
2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-1

Chapter 8: Methods

Objectives
Students should

• Be able to define new methods and use them correctly.
• Understand the process of method invocation.

Methods

Sometimes it is cumbersome to write, debug or try to understand a very long program. Many
times, there are some parts of the program that perform similar tasks. Actually writing
statements to perform those similar tasks many times is obviously not very efficient, when
one can possibly write those statements once and reuse them later when similar
functionalities are needed. Programmers usually write statements to be reused in methods.
This does not only allow efficient programming but also makes programs shorter which, in
turn, make the programs easier to be debug and understand. Dividing statements intended to
perform different tasks into different methods is also preferred.

The following program computes:

nnxxxxnxfy ++++== ...32),(32

for x = 1.5, 2.5, 3.5, and 4.5, where n = 3.

public class MethodDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 double x1,x2,x3,x4; 5
 double y; 6
 x1 = 1.5; 7
 y = 0; 8
 for(int i=1;i<=3;i++){ 9
 y += i*Math.pow(x1,i); 10
 } 11
 System.out.println(y); 12
 x2 = 2.5; 13
 y = 0; 14
 for(int i=1;i<=3;i++){ 15
 y += i*Math.pow(x2,i); 16
 } 17
 System.out.println(y); 18
 x3 = 3.5; 19
 y = 0; 20
 for(int i=1;i<=3;i++){ 21
 y += i*Math.pow(x3,i); 22
 } 23
 System.out.println(y); 24
 x4 = 4.5; 25
 y = 0; 26
 for(int i=1;i<=3;i++){ 27
 y += i*Math.pow(x4,i); 28
 } 29
 System.out.println(y); 30
 } 31
} 32

We can observe that for each value of x, a for statement is used for computing y. Instead, we
can use make the functionality for computing f(x) a method and call the method once for each
value of x. This can result in the following code.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-2

public class MethodDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 double x1,x2,x3,x4; 5
 x1 = 1.5; 6
 System.out.println(f(x1,3)); 7
 x2 = 2.5; 8
 System.out.println(f(x2,3)); 9
 x3 = 3.5; 10
 System.out.println(f(x3,3)); 11
 x4 = 4.5; 12
 System.out.println(f(x4,3)); 13
 } 14
 15
 public static double f(double x,int n){ 16
 double y = 0; 17
 for(int i=1;i<=n;i++){ 18
 y += i*Math.pow(x,i); 19
 } 20
 return y; 21
 } 22
} 23

From the code, observe that the program is not composed of only the method main() like
every program that we have seen so far anymore. Instead, on line 16 to line 22, we can see a
segment of code whose structure looks a lot like the method main(). This segment of code is
called the definition of method f(), which is defined and given its name in this program. This
method is responsible for carrying out the iterative computation of y based on the value of x
and n. On line 7, line 9, line 11, and line 13, this method is used to compute the value of y
based on x and n put in the parentheses of f() on each line.

Do not panic yet. At this point you are only expected to adopt a rough idea of how one can
define methods and make use of them. Next, we will look at the detail structure (syntax) of
how to use and define a method.

Using a Method

Using a method should not be new to you. Consider the following statement.

double y = Math.pow(2.0,3);

We should know by now that the statement computes 23 and assigns the resulting double
value to y. What we should pay attention to now is the fact that the method takes a double as
its first argument, and an int as its other argument. The double value which is the first
argument is raised to the power of the int argument. The resulting value, which we assign to
y in the above statement, is said to be returned from the method.

Observe from the use of method that has already be defined in a standard Java class, we can
see that to define a new method we at least have to define what its argument list, how the
arguments should be used, and what the method should return.

Defining a Method

The definition of a method is of the form:

public static returnType methodName(argType1 arg1, …, argTypeN argN){
 methodBody
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-3

The first two words, public and static, are Java keywords. public identifies that this method
can be used by any classes. static identifies that this method is a class method. Now we will
just use these two keywords as they are.

returnType should be replaced with the name of the data type expected to be returned by the
method. returnType can be any of the eight primitive data types or the name of a class. When
a method returns something, only one value can be returned. When a method does not return
any value, a keyword void is used for returnType.

methodName should be replaced with the name (identifier) you give for the method. Java
naming rules apply to the naming of methods as well as other identifiers.

Inside the parentheses is the argument list consisting of parameters expected to be input to
the method. Each parameter in the list is declared by identifying its type (any of the eight
primitive data types or the name of a class) followed by the name (identifier) to be used in the
method for that parameter. When the method does not need any input parameters, do not put
anything in the parentheses.

methodBody is the list of statements to be executed once the method is called. These statements
might be referred to as the body of the method. The body of the method might contain a
return statement, in which the keyword return is placed in front of the value wished to be
returned to the caller of the method. You need to make sure that the value returned is of the
same type as, or can be automatically converted to, what is declared as returnType in the
method header. Return statements also mark terminating points of the method. Whenever a
return statement is reached, the program flow is passed from the method back to the caller of
the method. If there is nothing to be returned, i.e. returnType is void, the keyword return
cannot be followed by any value. In this case, the program flow is still passed back to the
caller but there is no returned value.

Now let’s look again at the f() method in the previous example. Matching line 16 of the
previous example with the form we have just mentioned, we see that the method returns a
double. Its argument list consists of a double and an int. x is used as the name of the double
parameter, while n is used as the name of the other parameter. Line 17 to line 21 is the body of
the method. The keyword return is used to identify the value that will be returned by the
method to its caller. In this example, return y; indicates that the value to be returned is the
value of the variable y.

Here are some examples of method definition.

 public static boolean isOdd(int n){
 return (n%2 != 0)? true : false;
 }

 public static int unicodeOf(char c){
 return (int)c;
 }

 public static String longer(String s1, String s2){
 return ((s1.length() > s2.length())?s1:s2);
 }

 public static int factorial(int n){
 int nFact = 1;
 for(int i=1;i<=n;i++){
 nFact *= i;
 }
 return nFact;
 }

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-4

 public static boolean hasSimilarChar(String s1, String s2){
 boolean similarChar = false;
 for(int i=0; i<s1.length() && !similarChar; i++){
 for(int j=0; j<s2.length(); j++){
 if(s1.charAt(i) == s2.charAt(j)){
 similarChar = true;
 break;
 }
 }
 }
 return similarChar;
 }

 public static void printGreetings(String name){
 System.out.println("Hello "+name);
 System.out.println("Welcome to ISE mail system.");
 System.out.println("---------------------------");
 }

 public static double h(double a, double b, double c, double d){
 double num = g(a);
 double den = g(a)+g(b)+g(c)+g(d);
 return num/den;
 }
 public static double g(double d){
 return Math.exp(-d/2);
 }

Notice that, in the last example, two methods, h() and g(), are defined. In the body of h(), g() is
called several times. This shows that you can call methods that you define by yourself inside
another method definition in a similar fashion to when you call them from main().

Example

Let’s look at an example of writing a Java program where tasks are performed via several
separate methods. Here, we wish to find the angle θ between two vectors in the Cartesian
coordinate, both started at (0,0), as depicted in the figure below.

Problem definition: The program needs to calculate the angle θ between two vectors in the
Cartesian coordinate supplied by the user.

Analysis: Inputs are the two vectors. Since both of them always start at (0,0), the program
only need to know the coordinate of the ending point of each vector. Coordinates can be
specified using two numeric values representing location in the x and y directions. Therefore,
to specify input vectors, two pairs of (x,y) should be input by entering each value at a time via
the keyboard. Calculation of the angle based on the input should then be done and shown on
screen.

The resulting angle should be in degrees and shown nicely on screen using the maximum of
two decimal points.

(0,0)

(xa,ya)

(xb,yb) vector a

vector b θ

x

y

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-5

Design:

• Prompt the user to input the required coordinates: xa, ya, xb, and yb. Store them in
double variables.

• Calculate θ from:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+
= −

2222

1cos
bbaa

baba

yxyx

yyxx
θ

• 22
aa yx + and 22

bb yx + are very similar and each of them corresponds to the length of
its associated vector. Thus, we could consider finding each square root as calculating
vector length. Then, the resulting lengths are multiplied together and used as the
denominator of the above formula.

• θ calculated from the above formula is in radian. It needs to be converted to degree
using Math.toDegree().

• Show the resulting angle in degree on screen.

The above step can be depicted as the program flow below.

Implementation:

import java.io.*; 1
import java.text.*; 2
public class VectorAngle 3
{ 4
 public static void main(String[] args) throws IOException 5
 { double xa,ya,xb,yb,theta; 6
 xa = readDouble("xa = "); 7
 ya = readDouble("ya = "); 8
 xb = readDouble("xb = "); 9
 yb = readDouble("yb = "); 10
 theta = calculateAngle(xa,ya,xb,yb); 11
 System.out.print("Angle between ("+xa+","+ya+") and"); 12
 System.out.print(" ("+xb+","+yb+") is "); 13
 System.out.println(setDecimalPoints(theta,2)+" degrees."); 14
 } 15
 16
 public static double readDouble(String s) throws IOException 17
 { BufferedReader stdin = 18
 new BufferedReader(new InputStreamReader(System.in)); 19
 System.out.print(s); 20
 return Double.parseDouble(stdin.readLine()); 21
 } 22
 //continue on the next page 23

Read xa, ya, xb, yb

Calculate θ

Format what to be
shown on screen

Write a method called
readDouble() for showing the
desired prompt to the user and
store the input in each variable. Write a method called

calculateAngle() that takes xa, ya,
xb, and yb in and calculate theta
(in degree) according to the
formula

Write a method called
setDecimalPoints() so that it
returns a String representation of
a given double value using the
desired number of decimal points

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-6

 public static double 24
 calculateAngle(double x1, double y1, double x2, double y2) 25
 { double len1, len2, thetaInRad; 26
 len1 = length(x1,y1); 27
 len2 = length(x2,y2); 28
 thetaInRad = Math.acos((x1*x2+y1*y2)/(len1*len2)); 29
 return Math.toDegrees(thetaInRad); 30
 } 31
 32
 public static double length(double a,double b) 33
 { 34
 return Math.sqrt(a*a+b*b); 35
 } 36
 37
 public static String setDecimalPoints(double d,int n) 38
 { 39
 NumberFormat style = NumberFormat.getNumberInstance(); 40
 style.setMaximumFractionDigits(n); 41
 return style.format(d); 42
 } 43
} 44

Local Variables

Variables declared in the argument list of the method header are available throughout the
method body, but not outside of the method. The variables are created once the method is
entered and destroyed once the method is terminated.

Variables declared inside the method body are available inside the block they are declared as
well as blocks nested in the block they are declared. Within the block, variables are available
after they are declared. Also, they are destroyed once the method is terminated.

The following program yields a compilation error due to a missing variable.

public class ScopeError 1
{ 2
 public static void main(String[] args) 3
 { 4
 int x=0, y=0, z; 5
 z = f(x,y); 6
 System.out.println("myMultiplier = "+myMultiplier); 7
 System.out.println("z="+z); 8
 } 9
 public static int f(int a, int b) 10
 { int myMultiplier = 256; 11
 return myMultiplier*(a+b); 12
 } 13
} 14

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-7

Method Invocation Mechanism

Consider the following program, which calculates (62+82)1/2 using the method f() which can
calculate (an+bn)1/n for any numeric values a and b, and any integer value n. We will learn
about the mechanism that takes place when a method is called from this example.

public class MethodInvokeDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 double x = 6.0, y = 8.0, z; 5
 z = f(x,y,2); 6
 System.out.println(z); 7
 } 8
 public static double f(double a,double b, int n) 9
 { 10
 double an = Math.pow(a,n); 11
 double bn = Math.pow(b,n); 12
 return Math.pow(an+bn,1.0/n); 13
 } 14
} 15

When the method is called (z=f(x,y,2);), the following steps take place.

1. The program flow is passed to f() whose definition starts on line 9. Variables in the
input argument list of the method header (line 9) are created. In this case, two
variables of type double are created and named a and b, while another int variable is
created and named n.

2. Each variable is assigned with its appropriate value. By calling f(x,y,2), a is assigned
with the value of x, b is assigned with the value of y, and n is assigned with 2. Note
that x and a do not share the same memory location, the value of x is just copied to a
once. It is the same for y and b.

x

y

z

6.0

8.0

-

a

b

n

-

-

-

main() f()

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-8

3. Then, the statements in the method body are executed. Line 11 and line 12 caused an
and bn to be created and assigned values. Remember that both variables are only
local to f(). Before returning the value to main(), Math.pow(an+bn,1.0/n) is evaluated to
10.0.

4. The value of Math.pow(an+bn,1.0/n) is copied to the variable z in main() as the result
of the assignment operator. Variables local to f() are then destroyed and the program
flow is passed back to main().

It is important to keep in mind that variables local to main() as well as variables local to
different methods are available inside the method that they are declared. Thus, it is possible,
and is usually the case that, variable names are reused in different methods. For example, the
variables a and b in f() could be named as x and y without any confusion.

Observe the following program and its output.

public class MethodVariableName 1
{ 2
 public static void main(String[] args) 3
 { 4
 int x=1,y=1,w; 5
 w = add(x,y); 6
 System.out.println("x="+x+"y="+y); 7
 } 8
 public static int add(int x,int y) 9
 { 10
 int z = x+y; 11
 x = 0; 12
 y = 0; 13
 return z; 14
 } 15
} 16

x

y

z

6.0

8.0

10.0

main()

x

y

z

6.0

8.0

-

a

b

n

6.0

8.0

2

main() f()
an

bn

Math.pow(an+bn,1.0/n)

36.0

64.0

10.0

x

y

z

6.0

8.0

-

a

b

n

6.0

8.0

2

main() f()

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-9

If you are not surprised with the output (x=1 y=1), that is good. You may skip to the next
paragraph. If you think that the output should be x=0 y=0, you should note that x and y
declared in main() on line 5 are different from x and y declared in add() on line 9. Thus,
changing that value of x and y local to add() does not have anything to do with x and y local to
main(), which are the ones printed out on screen.

Example

The following program swaps the value the variables of a and b declared the program.

public class SwapDemo
{
 public static void main(String[] args)
 { int a=9, b=8, temp;
 System.out.println("a="+a+" b="+b);
 temp = a;
 a = b;
 b = temp;
 System.out.println("Swapped!\na="+a+" b="+b);
 }
}

Now observe the next program and its output.

public class SwapDemoWrong
{
 public static void main(String[] args)
 { int a=9, b=8, temp;
 System.out.println("a="+a+" b="+b);
 swap(a,b);
 System.out.println("Swapped!\na="+a+" b="+b);
 }
 public static void swap(int a, int b){
 int temp;
 temp = a;
 a = b;
 b = temp;
 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-10

What’s wrong is that the only values that are swapped are the values of a and b local to the
swap() method. Note that they are not the values of a and b that are local to the main() method.
As we can see from the output of the program, the values of a and b of the main() method are
still intact. In the case that you are still confused, try follow the steps described in the
“Method Invocation Mechanism” section.

Method Overloading

Different methods, even though they behave differently, can have the same name as long as
their argument lists are different. This is called Method overloading. Method overloading is
useful when we need methods that perform similar tasks but with different argument lists,
i.e. argument lists with different numbers or types of parameters. Java knows which method
to be called by comparing the number and types of input parameters with the argument list
of each method definition. Note that methods are overloaded based on the difference in the
argument list, not their return types.

Consider the following program.

public class OverloadingDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 System.out.println(numericAdd(1,2)); 5
 System.out.println(numericAdd(1,2,3)); 6
 System.out.println(numericAdd(1.5,2.5)); 7
 System.out.println(numericAdd(1.5,2.5,3.5)); 8
 System.out.println(numericAdd('1','2')); 9
 } 10
 11
 public static int numericAdd(int x,int y) 12
 { 13
 return x + y; 14
 } 15
 public static double numericAdd(double x,double y) 16
 { 17
 return x + y; 18
 } 19
 public static int numericAdd(int x,int y, int z) 20
 { 21
 return x + y + z; 22
 } 23
 public static double numericAdd(double x,double y, double z) 24
 { 25
 return x + y + z; 26
 } 27
 public static int numericAdd(char x, char y) 28
 { int xInt = x - '0'; 29
 int yInt = y - '0'; 30
 return xInt+yInt; 31
 } 32
} 33

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-11

In this program, we overload methods numericAdd(). On line 5 to line 9, we call numericAdd()
with different argument lists. Based on the input parameters, methods with appropriate
definition are activated.

numericAdd(1,2) activates numericAdd(int x,int y).

numericAdd(1,2,3) activates numericAdd(int x,int y,int z).

numericAdd(1.5,2.5) activates numericAdd(double x,double y).

numericAdd(1.5,2.5,3.5) activates numericAdd(double x,double y,double z).

Finally, numericAdd(‘1’,’2’) activates numericAdd(char x,char y).

Now, let’s look at some examples of incorrect method overloading.

public static int f(int x, int y){
 …
}
public static double f(int x, int y){
 …
}

Both methods are not counted as methods overloading since the method names as well as
their argument lists are the same. Regardless of their return types, they are considered the
same methods. Consequently, their definitions are considered redundant, and, therefore,
cause a compilation error.

public static int g(int x, int y){
 …
}
public static int g(int a, int b){
 …
}

The g() methods in the this example differ only in the variable names. This difference does
not make the two argument lists different. The numbers and types of parameters are the
same. We only call each parameter differently, and this does not count as method
overloading. Therefore, their definitions are considered redundant. Again, this causes a
compilation error.

Observe the following program. Pay attention to the way Java selects which method to be
called.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-12

public class OverloadingDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 h(1,1); 5
 h(1.0,1.0); 6
 h(1,1.0); 7
 } 8
 9
 public static void h(int x,int y) 10
 { 11
 System.out.println("h(int x, int y) is called."); 12
 } 13
 public static void h(double x,double y) 14
 { 15
 System.out.println("h(double x, double y) is called."); 16
 } 17
} 18

h(1,1) on line 5 is clearly corresponding to h(int x,int y) due to its argument list. Similarly,
the method h(1.0,1.0) on line 6 is clearly corresponding to h(double x,double y). One
interesting point is which method corresponds with h(1,1.0). There is no exact match for the
argument list (int,double). However, int can be automatically converted to double via
widening data type conversion. Therefore, the first input parameter in h(1,1.0), which is an
int 1, is converted to 1.0 first. Then, h(double x, double y) is called.

The following program cannot be compiled successfully since g(1.0,1.0)does not match any
overloaded methods, and none of its parameters can be converted so that it matches any
overloaded methods.

public class OverloadingDemo3
{
 public static void main(String[] args)
 {
 g(1.0,1.0);
 }
 public static void g(int x,double y)
 {
 System.out.println("g(int x, double y) is called.");
 }
 public static void g(double x,int y)
 {
 System.out.println("g(double x, int y) is called.");
 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-13

Exercise
1. Explain the benefits of having a program perform some sets of instruction inside

methods. Can you think of any downsides of doing so?

2. Write a method header for the method m() each item that makes the execution of

the statement in that item valid.

a. int i = m(1,1);
b. float f = m(Math.exp(5));
c. String s = m(2f,8d);
d. IseStudent l = m(“John”,”K.”,”Maddy”);
e. for(double d=1;d<=256;d *= 2) m(d);

3. What is the output when main() is run?

 public static void main(String[] args)
 {
 System.out.println(g("A"));
 }
 public static String f(){
 System.out.println("A");
 return "A";
 }
 public static String g(String s){
 return f()+s;
 }

4. Explain why the following code segment cannot be compiled successfully.

 public static void main(String[] args)
 {
 int i = f(2,3);
 }
 public static int f(int a, int b){
 return Math.pow(a,b)+Math.pow(b,a);
 }

5. Can the following program be compiled successfully? If so, what is the output?

public class Ex8_5
{
 public static void main(String[] args){
 f(5);
 System.out.println("k="+k);
 }
 public static void f(int n){
 int k = 0;
 for(int i=0;i<n-1;i++){
 k += k*i;
 }
 }
}

6. Determine the output of the following code segment.

 public static void main(String[] args)
 { int n = 0;
 for(int i=0;i<5;i++){
 n = f(n++);
 }
 System.out.println(n);
 }
 public static int f(int n)
 {
 return n++;
 }

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-14

7. Determine the output of the following code segment.

 public static void main(String[] args)
 { int n = 0;
 for(int i=0;i<5;i++){
 n = f(++n);
 }
 System.out.println(n);
 }
 public static int f(int n)
 {
 return ++n;
 }

8. Given the definition of a() as the following:

 public static double a(double d)
 {
 return 3*d+1;
 }

Use a() to find the value of kn for n=4, where kn = 3kn-1+1 and k0 = 0;

9. Write a method called cube() that returns its double parameter raised to the third

power.

10. Write a method called blankLine() used for inserting an empty line to a message.

Therefore, “First line\nSecond line”+blankLine()+”Third line.” would appear
as:

 First line
 Second line

 Third line.

11. Write a method called readDigitString() that returns a new String whose character

sequence consisted of the input provided by the user via keyboard if the input is a
valid digit string of any length. Otherwise, the method returns null.

12. Tax rates in a specific country can be calculated from an individual’s income (in G.)

obtained during the past tax year according to the following table.

Income (G.) Tax Rate (%)
1-100,000 0

100,001-500,000 10
500,001-1,000,000 20

1,000,001-4,000,000 30
above 4,000,001 37

According to the table, if a person’s income is 550,000 G., there is no tax for the first
100,000 G., 10% of the income in the range 100,001-500,000 are taxed, which equals
40,000 G., The last 50,000 G. is taxed with the rate of 20% resulting 10,000 G.
Therefore, the total tax for this person is 60,000 G.

Write a method called tax() which returns the amount of tax associated with the
income supplied as the only input to the method.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 8-15

13. Write a method called nBits() that calculates the minimum number of bits (in

integer) required for using binary code to represent n different symbols. n is input
to the method as the only input argument.

14. The chi-square distribution function f(x;k) is defined as:

2/1)2/(
)2/(

2/)2/1();(xekx
k

k
kxf −−

Γ
=

when x ≥ 0, and f(x;k) is zero when x < 0.

Write a method for finding the value of the chi-square distribution function at the
input values of x and k. Assume that the value of Γ(a) can be obtained by calling a
class method called gamma() of a class called MyMath and use a as the only input.

15. Determine the output of the following program.

public class Ex8Test
{
 public static void f()
 {
 System.out.println("A");
 }
 public static void f(int a, int b)
 {
 System.out.println("B");
 }
 public static void f(float a, float b)
 {
 System.out.println("C");
 }
 public static void f(double a, double b)
 {
 System.out.println("D");
 }
 public static void f(char a, char b)
 {
 System.out.println("E");
 }

 public static void main(String[] args)
 {
 f();
 f(1,2);
 f(1.0,2.0);
 f(1,2.0);
 f(1F,2.0);
 f('1','2');
 f('1',2);
 }
}

16. Write overloaded methods named nextValue(). If the input is numeric value of the
type int, float, or double, the associated methods should return a value that is one
greater than the input parameter but with the data type intacted. If the input is a
single character either a char or a String, the associated methods should return a
char or a String whose value is the character immediately following the input
parameter.

