
2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-1

Chapter 7: Iterations

Objectives
Students should

• Be able to use Java iterative constructs, including do-while, while, and for, as well as the
nested version of those constructs correctly.

• Be able to design programs that require the inclusion of iterations.

Repetitive Execution

In writing most of useful computer programs, it is necessary to have the ability to execute a
set of statements repeatedly for a certain number of iterations or until some conditions are
met or broken. In Java, such ability is provided through three iterative constructs, namely do-
while, while and for statements.

‘do-while’ Statement

A do-while statement is of the form:

do{
 Actions
}while(Boolean Expression);

Its associated program flow can be shown in the following figure.

Actions can be one or more statements that will be repeatedly executed as long as Boolean
Expression is evaluated to true. Once the program reaches the do-while statement, Actions will
be execute first. Then, Boolean Expression is evaluated, and its value determines whether the
program flow will loop back to repeat Actions, or finish the do-while statement.

Observe how it works by looking at the following program and its output.

Boolean Expression

Actions

true

false

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-2

public class DoWhileDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int i = 1; 5
 final int N = 5; 6
 do{ 7
 System.out.println("Iteration # "+i); 8
 i++; 9
 }while(i<=N); 10
 System.out.println("Out of while loop when i="+i); 11
 } 12
} 13

Initially, this program sets i to 1. This variable can be thought of as a counter of how many
times the statements in the do-while block have already been executed. Each time this do-while
block is entered, the program prints the iteration number from the variable i, which is
increased by 1 at the end of every iteration (on line 9) before the program checks the boolean
value of i<=N, where N equals 5. The program will exit the do-while statement after the 5th
iteration, at the end of which the value of i is 6.

‘while’ statement

Another way to execute a set of statements repeatedly until a specified condition is met is to
use a while statement. A while statement is of the form:

while(Boolean Expression){
 Actions
};

Its associated program flow can be shown in the following figure.

Actions can be one or more statements that will be repeatedly executed as in the do-while case.
However, before the while block is entered, Boolean Expression is checked. If its value is

Boolean Expression

Actions

true

false

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-3

false, the statements in the while block will not be executed. If its value is true, Actions will be
executed, and after that, the program flow loops back to checking Boolean Expression.

The following program (WhileDemo1.java) performs the same task as what is performed by
the previous example (DoWhileDemo1.java) but with the use of a while statement instead of
the do-while one.

public class WhileDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int i = 1; 5
 final int N = 5; 6
 while(i<=N){ 7
 System.out.println("Iteration # "+i); 8
 i++; 9
 }; 10
 System.out.println("Out of while loop when i="+i); 11
 } 12
} 13

Both programs give out the same outputs. The only difference between using a do-while
statement and a while statement is that the statements in the do-while block is always executed
at least once since the condition checking is done after the do-while block, while the checking
is done prior to ever entering the while block. Thus, the statements in the while block may
never be executed.

Example

The following example how to use keep prompting for character input from the user
repeatedly until a specified character is entered.

import java.io.*; 1
public class WhileMenuDemo 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 boolean done = false; 6
 char command; 7
 BufferedReader stdin = 8
 new BufferedReader(new InputStreamReader(System.in)); 9
 while(!done){ 10
 System.out.print("Enter a character (q to quit): "); 11
 command = stdin.readLine().charAt(0); 12
 if(command == 'q') done = true; 13
 } 14
 } 15
} 16

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-4

On line 6, a boolean variable called done is created and initialized to false. This variable is
used in the condition checking of the while statement so that the statements in the while block
will be iteratively executed as long as done is false. done has to be set to true at some point to
avoid infinite loop (i.e. the situation when the iteration repeats forever!), and in this program,
it is when the char value that the user enters equals ‘q’, as on line 13.

Example

The following example finds average of a number of values entered by the user. The program
iteratively asks the user to enter each value at a time, until a character ‘q’ is entered.

import java.io.*; 1
public class Average1 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double sum = 0, i = 0; 6
 boolean doneInputing = false; 7
 String input; 8
 BufferedReader stdin = 9
 new BufferedReader(new InputStreamReader(System.in)); 10
 System.out.println("Please enter each value at a time."); 11
 System.out.println("Enter \'q\' when finished."); 12
 while(!doneInputing){ 13
 System.out.print("-- Enter value #"+(int)(i+1)+" : "); 14
 input = stdin.readLine(); 15
 if((input.charAt(0) == 'q')&&(input.length()==1)){ 16
 doneInputing = true; 17
 }else{ 18
 i++; 19
 sum += Double.parseDouble(input); 20
 } 21
 } 22
 System.out.println("Average = "+(sum/i)); 23
 } 24
} 25

Try for yourself to write a rather similar program that finds the average of the values input by
the user, but the program asks how many values will be entered first. Then, if the user
specifies that there will be n values, the program iteratively prompts the user for each input n
times before calculating the average of those values and shows the result on the screen. Use a
while statement or a do-while statement.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-5

Example

The following program is called GuessGame.java. The user of this program will play a game
in which he/she needs to guess a target number, which is a number that the program has
randomly picked in the range that the user chooses. The program will repeatedly prompt for
the guessed number and provide a clue whether the guessed number is bigger or smaller
than the target number, until the guessed number equals the target number.

Many things that we have learned so far are used in this program, including method calling,
conditional constructs, data type casting, iterative constructs, and etc. Thus, you should
observe the source code and be able to understand every statement used in this program.

import java.io.*; 1
public class GuessGame 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int x=0, y=0, target, nTrial=0, guess; 6
 boolean validBound = false; 7
 boolean notCorrect = true; 8
 String comparison; 9
 10
 BufferedReader stdin = 11
 new BufferedReader(new InputStreamReader(System.in)); 12
 System.out.println("\nGuess an integer in the range of X to Y"); 13
 System.out.println("---"); 14
 15
 while(!validBound){ 16
 System.out.print("First, enter an integer for X : "); 17
 x = Integer.parseInt(stdin.readLine()); 18
 System.out.print("Then, enter an integer for Y : "); 19
 y = Integer.parseInt(stdin.readLine()); 20
 if(y>x){ 21
 validBound = true; 22
 }else{ 23
 System.out.println("-- !! Y must be greater than X."); 24
 } 25
 } 26
 27
 target = (int)Math.round(x+Math.random()*(y-x)); 28
 29
 System.out.println("...."); 30
 System.out.println("A random integer from "+x+" to "+y+" was created.");
 System.out.println("Guess it!"); 32
 System.out.println("---"); 33
 34
 while(notCorrect){ 35
 nTrial++; 36
 System.out.print("\nTrial #"+nTrial+"-->"); 37
 guess = Integer.parseInt(stdin.readLine()); 38
 if(guess == target){ 39
 notCorrect = false; 40
 System.out.println("-- Yes! You've got it right!"); 41
 }else{ 42
 comparison = (guess>target)? "big.":"small."; 43
 System.out.println("-- Your guess is too "+comparison); 44
 } 45
 } 46
 47
 System.out.println("---"); 48
 System.out.println(nTrial+" attempts used."); 49
 50
 } 51
} 52

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-6

 ‘for’ statement

Another form of an iterative construct is the for statement, which is of the form:

for(Init Expression; Cond Expression; Update Expression){
 Actions
};

,which is equivalent to:

Init Expression;
while(cond Expression){
 Actions
 Update Expression;
};

Its associated program flow can be shown in the following figure.

The process starts with the execution of Init Expression. This is usually for assigning an
initial value to a variable, which is often of type int. Then, the program checks whether Cond
Expression is evaluated to true. If so, the program executes Actions. If not, the program goes
out of the for statement. Cond Expression usually involves checking the value of the variable

Cond Expression

Actions

true

false

Init Expression

Update Expression

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-7

initialized in Init Expression. Once the program finishes the execution of Actions, Update
Expression is executed. Update Expression typically involves changing the value of the
variables used in Cond Expression. Variables determining how many times Actions will be
executed are called index variables.

Here are some examples of for loops.

 for(int i=1; i<=10; i++){
 System.out.println(i);
 }//for loop A

 for(int i=10; i>0; i--){
 System.out.println(i);
 }//for loop B

 for(int i=0; i<=10; i += 2){
 System.out.println(i);
 }//for loop C

 for(int i=1; i<100; i *= 2){
 System.out.println(i);
 }//for loop D

 for(char c='A'; c<='Z'; c++){
 System.out.println(c);
 }//for loop E

for loop A prints the values of i from 1 to 10. for loop B prints the values of i, starting from 10
down to 1. for loop C prints 0, 2, 4, 6, 8, and 10. for loop D prints 1, 2, 4, …, 32, 64. And, for
loop E prints A to Z.

If needed, there can be more than one Init Expression’s as well as more than one Update
Expression’s. Each of them is separated using commas. Look at such an example below.
Notice that the initialization part contains two assignments, i=0 and j=10, while the updating
part contains i++ and j--.

 for(int i=0, j=10; i<=j; i++, j--){
 System.out.println(i+","+j);
 }

The above for loop causes the program to print:

0,10
1,9
2,8
3,7
4,6
5,5

Example

The following Java program finds the average of a number of values input by the user using a
for loop. The number of values to be averaged is entered and stored in the variable n on line
11. Then, the for loop, starting on line 12, executes the statement located inside the loop (on
line 13 and on line 14) for n iterations. Notice how the variable n and the variable i are used
in order to iteratively execute the statements inside the loop n times.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-8

import java.io.*; 1
public class Average2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double sum = 0, n = 0; 6
 String input; 7
 BufferedReader stdin = 8
 new BufferedReader(new InputStreamReader(System.in)); 9
 System.out.print("How many values you want to average? : "); 10
 n = Integer.parseInt(stdin.readLine()); 11
 for(int i=1;i<=n;i++){ 12
 System.out.print("-- Enter value #"+i+" : "); 13
 sum += Double.parseDouble(stdin.readLine()); 14
 } 15
 System.out.println("Average = "+(sum/n)); 16
 } 17
} 18

Example

Let’s look at a program called Factorization.java which is a program that finds prime factors
of an integer (e.g. the prime factorization of 120 is 2×2×2×3×5). The algorithm used here
(which is by no mean the best) is that we will iteratively factor the smallest factor out. Let the
integer to be factorized be n. An integer i is a factor of n when n%i equals 0. A for loop is used
to perform the iteration, starting from using the index variable of 2. In each iteration of the for
loop, all factors equal the index variable are factored out via a while statement. In the
program, a variable m is used for storing the resulting integer of the partially factorization.
The for loop continues as long as the index variable i is still less than m.

import java.io.*; 1
public class Factorization 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int n, m; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter an integer : "); 9
 n = Integer.parseInt(stdin.readLine()); 10
 m = n; 11
 System.out.print("1, "); 12
 for(int i=2;i<=m;i++){ 13
 while(m%i == 0){ 14
 System.out.print(i+", "); 15
 m = m/i; 16
 } 17
 } 18
 } 19
} 20

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-9

Example

A sequence of number can be defined using recurrent relation, in which
the value of the nth term of the sequence (an) is described based on preceding terms. For the
first-order recurrent relation, the only preceding term required to compute the value of an is
an-1. Thus, the first-order recurrent relation can be written as:

kmaa nn += −1 ,

where m and k are two constant values defining the relation. We can compute the value of an
in the sequence described by a first-order recurrent relation for any positive integer n from its
initial condition, which is the value of a0, and its associated recurrent relation.

The following program finds the value of a1 to an for any positive integer n defined by the
user from a first-order recurrent relation and its initial condition. A for loop is used for
computing ai from ai-1 for i equals 1 to the specified n.

import java.io.*; 1
public class RecurrenceRelation 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double an, an_1, k, m, a0; 6
 int n; 7
 BufferedReader stdin = 8
 new BufferedReader(new InputStreamReader(System.in)); 9
 10
 System.out.print("\nRecurrence Relation:"); 11
 System.out.println(" a(n) = m*a(n-1) + k\n"); 12
 13
 System.out.print("m --> "); 14
 m = Double.parseDouble(stdin.readLine()); 15
 System.out.print("k --> "); 16
 k = Double.parseDouble(stdin.readLine()); 17
 System.out.print("a(0) --> "); 18
 a0 = Double.parseDouble(stdin.readLine()); 19
 System.out.print("n --> "); 20
 n = Integer.parseInt(stdin.readLine()); 21
 System.out.println("---------------------"); 22
 23
 an_1 = a0; 24
 for(int i=1;i<=n;i++){ 25
 an = m*an_1+k; 26
 System.out.println("a("+i+") = "+an); 27
 an_1 = an; 28
 } 29
 } 30
} 31

{ } ,...,,, 3210 aaaaan =

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-10

‘break’ and ‘continue’

We have seen in the previous chapter that a break statement causes the program to jump out
of the current conditional construct and continue executing statements following that
construct. If a break statement is put inside an iterative construct, it causes the program to
jump out of that construct; no matter how many times the loop is left to be executed.

The following program is a trivial program that persistently prompts the user to enter some
texts. It will keep prompting the user for infinitely many times unless the user enters Java.

import java.io.*; 1
public class BreakDemo1 2
{ 3
 public static void main(String[] args) throws IOException 4
 { String s; 5
 BufferedReader stdin = 6
 new BufferedReader(new InputStreamReader(System.in)); 7
 while(true){ 8
 System.out.print("Say the magic word\n>>"); 9
 s = stdin.readLine(); 10
 if(s.equals("Java")) break; 11
 } 12
 System.out.println(":)"); 13
 } 14
} 15

We can see on line 8 that the condition for the while loop is always true. Thus, the while loop
repeats forever unless the input String is “Java”, in which case the break statement is executed,
resulting in the program jumping out of the while loop.

A continue statement causes the current iteration to terminate immediately. However, unlike
what happens with a break statement, a continue statement pass the program flow to the start
of the next iteration.

The following program should give you an example of how continue works. The program is
used for finding a maximal-valued digit from a string of character. Each character in the input
string is not restricted to being a digit. For example, if the input is “abc12D81”, the maximal-
valued digit is 8.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-11

import java.io.*; 1
public class ContinueDemo1 2
{ 3
 public static void main(String[] args) throws IOException 4
 { int len, max = 0; 5
 String s; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter any string with digits : "); 9
 s = stdin.readLine(); 10
 len = s.length(); 11
 for(int i=0; i<len; i++){ 12
 char c = s.charAt(i); 13
 if(!(c>='0' && c<='9')) continue; 14
 int digit = Character.digit(c,10); 15
 if(digit > max) max = digit; 16
 } 17
 System.out.println("Max digit --> "+max); 18
 } 19
} 20

A for statement starting on line 12 goes through every position of the input String. In each
position, if the character at that position does not fall between ‘0’ and ‘9’ inclusively, that
character is not a digit. Thus, if !(c>='0' && c<='9') is true, there is no need to do anything
else to the character in that position. Therefore, continue is used in order for the program to
start the next iteration right away, as seen on line 14.

Nested ‘for’ Loops

A for statement can be placed inside another for statement, causing what we called nested for
loops. Observe the following code segment.

for(int i=1; i<=n; i++){
 for(int j=1; j<=m; j++){
 Actions
 }
}

The outer for statement is associated with an index variable i that runs from 1 to n, resulting
in n iterations of the inner for statement. For each iteration of the outer for statement, the inner
for statement iterates m times. So, this results in Actions being executed n × m times.

Observe the following programs and their outputs.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-12

public class NestedLoopDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 for(int x=1; x<=3; x++){ 5
 for(char y='A'; y<='C'; y++){ 6
 System.out.println(x+"-"+y); 7
 } 8
 } 9
 } 10
} 11

public class NestedLoopDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 for(int x=1; x<10; x++){ 5
 System.out.println("x="+x); 6
 System.out.print(" --> y="); 7
 for(int y=1; y<=x;y++){ 8
 System.out.print(y+","); 9
 } 10
 System.out.print("\n"); 11
 } 12
 } 13
} 14

Index Variable Scope

If index variables are declared in the initialization part of a for statement (i.e. in Init
Expression), they are known only inside the block associated with that for loop. Or, we can
say that the scope of these variables is just inside that for statement. If you attempt to use
these variables outside, a compilation error will occur. However, if a variable is declared in a
block where a for statement is nested inside, immediately or not, that variable is known in
that for loop as well.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-13

The following code segment cannot be compiled successfully since the variable k is not
known outside the for loop.

public static void main(String[] args)
{ int lastIndex;
 for(int k = 0; k < 10; k++){
 // Some statements
 }
 lastIndex = k; // This line causes a compilation error.
}

Example

{x,y,z} is a solution of a2+b2+c2 = 200 if the equation is true when a = x, b = y, and c = z. How
many unique solutions are there if we require that a, b, and c can only take non-negative
integers? We can write a Java program utilizing nested for loops to count the number of all
possible solutions to the equation that meet the non-negative integer requirement.

The idea is to try all possible combinations of three non-negative integers and see whether
which ones of them satisfy a2+b2+c2 = 200. Due to the non-negative integer requirement, each
variable from a, b, and c can only be as small as 0, while each of them cannot exceed .
Thus, we use three-level nested for loops, each of which is associated with a variable that runs
from 0 to . Whether each combination of the three non-negative integers is a solution of
the equation is tested in the innermost for loop, where the solution is also printed out on the
screen.

Here is a Java program that do the mentioned task.

public class SolutionsCount 1
{ 2
 public static void main(String[] args) 3
 { int a,b,c,nSolutions=0; 4
 int maxPossible = (int)Math.floor(200); 5
 for(a = 0; a < maxPossible; a++){ 6
 for(b = 0; b < maxPossible; b++){ 7
 for(c = 0;c < maxPossible; c++){ 8
 if(a*a+b*b+c*c == 200){ 9
 nSolutions++; 10
 System.out.print("Soltn #"+nSolutions); 11
 System.out.println("("+a+","+b+","+c+")"); 12
 } 13
 } 14
 } 15
 } 16
 System.out.println("# of non-negative integer solutions for "); 17
 System.out.println("a^2 + b^2 + c^2 = 200 is "+nSolutions); 18
 } 19
} 20

⎣ ⎦200

⎣ ⎦200

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-14

Exercise
1. If n is an integer greater than 0, how many times is boohoo() executed in the

following code segment?

 int i = 0;
 do{
 i++;
 booHoo();
 }while(i<=n);

2. What is the output of the following code segment?

 int k = 0, m = 6;
 while(k<=3 && m>=4){
 System.out.println(k+","+m);
 k++;
 m--;
 }

3. What is the value of n after the following code segment is executed?

 int n = 1, i = 100;
 while(n++<i--);

4. What are the values of n and m after the following code segment is executed?

 int n=0, m=0, i=0,maxItt=300;
 while(i++<maxItt) n++;
 i=0;
 while(++i<maxItt) m++;

5. Rewrite the code segment in the last problem by using for loops instead of the two
while statements.

6. What is the value of n after the following code segment is executed?

 int n = 0;
 for(int i = 1;i<=100;i++)
 for(int j = 1;j<=100;j++)
 n++;

7. What is the value of n after the following code segment is executed?

 int n = 0;
 for(int i = 50;i>0;i--)
 for(int j = 40;j>0;j--)
 n++;

8. What is the output of the following code segment?

 int k=0;
 for(int i=100;i>1;i/=2,k++);
 System.out.println(k);

9. Explain why the following program cannot be compiled successfully.

 public class Ex7Test
 {
 public static void main(String[] args)
 {
 int n = 10, k = 0;
 for(int i=0;i<n;i++){
 k++;
 }
 System.out.println("i="+i+", k="+k);
 }
 }

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-15

10. Use a for statement to write a Java program to calculate the value of 8!

11. Repeat the previous problem using a while statement instead of the for statement.

12. Write a Java program that calculates n! from the integer n obtained from keyboard.

If the value of the input n causes an overflow to occur, report it to the user.
Otherwise, show the value of n! on screen.

13. Write a Java program that randomly picks an English alphabet (A-Z) and keeps

asking the user to guess the alphabet until he/she has got it right. Also report the
number of trials.

14. Determine the output of the following code segment.

 int i,j;
 for(i=0,j=0;i<=100;i++){
 if(i%2==0)
 i++;
 else
 j++;
 }
 System.out.println(j);

15. Determine the output of the following code segment.

 int i=0,a=0,n=0;
 while((i=a+=2)<=100){
 n++;
 };
 System.out.println(i+","+a+","+n);

16. What is the value of k after the following code segment is executed?

 int k=0, j=0;
 while(true){
 if(j<20){
 k++; j++;
 }else{
 break;
 }
 if(k>5){
 continue;
 }else{
 j++;
 }
 }

17. Use nested loops to write a Java program that generates a multiplication table as

shown below.

2 3 4 5 6 7 8 9 10 11 12
2 | 4 6 8 10 12 14 16 18 20 22 24
3 | 6 9 12 15 18 21 24 27 30 33 36
4 | 8 12 16 20 24 28 32 36 40 44 48
5 | 10 15 20 25 30 35 40 45 50 55 60
6 | 12 18 24 30 36 42 48 54 60 66 72
7 | 14 21 28 35 42 49 56 63 70 77 84
8 | 16 24 32 40 48 56 64 72 80 88 96
9 | 18 27 36 45 54 63 72 81 90 99 108
10 | 20 30 40 50 60 70 80 90 100 110 120
11 | 22 33 44 55 66 77 88 99 110 121 132
12 | 24 36 48 60 72 84 96 108 120 132 144

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-16

18. Write a code segment using nested loops that displays a daily timetable of the

form:
0:00AM __________________
0:30AM __________________
1:00AM __________________
1:30AM __________________
 ……
11:30AM __________________
12:00PM __________________
12:30PM __________________
 1:00PM __________________
 ……
11:00PM __________________
11:30PM __________________

19. Write a Java program that reverses the order of the characters in the string input

from keyboard and show them on screen.

20. Write a Java program that finds the value of f(x,n), where x can be any real value, n

can only be a non-negative integer, and f(x,n) is defined as:

∑
=

=
n

i

ixnxf
0

),(

Your program must check whether the value of n input by the user is valid or not.
(i.e. n must have an integer value and be non-negative.) Use Math.pow() to find the
value of xi.

21. Repeat the previous problem without using any methods provided by the Math

class.

22. Write a Java program that calculates and shows the sum of all even integers from 0

to n, where n is specified by the user via keyboard.

23. An imaginary webmail service called “veryhotmail.com” is kind enough to let its
users choose their own passwords. However, a valid password must comply with
the following (somewhat strange) rules:

- The length must be between 6 to 15 characters, inclusive.
- Each character must be either one of the 26 English alphabets. Both uppercase

and lower case letters are allowed.
- The difference between the number of the uppercase letters and the lowercase

letters cannot be greater than 20% of the password length.

Write a code segment that can validate the password stored in a String reference s.

24. Write a Java program to shows the value of a0, a1, …, an that is corresponding to the

recurrence relation ak = k2ak-1-ak-2+3k where k = 2, 3, 4 ,… The values of n and the
initial conditions (a0 and a1) are specified by the user at run-time via keyboard.

25. Write a Java program to find the number of solutions to the equation x+y+z = 30

where x, y, and z are non-negative integers.

26. Write a Java program to find the number of solutions to the equation x+y+z = n
where n is a constant integer supplied by the user of the program and x, y, and z
are integers between –b and b. Also, b is an integer defined by the user.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006

7-17

27. Write a Java program that receives an English sentence from keyboard. The

program encodes the sentence by reversing the order of letters in each word
appearing in that sentence while keeping the original word order and shows the
result on screen. Assuming that words are always separated by a space. For
example, “We are the champions.” is encoded as “eW era eht .snoipmahc”.

28. Write a code segment that replaces any number of multiple spaces connected

together in a String reference s with single spaces.

For example, if s contains:
 “This does not contain multiple spaces.”,

it should be changed to:
“This does not contain multiple spaces.”

29. An integer n is prime if its only factors are 1 and itself. Write a code segment for

checking whether the value of an int n is prime.

30. An integer n is perfect if the sum of its factors is n. Write a code segment for
checking whether the value of an int n is perfect.

31. Write a Java program that displays positive integer values less than 10 million in

words. The values are received from keyboard. For example, the value 1500 is
displayed as “one thousand five hundred”. The program should keep asking for
another value until the user input -1.

