String object containing 
“Chocolate Chip” is created, 
but unreferenced. 

s1 = “Chocolate Chip”; 

s1 is made to point to the 
String object “Chocolate Chip”. 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

the rectangle, such as getHeight(), getWidth(), getX(), getY(), and setLocation(). This class might 
be illustrated as the following figure. 

 

Generally, when we write computer programs in Java, we make use of existing methods and 
data that have already been defined or made in some existing classes. The dot operator (.) is 
used for accessing data or methods from a class or an object of a class. We have already seen 
(and used) two methods that print message onto the screen since earlier chapters. Here, we 
discuss the meaning of them. Consider the two methods below. 

System.out.print(“Strawberry Sundae”); 
System.out.println(“Banana Split”); 

 

The four periods seen in both statements above are the dot operator. System is a class in a 
standard Java package. This class contains an object called out, whose class is a class called 
PrintStream. Thus, using the dot operator, we refer to this out object in the class System by 
using System.out. Consequently, the PrintStream class contains print() and println(), and we 
can access the two methods using System.out.print() and System.out.println(). 

 

Some data and methods can be accessed by using the dot operator with the name of the class 
while some can be accessed by using the name of the variable storing the object of that class. 
Data and methods that are accessed via the class name are called class (or static) data and class 
(or static) methods. Data and methods that are accessed via the object name are called instance 
(or non-static) data and instance (or non-static) methods. At this point, you are not expected to 
know that whether the data and methods that you have never come across before are 
associated with classes or instances (objects). Just make sure you understand what you are 
doing when accessing ones. 

Let’s look at an example. 

System 

in 

out 

: 

PrintStream 

print() 
println() : 

: 

data 

methods 

methods 

data 

System 

System.out.println() 

System.out.print() 

Rectangle 

height 

width 

x 

y 

 

getHeight() 
getWidth() 
getX() 
getY() 
setLocation() 
           : 

Data

Methods

System.out 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

 

public class AreaOfCircle  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  double area, r = 10; 5 
  String s1 = "The Area of a circle with "; 6 
  String s2 = " r = "; 7 
  String s3 = " is "; 8 
  String s4; 9 
  area = Math.PI*Math.pow(r,2); 10 
  s4 = s1.concat(s2); 11 
  System.out.println(s4+area); 12 
 }   13 
}    14 

 

 

This Java program calculates the area of a circle with radius r, where r equals 10. On line 10, 
we calculate the area by multiplying Math.PI with Math.pow(r,2). The former expression 
refers to the π value that is defined in a constant value names PI in the Math class. The later is 
the activation of a method called pow() that is also defined in the Math class. pow(r,2) 
computes the square of r. Notice that we do not need to create an object of the Math class but 
we access the data and method from the name of the class directly. 

On line 11, we make use of a method called concat(). It is accessed from a variable that 
contains a String object. s1.concat(s2) returns a String object resulting from the concatenation 
of the String object in s1 and the String object in s2. Also, on line 11, the concatenated String 
object is assigned to s4. 

Useful String methods 

Let’s look at some methods that we can use from a String object. The methods discussed here 
do not make the complete list of the methods provided by String. Examples are given so that 
you can see what each method does as well as practice your code reading skill. 

charAt() 
Let s be a String object and i be an int. s.charAt(i) returns the char value at the i th index. 

length() 
Let s be a String object. s.length() returns the int value equals to the length of the String. 

Consider the following Java program. 

public class CharAtDemo  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  String s = "ABCD\nEFGH"; 5 
  char c; 6 
  System.out.println("s = "); 7 
  System.out.println(s); 8 
  c = s.charAt(0); 9 
 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

 
 
  System.out.println("charAt(0)="+c); 10 
  c = s.charAt(1); 11 
  System.out.println("charAt(1)="+c); 12 
  c = s.charAt(5); 13 
  System.out.println("charAt(5)="+c); 14 
  System.out.print("The length of this string is ") 15 
  System.out.println(s.length()+" characters"); 16 
  c = s.charAt(s.length()-1); 17 
  System.out.println("The last char ="+c); 18 
 }   19 
}    20 

 

From the above Java program, the String s contains 9 characters, which are ‘A’, ‘B’, ‘C’, 
‘D’, ‘\n’, ‘E’, ‘F’, ‘G’, and ‘H’. Notice that an escape sequence is considered a single 
character. On line 9, line 11, and line 13, the characters at 0, 1, and 5 which are ‘A’, ‘B’ and 
‘E’ are assigned to the char variable c. Then, c is printed out to the screen after each 
assignment. On line 16, and line 17, the length of the String in s is extracted via the method 
length(). Be aware that, the first index of a String is 0, so the location of the last character is 
s.length()-1. 

concat() 
Let s be a String object and r be another String object.  s.concat(r) returns an new String 
object whose content is the concatenation of the String in s and r. 

Consider the following example. 

public class ConcatDemo  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  String s1 = "First"; 5 
  String s2 = "Second"; 6 
  String s3, s4; 7 
    8 
  s3 = s1.concat(s2); 9 
  s4 = s2.concat(s1); 10 
  System.out.println("s1 is "+s1); 11 
  System.out.println("s2 is "+s2); 12 
  System.out.println("s3 is "+s3); 13 
  System.out.println("s4 is "+s4); 14 
    15 
  String s5 = "AB".concat("CD").concat("EF"); 16 
  System.out.println("s5 is "+s5); 17 
 }   18 
}    19 
 

 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

Notice the difference between s1.concat(s2) and s2.concat(s1). Also note that invoking the 
method concat() from a String s creates a new String object based on s and the String input 
into the parentheses, it does not change the value of the original String object. On line 16, we 
show two things. Firstly, we can invoke String methods directly from a String object without 
having to be referred to by a variable, i.e. “AB”.concat(“CD”) can be done without any errors. 
Secondly, since “AB”.concat(“CD”) results in a new String object, we can call a String method 
from it directly, e.g. “AB”.concat(“CD”).concat(“EF”), and the result is “ABCDEF”, as expected. 

indexOf() 
Let s be a String object and c be a char value. s.indexOf(c) returns the index of the first c 
appearing in the String. It returns -1 if there is no c in the String. If i is an int value equals to 
the Unicode value of c, s.indexOf(i) returns the same result. A String r can also be used in 
the place of c. In that case, the method finds that String inside the String s. If there is one, it 
returns the index of the first character of r found in the String s. Again, it returns -1 if r is not 
found in s. 

lastIndexOf() 
lastIndexOf() works similarly to indexOf() but it returns the index of the last occurrence of the 
input character or the index of the first character in the rightmost occurrence of the input 
String. 

Consider the following examples. Note that the Unicode of ‘-‘ is 45. Also, make sure you 
remember that Java is a case-sensitive language. 

public class IndexOfDemo  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  String s = "oxx-xo--xoXo"; 5 
  System.out.println("The first 'x' is at "+s.indexOf('x')); 6 
  System.out.println("The first 'o' is at "+s.indexOf('o')); 7 
  System.out.println("The first '-' is at "+s.indexOf(45)); 8 
  System.out.println("The first 'X' is at "+s.indexOf('X')); 9 
 }   10 
}    11 
 

 

 

public class IndexOfDemo2  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  String s = "Chulalongkorn University"; 5 
  System.out.println(s); 6 
  System.out.println("Univ is at "+s.indexOf("Univ")); 7 
  System.out.println("0123 is at "+s.indexOf("0123")); 8 
 }   9 
}    10 
 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

 

public class IndexOfDemo3  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  String s = "say ABC ABC ABC"; 5 
  System.out.println(s); 6 
  System.out.println("lastIndexOf(\'B\') ="+s.lastIndexOf('B')); 7 
  System.out.println("lastIndexOf(\"AB\")="+s.lastIndexOf("AB")); 8 
 }   9 
}    10 

 

 

startsWith() 
Let s be a String object and prefix be another String object. s.startsWith(prefix) returns true 
if the String s starts with prefix. Otherwise, it returns false. 

endsWith() 
Let s be a String object and suffix be another String object. s.endsWith(suffix) returns true if 
the String s ends with suffix. Otherwise, it returns false. 

trim() 
Let s be a String object. s.trim() returns a new String object, which is a copy of s, but with 
leading and trailing whitespaces omitted. 

Consider the following example. 

public class TrimDemo  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  String s1 = " Computer Engineering   "; 5 
  String prefix = "Computer"; 6 
  String suffix = "ing"; 7 
  System.out.print("\""+s1+"\" has \""+prefix); 8 
  System.out.println("\" as a prefix:\t"+s1.startsWith(prefix)+"."); 9 
  System.out.print("\""+s1+"\" has \""+suffix); 10 
  System.out.println("\" as a suffix:\t"+s1.endsWith(suffix)+"."); 11 
    12 
  String s2 = s1.trim(); 13 
  System.out.print("\""+s2+"\" has \""+prefix); 14 
  System.out.println("\" as a prefix:\t"+s2.startsWith(prefix)+"."); 15 
  System.out.print("\""+s2+"\" has \""+suffix); 16 
  System.out.println("\" as a suffix:\t\t"+s2.endsWith(suffix)+"."); 17 
 }   18 
}    19 
 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

 

The String s1 contains one whitespace character at the beginning and three of them at the 
end. A new String object is created with these leading and trailing whitespace characters 
trimmed before being assigned to s2. Since s2 contains “Computer” right at the beginning and 
“ing” right at the end of the String, s2.startsWith(prefix) and s2.endsWith(suffix) return 
the boolean value true. 

substring() 
Let s be a String object. s.substing(a,b), where a and b are int values, returns a new String 
object whose content are the characters of the String s from the ath index to the (b-1)th index. 
If b is omitted the substring runs from a to the end of s. 

toLowerCase() 
Let s be a String object. s.toLowerCase() returns a new String object which is a copy of s but 
with all uppercase characters converted to lowercase. 

toUpperCase() 
Let s be a String object. s.toUpperCase()returns a new String object which is a copy of s but 
with all lowercase characters converted to uppercase. 

Consider the following example. 

public class SubstringDemo  1 
{    2 
 public static void main(String[] args)  3 
 {   4 
  String s = "Sir Isaac Newton"; 5 
  System.out.println(s.substring(10)); 6 
    7 
  int startIdx = 4; 8 
  int len = 5; 9 
  System.out.println(s.toUpperCase().substring(startIdx,startIdx+len)); 10 
 }   11 
}    12 

 

valueOf() 
valueOf() is a static or class method provided by the String class. It creates a new String object 
whose value is the corresponding String representation of the value input to the method. 
Recall that to use a class method, we use the dot operator with the name of the class. 

Reading Input String from Keyboards 

It is usually a common requirement to obtain values from the user of the program via 
keyboards. In Java, this capability is provided by some methods, already defined in classes. A 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

class called BufferedReader provides a method that read characters from keyboard input, until 
a newline character is found, and store the characters into a String object. This method is 
called readLine(). Note that the newline character (\n) signaling the end of the input is not 
included in the String. 

First, since we are going to use the BufferedReader class, which is not in the standard Java 
packages, we need to let the compiler know where to look for the definition of this class by 
adding the following statement in to our source code on a line prior to the start of our 
program’s definition. 

import java.io.*; 
 

Then, we need to create an object of class BufferedReader by using the following statement. 

BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in)); 
 

This statement creates a variable named stdin that refers to a BufferedReader object. For 
simplicity, we will say that stdin is a BufferedReader object. It is perfectly fine that you use 
exactly this statement to create a BufferedReader object. Detailed explanation is omitted here. 

Once a BufferedReader object is created, we can access the readLine() method from that object. 
For example, we can use the following statement to read keyboard input to a String object 
called s. Note that stdin is the object we created in the previous statement. 

String s = stdin.readLine(); 
 

Once the statement is executed, the program waits for the user to type in the input until a 
newline character is entered. This input can be used later in the program from the String s. 

The following program asks the user to input his/her first and last name. Then it prints a 
message containing the names on to the screen. Notice that another thing that is required to 
be added is throws IOException in the header of the main() method. Again, explanation is 
omitted until you learn about exceptions in Java. At this time, make sure you do not forget to 
adds it in your program when readLine() is used in the main() method. 

import java.io.*; 1 
public class Greeting   2 
{    3 
 public static void main(String[] args) throws IOException 4 
 {   5 
  String firstname, lastname; 6 
  BufferedReader stdin = 7 
   new BufferedReader(new InputStreamReader(System.in)); 8 
  System.out.print("Please enter your firstname:"); 9 
  firstname = stdin.readLine(); 10 
  System.out.print("Please enter your lastname:"); 11 
  lastname = stdin.readLine(); 12 
  System.out.println("-----------------------------"); 13 
  System.out.println("Hello "+firstname+" "+lastname); 14 
  System.out.println("-----------------------------"); 15 
 }   16 
}    17 
 

 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

In this example, expressions in green (lighter-colored) text are what you need to pay attention 
to. On line 1, the import statement tells the compiler about a location that it should look if 
there appear to be non-standard methods. On line 7 and line 8, a BufferedReader object, which 
we name it stdin, is created using the statement mentioned earlier. On line 10 and line 12, the 
method readLine() is used to bring in the keyboard inputs. It is a common practice that 
messages are shown prior to the execution of readLine() in order to instruct users about what 
they should be doing. Such messages are shown using the print() methods on line 9 and line 
11. 

Converting Strings to numbers 

Since the readLine() method returns a String object and sometimes we expect the keyboard 
input to be numeric data so that we can process numerically, we need a way to convert a 
String object to an appropriate numeric value. Luckily, Java has provided methods 
responsible for doing so. 

parseInt() 
parseInt() is a static method that takes in a String object and returns an int whose value 
associates with the content of that String. parseInt() is defined in a class called Integer. Thus, 
we should know by now that calling a static method named parseInt() from the Integer class 
takes the form: Integer.parseInt(s), where s is a String object whose content we wish to 
convert to int. 

parseDouble() 
parseDouble() is a static method that takes in a String object and returns an double whose value 
associates with the content of that String. parseDouble() is defined in a class called Double. 
Again, calling parseDouble() takes the form: Double.parseDouble(s), where s is a String object 
whose content we wish to convert to double. 

Useful Methods and Values in Class Integer and Class 
Double 

It is necessary to know that Integer is a class, not the primitive type int, and Double is another 
class, not the primitive type double. Furthermore, it might come in handy if you know some 
of the constants and static methods provided in these two classes (Apart from parseInt() and 
parseDouble(), of course). 

Here are some of them. 

Integer.MAX_VALUE 
 is an int holding the maximum value an int can have (231-1). 

Integer.MIN_VALUE 
 is an int holding the minimum value an int can have (-231). 

Integer.toBinaryString(<an int>) 
 returns a String of the int argument as an unsigned integer in base 2. 

Integer.toOctalString(<an int>) 
 returns a String of the int argument as an unsigned integer in base 8. 

Integer.toHexString(<an int>) 
 returns a String of the int argument as an unsigned integer in base 16. 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

Integer.toString(<an int>) 
 returns the String representation of the int argument. 

Double.MAX_VALUE 
 is the largest positive finite value of type double. 

Double.MIN_VALUE 
 is the smallest positive nonzero value of type double. 

Double.NaN 
 is a Not-a-Number (NaN) value of type double. 

Double.POSITIVE_INFINITY 
 is the positive infinite value of type double. 

Double.NEGATIVE_INFINITY 
 is the negative infinite value of type double. 

Double.isInfinite(<a double>) 
 returns true if the double argument is infinitely large in magnitude. 

Double.isNaN(<a double>) 
 returns true if the double argument is an NaN value. 

Double.toHexString(<a double>) 
 returns the hexadecimal String of the double argument. 

Double.toString(<a double>) 
 returns the String representation of the double argument. 

Example 

The program ShowBinary.java shown below is used for showing the binary representation of 
an int input by the user. Make sure you go through the program and try to understand all of 
the statements. 

import java.io.*; 
public class ShowBinary  
{ 
 public static void main(String[] args) throws IOException 
 { 
  String readStr; 
  int i; 
  BufferedReader stdin = 
   new BufferedReader(new InputStreamReader(System.in)); 
  System.out.print("Enter an integer:"); 
  readStr = stdin.readLine(); 
  i = Integer.parseInt(readStr); 
  System.out.println("Binary -> "+Integer.toBinaryString(i)); 
 } 
} 
 

 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

Example 

Let’s look at the following Java program called FunnyEncoder.java. This program uses only 
what we have learnt so far. The program converts a 4-digit string (E.g. 0345, 1829, etc.) into a 
specific code by mapping each digit to a specific funny pattern defined by the following rules. 

  0  (^_^) 
  1  (-_-) 
  2  (>_<) 
  3  (o_o) 

4  (O_o) 
5  (^v^) 
6  (^o^) 
7  (^_____^) 

8  (@_@) 
9  ( *__* ) 

   
    

 

For example, if the input digit string is 0123, the encoded string is (-_-)(>_<)(o_o)(O_o). Here 
is the source code for the program and some example outputs. Make sure you go through the 
program and try to understand all of the statements. 

import java.io.*; 
public class FunnyEncoder  
{ 
 public static void main(String[] args) throws IOException 
 { 
  int loc; 
  String input, output = "", s = ""; 
  s += "(^_^)    "; 
  s += "(-_-)    "; 
  s += "(>_<)    "; 
  s += "(o_o)    "; 
  s += "(O_o)    "; 
  s += "(^v^)    "; 
  s += "(^o^)    "; 
  s += "(^_____^)"; 
  s += "(@_@)    "; 
  s += "( *__* ) "; 
 
  BufferedReader stdin = 
   new BufferedReader(new InputStreamReader(System.in)); 
  System.out.print("Enter a 4-digit string:"); 
  input = stdin.readLine(); 
  loc = 9*Integer.parseInt(input.substring(0,1)); 
  output += s.substring(loc,loc+9).trim(); 
  loc = 9*Integer.parseInt(input.substring(1,2)); 
  output += s.substring(loc,loc+9).trim(); 
  loc = 9*Integer.parseInt(input.substring(2,3)); 
  output += s.substring(loc,loc+9).trim(); 
  loc = 9*Integer.parseInt(input.substring(3)); 
  output += s.substring(loc,loc+9).trim(); 
  System.out.println("Encoded String -> "+output); 
 } 
} 
 

 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

Example 

Now we wish to write a program that calculates the resulting force in the x and y directions, 
as illustrated in the figure below, from the magnitude of the input force F (in Newton) and 
the angle between F and the x axis (in Degree). 

Problem definition: The program needs to calculate the 
force in the x and y directions from the magnitude of the 
input force, F, and the angle, θ. 

Analysis: There are two inputs, F and θ. Output, which 
are the force components in the two directions, are to be 
shown on screen. 

Design:  

• Prompt the user to input F, and store the input in f. 

• Prompt the user to input θ, and store the input in theta. 

• Convert θ, which is in degree, to radian by                                . Then, store the 
converted angle in thetaRad. 

• Calculate the force component in the x direction from                              . Then, store 
the result in fx. 

• Calculate the force component in the y direction from                              . Then, store 
the result in fy. 

• Show the fx and fy on the screen. 

Implementation: 

import java.io.*; 
public class FindFComponents 
{ 
 public static void main(String[] args) throws IOException 
 { 
  double theta, f, thetaRad, fx, fy; 
  BufferedReader stdin = 
   new BufferedReader(new InputStreamReader(System.in)); 
  // prompt for f 
  System.out.print("Enter the magnitude of F (Newton): "); 
  f = Double.parseDouble(stdin.readLine()); 
  // prompt for theta 
  System.out.print("Enter the angle between F and the x axis (Degree): "); 
  theta = Double.parseDouble(stdin.readLine()); 
  // convert degree to radian 
  thetaRad = theta*Math.PI/180; 
  // calculate fx and fy 
  fx = f*Math.cos(thetaRad); 
  fy = f*Math.sin(thetaRad); 
  // show the results 
  System.out.println("Fx = "+fx+" N"); 
  System.out.println("Fy = "+fy+" N"); 
 
 } 
} 
 

x 

y 

F 

θ 

180deg
πθθ ×= reeradian

)cos( radianx FF θ⋅=

)sin( radiany FF θ⋅=



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

 

 
 

Exercise 
1. Write valid Java statements that perform the following steps. 

a. Declare a variable for storing a String. Name it s1. 
b. Have s1 refer to a new String object whose content is “Java”. 
c. Declare another variable named s2 and have it refer to a new String object 

whose content is “Programming”. 
d. Print the concatenation of s1 and s2 on screen. 
 

2. Explain in your own words the functionality of the two dot operators in the 
statement System.out.print(“I love eating!”);. 

 
3. Given that Calendar is a valid class in Java and c is a variable referring to an object 

of the Calendar class, which of the following expression involve calling a method in 
the Calendar class. And, which ones simply access some data in the Calendar class. 
(Ignore their meanings for now.) 

a. Calendar.DECEMBER 
b. Calendar.getInstance() 
c. Calendar.getAvailableLocales() 
d. c.isTimeSet 
e. Calendar.MILLISECOND 
f. c.clear() 
g. c.get(1) 

 
4. Write a Java program that calculates and shows the areas and circumferences of 

three circles, each of which has its radius of 3, 100, and 8.75 centimeters. 
 
5. What is the output of the following code segment? 

 
  String s = “tachygraphometry”; 
  System.out.println(s.charAt(1)); 
  System.out.println(s.charAt(5)); 
  System.out.println(s.charAt(12)); 
  System.out.println(s.charAt(s1.length()-1)); 

 
6. What is the output of the following code segment? 
 
  String s1 = "macaroni penguin"; 
  String s2 = s1.substring(s1.indexOf(' ')+1,s1.length()).toUpperCase(); 
  System.out.println(s1); 
  System.out.println(s2); 

 



2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS 
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING 

CHULALONGKORN UNIVERSITY 

ATIWONG SUCHATO 2006 

 
 
7. What is the output of the following code segment? 

 
  String s1 = "Houston"; 
  String s2 = "Dallas".concat(s1); 
  s1 = s2.substring(2,4); 
  System.out.println(s1.length()); 
  System.out.println(s2.length()); 

 
8. What is the output of the following code segment? 
   
  String s = "Jacobian"; 
  System.out.println(s.indexOf('J')); 
  System.out.println(s.indexOf('c')); 
  System.out.println(s.indexOf('a')); 
  System.out.println(s.indexOf('j')); 
  System.out.println(s.indexOf('c'-1)); 

 
9. What is the output of the following code segment? 
 
  String s1 = "A"; 
  String s2 = s1+1; 
  char c = 'A'; 
  String s3 = c+1+"A"; 
  System.out.println(s2.concat(s3).concat(s1)); 

 
10. What is the output of the following code segment? 
   
  String s = "1999"; 
  System.out.println(String.valueOf(s)); 
  System.out.println(String.valueOf(s)+1); 
  System.out.println(String.valueOf(s+1)); 

 
11. Explain why the String class is available to our program without the use of an 

import statement and why an import statement is required when we want to use the 
BufferedReader class in out program. 

 
12. Write a Java program that prompts for and accepts a text message from the user 

via keyboard and prints it out on screen. 
 

13. Write a Java program that prompts for two text messages from the user via 
keyboard, connect them together, and print the result on screen. 

 
14. Write a Java program that prompts for and accepts a telephone number of the form 

xx-xxx-xxxx where each x is a digit (e.g. 02-123-9999), and prints it out in the 
following form: x-xxxx-xxxx (e.g. 0-2123-9999). 

 
15. Write a Java program that prompts for and accepts an email address and prints the 

associated account’s name and domain name in two separate lines. For example, 
2140101@gmail.com should be printed out as: 

 
  2140101 
  gmail.com 

 
16. Write a Java program that prompts for and accepts two numbers, a and b, via 

keyboard, and prints out the results of the following numeric computation: 
bb aa

b
ababa   and  ,  ,  ,  , ×+  

 
 

 


