
2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-1

Chapter 9: Arrays

Objectives
Students should

• Be able to define, initialize, and use one-dimensional as well as multidimensional
arrays correctly.

• Be able to use arrays as well as their elements as parameters to methods.
• Be able to write code to sort array elements in any orders desired.
• Be able to write code to search for elements in an array.
• Be able to use arrays in problem solving using computer programs.

Requirement for a List of Values

Suppose we want to write a program that counts the number (frequency) of each digit from 0
to 9 in a String entered by the user, the program might written using what we have studied so
far be like this:

import java.io.*;
public class CountDigitFrequency
{
 public static void main(String[] args) throws IOException
 { BufferedReader stdin
 = new BufferedReader(new InputStreamReader(System.in));
 System.out.print("Enter string:");
 String s = stdin.readLine();
 int freq0 = 0; int freq1 = 0;
 int freq2 = 0; int freq3 = 0;
 int freq4 = 0; int freq5 = 0;
 int freq6 = 0; int freq7 = 0;
 int freq8 = 0; int freq9 = 0;
 for(int i=0;i<s.length();i++){
 char c = s.charAt(i);
 if(c >= '0' && c <= '9'){
 switch(c){
 case '0': freq0++; break;
 case '1': freq1++; break;
 case '2': freq2++; break;
 case '3': freq3++; break;
 case '4': freq4++; break;
 case '5': freq5++; break;
 case '6': freq6++; break;
 case '7': freq7++; break;
 case '8': freq8++; break;
 case '9': freq9++; break;
 default:
 }
 }
 }
 System.out.println("Number of 0 = "+freq0);
 System.out.println("Number of 1 = "+freq1);
 System.out.println("Number of 2 = "+freq2);
 System.out.println("Number of 3 = "+freq3);
 System.out.println("Number of 4 = "+freq4);
 System.out.println("Number of 5 = "+freq5);
 System.out.println("Number of 6 = "+freq6);
 System.out.println("Number of 7 = "+freq7);
 System.out.println("Number of 8 = "+freq8);
 System.out.println("Number of 9 = "+freq9);
 }
}

From the code, you should be able to notice that ten variables are used for storing the
frequencies of the digits. Also, separate instances of System.out.println() are called for printing

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-2

the resulting frequencies. Although the names of the variables storing the frequencies are
rather similar, they are independent from one another. Therefore, we cannot make use of
iterative constructs learned previously, which would significantly reduce the size of the code.
Not being able to use iterative constructs in this case also leads to clumsy and error-prone
source code.

What we require is a mechanism that enables us to store a list of related values in a single
structure, which can be referred to using a single identifier. Java provides this mechanism
through the use of arrays.

Specifically to the above example, we need a list of ten elements, in which each element is
used for storing the frequency of each digit.

One-dimensional Array

An array variable is used for storing a list of element. Similar to a variable of other data types,
an array variable needs to be declared. The declaration of an array takes a rather similar
syntax to the declaration of a variable of other data type, which is:

ElementType [] a;

ElementType is the data type of each element in the array. The square bracket [] identifies that
this is an array declaration. a is the identifier used for referring to this array. Note that
identifier naming rules applies here also.

Below are some examples when arrays of various data types are declared.

int [] freq;
int [] numICE, numADME;
double [] scores;
char [] charList;
string [] studentNames;

Note that more than one arrays of the same type can be declared in a single statement such as
the one shown in the second example. Also, it is perfectly correct and common to create an
array of non-primitive data type such as an array of String shown in the last example above.

To initialize an array, the keyword new is used in the following syntax.

a = new ElementType[n];

n is a non-negative integer specifying the length of a. Here are some examples of array
initialization associated with the arrays declared in the above example.

freq = new int[10];
numICE = new int[5];
int n = 5;
numADME = new int[n];
scores = new double[50];
charList = new char[2*n];
studentNames = new String[40];

Notice that we can use any expression that is evaluated to an int value, as well as an explicit
int value, to specify the length.

Declaration and initialization can be done in the same statement. For example,

int [] freq = new int[10];
int n = 5;
int [] numADME = new int[n];

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-3

Whenever an array is initialized using the keyword new, every of its element is set to a
numeric zero if the elements are of numeric types, to the boolean false if the elements are of
boolean type, and to null (a reference to nowhere) if the elements are of non-primitive data
types.

Accessing Array Elements

Elements in an array can be referred to using its associated index. For an array of length n, the
corresponding indexes run from 0 to n-1. An element of an array a with index k can be
referred to in the program using a[k].

Consider the following program. Note that the length of an array a can be found using
a.length.

public class ArrayDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int [] a = new int[5]; 5
 for(int i=0; i<a.length; i++){ 6
 System.out.print(a[i]+"\t"); 7
 } 8
 System.out.print("\n"); 9
 a[0] = 9; 10
 a[1] = 10; 11
 a[2] = a[0]+a[1]; 12
 a[3] = 20; 13
 a[4] = a[3]++; 14
 for(int i=0; i<a.length; i++){ 15
 System.out.print(a[i]+"\t"); 16
 } 17
 } 18
} 19

An array of int of length 5 is declared and initialized on line 5. Then, a for loop is used to
iterate through a[i] from i equals 0 to a.length-1. We can see that the program prints 0 0 0 0
0 out on the screen. The each element of the array a is assigned with different int value from
line 10 to line 14. The for loop on line 15 makes the program prints the values of every
element, which are 9, 10, 19, 21, and 20, on screen. Recall that the post fix increment operator
on line 14 makes assign the value of a[3] to a[4] prior to increasing a[3] by 1.

Example

Here we can modify CountDigitFrequency.java by storing the frequency of each digit
occurrence in a single array. Appropriate iterative constructs are also used. Notice that the
code is much more compact.

import java.io.*; 1
public class CountDigitFrequency2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { BufferedReader stdin 5

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-4

 = new BufferedReader(new InputStreamReader(System.in)); 6
 System.out.print("Enter string:"); 7
 String s = stdin.readLine(); 8
 int [] freq = new int[10]; 9
 for(int i=0;i<s.length();i++){ 10
 char c = s.charAt(i); 11
 if(c >= '0' && c <= '9'){ 12
 freq[c-'0']++; 13
 } 14
 } 15
 for(int i=0;i<freq.length;i++){ 16
 System.out.println("Number of "+i+" = "+freq[i]); 17
 } 18
 } 19
} 20

Explicit Initialization

If we would like each element in an array to have the value other than the default value (zero
for numeric types and false for boolean) during its initialization, we can use an initializer list.
An initializer list is a list of values, each of which is separated by a comma, enclosed in a pair
curly bracket. For example:

int [] a = {1,2,3,4,5};
String [] programs = {“ADME”, ”AERO”, ”ICE”, ”NANO”};
boolean [] allTrue = {true, true, true};

Initializer lists have to be used in the statements in which array variables are declared.
Therefore, the following statements are invalid.

int [] a;
a = {1,2,3,4,5}; // This is invalid.

Array Variables are Reference Variables.

Just like variables storing values of non-primitive data types (such as String), array variables
are reference variables. The value that is actually stored in an array variable is a reference to
the real array object locating somewhere in the memory.

The following pictures show illustrations of how memory is arranged when array-related
statements are executed.

int [] freq;

freq = new int[10];

freq

-

freq

0 0 0 0 0 0 0 0 0 0

[0] [1] [3] [4] [5] [6] [7] [8] [9] [2]

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-5

int [] numStudents = {31,30,35,28};

numStudents[2] = 99;

numStudents = new int[5];

An array variable can be assigned with the value of another array variable of the same type.
For example, the following code segment is valid.

char [] a = {‘A’,’B’,’C’};
char [] b = {‘X’,’Y’};
b = a;

Both a and b are variables referring to arrays of char. On the last line, b is made to point to the
same array as a using the assignment operator. Notice that the fact that a and b used to refer
to an array of char with different lengths does not matter as long as they are both arrays of
the same data type.

The following code segment is invalid due to the conflicting array data types.

int [] k = {1,2};
double [] j = {1.0,2.0,3.0};
j = k;

Assigning an array variable with another array variable makes the former array variable refer
to the same array as the later one. Consider the following picture.

char [] a = {‘A’,’B’,’C’,’D’};
char [] b = {‘X’,’Y’};

b = a;

a[3] = ‘Z’;
System.out.print(b[3]);
// ‘Z’ is printed.

In the above example, the statement b=a; makes b refers to the same array as a. Therefore, b[3]
is actually the same value as a[3].

numStudents

31

[0] [1] [3] [2]

30 35 28

numStudents

31

[0] [1] [3] [2]

30 99 28

numStudents

31

[0] [1] [3] [2]

30 99 28

0

[0] [1] [3] [2]

0 0 0

[4]

0

a

‘A’

[0] [1] [3] [2]

‘B’ ‘C’ ‘D’

b

‘X’

[0]

[1]

‘Y’

a

‘A’

[0] [1] [3]

[2]

‘B’

‘C’

‘D’

‘X’

[0] [1]

‘Y’

b

a

‘A’

[0] [1] [3]

[2]

‘B’

‘C’

‘Z’

‘X’

[0] [1]

‘Y’

b

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-6

Arrays and Methods

Just like variables of other data types, array variables can be used as a parameter in methods’
argument lists. One thing, you need to keep in mind is that the actual value that is kept in an
array variable is the reference to its associated array stored somewhere in the memory.
Therefore, when an array variable is used as a input parameter to a method, that reference is
copied to the corresponding array variable defined in the head of that method’s definition.

Consider the following example.

public class ArraysAndMethods
{
 public static void main(String[] args)
 {
 int [] a = {100,101,102,103};
 int k = 100;
 printArrayValues(a);
 System.out.println("k = "+k);
 someMethod(k,a);
 printArrayValues(a);
 System.out.println("k = "+k);
 }
 public static void someMethod(int k,int [] b){
 System.out.println("-------------In the method.");
 k = 0;
 for(int i=0;i<b.length;i++) b[i]=0;
 printArrayValues(b);
 System.out.println("k = "+k);
 System.out.println("---Going out of the method.");
 }
 public static void printArrayValues(int [] a){
 for(int i=0;i<a.length;i++)
 System.out.print(a[i]+",");
 System.out.println();
 }
}

From the above example, notice the values of the array variable a and the int variable k
before and after someMethod() is called. As we have discussed in the last chapter, the value of
k in main() does not change when the value of the variable k in someMethod() is changed. (If
this is not clear to you, go back and consult Chapter 8.) However, the value of the integers in
the array associated with a are changed since the array variable b in someMethod() refers to
exactly the same array as a. Therefore, b[i], for each i equals 0 to 3, is the same value as a[i]
in main().

An array can also be used as a returned value from a method. To do so, the return type must
be specified in the method header appropriately as it is done with the values of other data
types. To indicate that an array of a specific data type will be returned form a method, the
return type must be the data type of the array element followed by square brackets.

For example,

public static int [] f(){
 // Body of f()
}

indicates that f() returns an array of int.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-7

The program listed below shows an example of a method that returns an array of double. The
method receives two input parameters and returns an array containing dn, where d is the first
input parameter and n are integers running from 0 to one less than the int value of the second
input parameter.

public class PowerSeries
{
 public static void main(String[] args)
 {
 double d = 2.0;
 int k = 5;
 double [] dn = genPowerSeries(d,k);
 for(int i=0;i<dn.length;i++)
 System.out.println("dn["+i+"]="+dn[i]);
 }
 public static double [] genPowerSeries(double d,int k){
 double [] dn = new double[k-1];
 dn[0] = 1;
 for(int i=1;i<k-1;i++)
 dn[i] = dn[i-1]*d;
 return dn;
 }
}

Example: Finding Maximum and Minimum Values

The following Java program shows an example of methods that find the maximum and
minimum values of an array.

public class MinMaxDemo 1
{ 2
 public static void main(String[] args) 3
 { int [] a = {-128,65,-235,99,0,26}; 4
 int minIdx = findMinIdx(a); 5
 int maxIdx = findMaxIdx(a); 6
 System.out.println("min value is a["+minIdx+"]="+a[minIdx]); 7
 System.out.println("max value is a["+maxIdx+"]="+a[maxIdx]); 8
 } 9
 public static int findMinIdx(int [] a){ 10
 int k, minIdx=0; 11
 for(k=1;k<a.length;k++){ 12
 if(a[k]<a[minIdx]) 13
 minIdx = k; 14
 } 15
 return minIdx; 16
 } 17
 public static int findMaxIdx(int [] a){ 18
 int k, maxIdx=0; 19
 for(k=1;k<a.length;k++){ 20
 if(a[k]>a[maxIdx]) 21
 maxIdx = k; 22
 } 23
 return maxIdx; 24
 } 25
} 26

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-8

findMinIdx() and findMaxIdx() defined on line 10 and line 18 are used for finding the index of
the minimum and the maximum values in an array input to the methods. The minimum
value is located by first assuming that the element at the 0th index is the minimum value, then
iterating through each element and compare each value with the minimum value. If any
element is smaller than the current minimum value, replace the minimum value with that
element. This way, when the comparison has been performed with every element in an array,
the minimum value obtained in the end is the actual minimum value in that array. The
maximum value is located using a rather similar procedure.

Both the minimum and maximum values can be found using a single method, if we let the
method return an array containing the indexes of the two values. Each index is placed in each
position of the returned array. This is shown in the program listed below. In this program,
findMinMax() returns an array of two integers in which the first position contains the index
of the minimum value and the second position contains the index of the maximum value.

public class MinMaxDemo2
{
 public static void main(String[] args)
 { int [] a = {-128,65,-235,99,0,26};
 int [] idx = new int[2];
 idx = findMinMaxIdx(a);
 System.out.println("min value is a["+idx[0]+"]="+a[idx[0]]);
 System.out.println("max value is a["+idx[1]+"]="+a[idx[1]]);
 }
 public static int [] findMinMaxIdx(int [] a){
 int k, minIdx=0, maxIdx=0;
 for(k=1;k<a.length;k++){
 if(a[k]<a[minIdx])minIdx = k;
 if(a[k]>a[maxIdx])maxIdx = k;
 }
 int [] idx = {minIdx,maxIdx};
 return idx;
 }
}

Sequential Search

We usually need an ability to search for data of a particular value in an array. Sequential
search is a search algorithm that operates by checking every element of an array one at a time
in sequence until a match is found. A flow diagram of sequential search can be shown in the
picture below.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-9

Suppose we want to search for a value k in an array a, we start checking at a[i] when i=0. If
a[i] is not k, we increase i by one and repeat the checking. The process is iterated until a[i]
= k, or until there is no more element in a (i.e. i exceeds a.length-1). Once the loop is exited,
we have to check whether it is exited because k is found or there are no more elements to
search. If the former case happens, i will still be less than a.length. If the latter case happens,
i will be greater than or equal to a.length. In this case, we assign -1 to i to indicate that k is
not found in a.

Below is an example of sequential search implementation in a method.

public class SeqSearchDemo
{
 public static void main(String[] args)
 { int [] a = {99,105,86,34,108,25,11,96};
 System.out.println("a={99,105,86,34,108,25,11,96}");
 System.out.println("86 is found at a["+seqSearch(a,86)+"]");
 System.out.println("96 is found at a["+seqSearch(a,96)+"]");
 System.out.println("0 is found at a["+seqSearch(a,0)+"]");
 }
 public static int seqSearch(int [] a, int k){
 int i = 0;
 int len = a.length;
 while(i<len && a[i]!=k){
 i++;
 }
 if(i>=len) i=-1;
 return i;
 }
}

initialize i to the
first index (i=0)

move to the next index
(i++)

Search for k in an
array a

k is not yet
found

or i<a.length

true

false

loop exited
since k is

found

i = -1

k is at i, if i is
not -1

true

false

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-10

Selection Sort

Sometimes we need to sort the values appeared in an array. Algorithms performing the task
are call sorting algorithms. Probably the most intuitive sorting algorithm is selection sort. To
sort the values in an array increasingly, selection sort works as follows:

1. Let k be the first position of the array (i.e. k = 0).

2. Find the minimum value from the kth position to the last position.

3. Swap the minimum value with the value in the kth position.

4. Increase k by one.

5. Repeat step 2 to step 4 until k reaches the end of the array.

Let’s look at an illustrated example of the sorting of an array a = {1, -2, 4, 3}.

Below is an example of selection sort implementation in a method.

public class SelectionSortDemo
{
 public static void main(String[] args)
 { double [] a = {6.0,5.9,-10.5,-8,1.3};
 for(int i=0;i<a.length;i++)
 System.out.print(a[i]+",");
 System.out.println();
 selectionSort(a);
 for(int i=0;i<a.length;i++)
 System.out.print(a[i]+",");
 System.out.println();
 }
 public static void selectionSort(double [] a){
 int k = 0, minIdx;
 while(k<a.length-1){
 minIdx = findMinIdx(a,k);
 swapElement(a,k,minIdx);
 // continue on the next page

0

k

 1

-2

4

3

a

0

1

2

3

0

k

 1

-2

4

3

a

0

1

2

3

1

k

 -2

1

4

3

a

0

1

2

3

1

k

 -2

1

4

3

a

0

1

2

3

2

k

 -2

1

4

3

a

0

1

2

3

2

k

 -2

1

4

3

a

0

1

2

3

3

k

 -2

1

3

4

a

0

1

2

3

k = 0

minimum among a[k] to a[3] is a[1]

swap a[1] with a[k]
k++

minimum among a[k] to a[3] is a[1]

swap a[1] with a[k]
k++

minimum among a[k] to a[3] is a[3]

swap a[1] with a[k]
k++
k reaches the end of array

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-11

 k++;
 }
 }
 public static int findMinIdx(double [] a,int k){
 //This method finds the index of the minimum value
 //among a[k] to a[a.length-1]
 int minIdx = k;
 for(int i=k+1;i<a.length;i++)
 if(a[i]<a[minIdx]) minIdx = i;
 return minIdx;
 }
 public static void swapElement(double [] a,int i,int j){
 double temp;
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
}

Multi-dimensional Arrays

An elements contained in an array can be another array itself. An array in which each element
is another array is called multi-dimensional array. The picture shown below illustrates an array
of arrays of integers, or a two-dimensional array of integers.

A multi-dimensional array of a certain data type is declared by inserting pairs of [] after the
data type specification. The number of [] equals the dimension of the array. For examples,

String [][] arrayOfString;
double [][][] a3DArray;

The first statement declares a variable named arrayOfString as a two-dimensional array of
String. The other statement declares another variable named a3DArray as a three-dimensional
array of double.

0 0 0

a a[0] a[1] a[2] a[3]

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

a[3][0] a[3][1] a[3][2]

0 0 0

0 0 0

0 0 0

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-12

The following statements show how to declare and initialize multi-dimensional arrays with
default values according to their data types.

int [][] k = new int[3][5];
boolean [][][] p = new boolean[2][2][2];

The first statement declares a variable k and assigns to it a reference to an array of length 3,
each of whose elements is a reference to an array of five integers. All elements in the arrays of
integers are initialized to 0.

The second statement declares a variable p and assigns to it a reference to an array of length 2,
each of whose elements is a reference to a two-dimensional array of boolean value of the size
2 x 2. All boolean values are initialized to false.

The picture below shows an illustration of the variable p.

Initializer Lists for Multi-dimensional Arrays

Nested initializer lists can be used to initialize a multi-dimensional array with values other
than the default value. For example, the statement:

int [][] k = {{1,2},{3,4,5},{8,10,12,14}};

initialize makes the variable k to refer to an array of three elements, where the first element is
an array of two int values {1,2}, the second element is an array of three int values {3,4,5},
and the last element is an array of four int values {8,10,12,24}.

To access elements in k, we use these indexing mechanisms:

k : refers to the whole two-dimensional array of int.
k[0] : refers to the array {1,2}.
k[1] : refers to the array {3,4,5}.
k[2] : refers to the array {8,10,12,14}.
k[i][j] : refers to the jth element of k[i].

E.g. k[0][1] equals 2, k[1][0] equals 3, and k[2][3] equals 14 etc.

false

p p[0] p[1]

p[0][0][0]

p[0][0] p[0][1]

p[1][0] p[1][1]

false

p[0][0][1]

false

p[0][1][0]

false

p[0][1][1]

false

p[1][0][0]

false

p[1][0][1]

false

p[1][1][0]

false

p[1][1][1]

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-13

The following statement shows an example of using an initializer list to initialize a three-
dimensional array of String.

String [][][] s = {
 {{“Hamburg”,”Berlin”,”Munich”},{“Paris”,”Dijon”}},
 {{“Hanoi”},{“Bangkok”,”Chiang Mai”}}
 };

Being initialized this way,

s : refers to the whole three-dimensional array of String.
s[0] : refers to the two-dimensional array {{“Hamburg”, ”Berlin”, ”Munich”},

{“Paris”, ”Dijon”}}.
s[1] : refers the two-dimensional array {{“Hanoi”},{“Bangkok”,”Chiang Mai”}}
s[0][0] : refers to the array {“Hamburg”, ”Berlin”, ”Munich”}.
s[0][1] : refers to the array {“Paris”, ”Dijon”}.
s[1][0] : refers to the array {“Hanoi”}.
s[1][1] : refers to the array {“Bangkok”,”Chiang Mai”}.
s[i][j][k] : refers to the kth element of s[i][j].

E.g. s[0][1][1] equals “Dijon”, s[1][1][1] equals “Bangkok”, and etc.

Let’s look at an example program demonstrating the indexing of multi-dimensional array.
Nested for loops are used for browsing through each level of the three-dimensional array of
int named a. Pay attention to the length of a[i], a[i][j] and the value of each int value
a[i][j][k].

public class ArrayLengthDemo
{
 public static void main(String[] args)
 {
 int [][][] a
 = {{{1,2,3},{4,5},{6}},{{7,8},{9,10,11,12,13}}};
 System.out.println("a.length = "+a.length);
 for(int i=0;i<a.length;i++){
 System.out.println("a["+i+"].length = "+a[i].length);
 for(int j=0;j<a[i].length;j++){
 System.out.print("a["+i+"]["+j+"].length = ");
 System.out.println(a[i][j].length);
 for(int k=0;k<a[i][j].length;k++){
 System.out.print("a["+i+"]["+j+"]["+k+"]=");
 System.out.println(a[i][j][k]);
 }
 }
 }
 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-14

Example

We would like to write a program that can calculate the result of An where A is a square
matrix and n is a positive integer.

Problem definition: The program needs to calculate the nth power of a matrix whose elements,
as well as the value of n, are specified by the user.

Analysis: Elements of A and the power n should be read from keyboard. The result of the
calculation should be shown as the output on screen.

Design:

• The user must specify the size of the square matrix A via keyboard. The dimension
will be kept in an int variable named dim.

• Elements of A will be kept in a two-dimensional array named a. With the size of A
known, the program should iteratively prompt the user to input elements of A one by
one. Each element will be stored in a.

• The program prompts the user to enter n via keyboard. The input will be kept in n.

• Ak can be calculated from Ak-1×A for k = 2, 3, 4 , … , n. That means An can be
calculated by iteratively multiply A with the result of the multiplication prior to the
current iteration. After each iteration of the multiplication, use another two-
dimensional array named b to stored Ak-1. Also, use another two-dimensional array
named c to store the result.

• To calculate C = B×A. Use the relation: ∑
=

=
n

k
kjikij abc

1

• Show each element of An on screen.

Implementation:

import java.io.*;
public class MatrixPower
{
 public static void main(String[] args) throws IOException
 { // Declare variables
 double [][] a, b, c;
 int dim, n;
 BufferedReader stdin =
 new BufferedReader(new InputStreamReader(System.in));
 // Read matrix size
 System.out.print("Enter matrix size:");
 dim = Integer.parseInt(stdin.readLine());
 // Create a, b, c and read each element of a
 a = new double[dim][dim];
 b = new double[dim][dim];
 c = new double[dim][dim];
 for(int i=0;i<dim;i++){
 for(int j=0;j<dim;j++){
 System.out.print("a"+(i+1)+(j+1)+"=");
 a[i][j] = Double.parseDouble(stdin.readLine());
 }
 }
 // Continue on the next page

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-15

// Read power n

 System.out.print("Enter n:");
 n = Integer.parseInt(stdin.readLine());
 // Perform raising a to the n th power
 b = a;
 for(int k=1;k<n;k++){
 c = multSqMatrices(b,a);
 b = c;
 }
 // Show the result on screen
 showMatrix(c);
 }

 public static double [][] multSqMatrices(

 double [][] b,double [][] a){
 int dim = b.length;
 double [][] c = new double[dim][dim];
 for(int i=0;i<dim;i++)
 for(int j=0;j<dim;j++)
 for(int k=0;k<dim;k++)
 c[i][j] = c[i][j]+b[i][k]*a[k][j];
 return c;
 }

 public static void showMatrix(double [][] c){
 int nRows = c.length;
 int nCols = c[0].length;
 for(int i=0;i<nRows;i++){
 for(int j=0;j<nCols;j++){
 System.out.print(c[i][j]+"\t");
 }
 System.out.println();
 }

 }
}

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-16

Exercise
1. Show how to declare variables corresponding to the following:

a. An array of int.
b. An array of boolean.
c. An array of String.
d. An array of arrays of double.
e. A two-dimensional array of Rectangle.
f. A three-dimensional array of char.

2. Declare and initialize arrays corresponding to the following:
a. An array of 20 int values.
b. An array of double where its length equals the length of an array of int

called b.
c. An array of boolean where its first three values are true and the other two

are false.
d. An array of String containing the names of the seven days in a week.
e. An array containing an array of 1.0, 2.5, 3.0, and another array of 2.5, 3.0,

4.5.
f. A two-dimensional array suitable for representing a identity matrix of the

size 3 × 3

3. Is it valid to create an array where each element is an array whose length is
different from the lengths of other elements in the same array.

4. Determine the output of the following code segment.

 int [] a = new int[10];
 a[1] = 2;
 a[a.length-1]=8;
 for(int i=0;i<a.length;i++){
 System.out.print(a[i]+"\t");
 }

5. Determine the output of the following code segment.

 int [] a = new int[10];
 for(int i=0;i<a.length-1;i++){
 a[i] = a[++i]+i;
 }
 for(int i=0;i<a.length;i++){
 System.out.print(a[i]+"\t");
 }

6. Determine the output after main() is executed.

 public static void main(String[] args) {
 int k = 1;
 int [] a = {10,11,12,13,14};
 f(k,a);
 System.out.println(k);
 showArrayContent(a);
 }
 public static void f(int k,int [] b){
 if (k >= b.length) return;
 for(int i=k;i<b.length;i++){
 b[i]=b[b.length-i];
 }
 k = 0;
 }
 public static void showArrayContent(int [] a){
 for(int i=0;i<a.length;i++) System.out.println(a[i]);
 }

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-17

7. Write a method that receives an array of int and returns the sum of every elements

in the array.

8. Write a method that evaluates the value of a polynomial function p(x) at given

values of x. The function is of the form cnxn+ cn-1xn-1+…+ c0. The method header is
given as:

public static double [] p(double [] x, double [] coeff)

The kth element in coeff is corresponding to the ck. Each element in the returned
array of double is the value of p(x) evaluated at x being the value of the element in x
at the same index.

9. Write a method called findRep() whose header follows:

public static int findRep(int [] a, int target, int nRep)

The method finds whether a contains nRep consecutive elements whose values
equal target or not. If so, it returns the position of the first element whose value
equals target. Otherwise, it returns -1. For example, if a contains 6, 8, 9, 9, 9, 3, 9, 2,
0, findRep(a,9,2) and findRep(a,9,3) return 2, while findRep(a,9,4) and
findRep(a,10,1) return -1.

10. Write a method that sorts an input array of int in place (i.e. the elements in the

original array are sorted. There is no new array resulted from the sorting). There
must be another parameter determining whether to sort this array increasingly or
decreasingly.

11. Every methods in this problem receives two arrays of int as their input

parameters.
a. Write combine() which returns a new array whose elements are taken from

both input arrays and their orders are preserved starting from the elements
from the first input array followed by the ones from the second.

b. Write union() which returns a new array whose elements are unique
elements taken from both input arrays. The elements of the output array
should be sorted increasingly.

c. Write intersect() which returns a new array where every elements in the
array must be unique and appear in both input arrays. The elements of the
output array should be sorted increasingly.

d. Write subtract() which returns a new array whose elements are unique and
appear in the first input array but not in the second one. The order of the
elements of the output array must follow the order of the first input array.

e. Write xor() which returns a new array whose elements are unique and
appear in either one of the input arrays but not both. The elements of the
output array should be sorted increasingly.

12. Write a method that receives an array of double and returns an array of double in

the form {a,b,c} where a is the biggest value of the input array, b is the second
biggest value and c is the third biggest value. The values of a, b, and c must not
repeat one another. If the input array contains less than three elements, returns a
new array whose elements represent the decreasingly sorted version of the input
array.

13. Suppose that two arrays are said to be equal if they have similar lengths and every

elements in the same positions of the two arrays are equal. Write a method called
isEqual() which returns true if its two input arrays equal and false otherwise.

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-18

14. Repeat the previous problem in the case where positions do not matter, i.e. the two

arrays are said to be equal if their elements form sets with similar members.

15. Write a method that receives an array of String , together with a String and returns
true if there is at least one element of the input array that contains or equals the
other String input. Otherwise, it returns false.

16. Explain why the following code segment lead to a failed compilation.

 final double RANGE = 200;
 int step = 12, k=6;
 int [][] a = new int[(int)(RANGE/step)][k];
 for(int i=0;i<a.length;i++)
 a[i] = new int[2][2];

17. What is the output of the following code segment?

 String [][][] x = new String[5][6][7];
 System.out.println(x.length*x[2].length);

18. One way to represent a black-and-white image is to store boolean values in a two-

dimensional array, p. p[i][j] is true if the pixel in the ith row and jth column is
black. Similarly, it is false if the corresponding pixel is white.

Write a method:

public static boolean drawRect(boolean p, int x, int y,
int width, int height, int ink)

If ink equals 0, the method draws a white rectangle whose topleft corner locating at
p[x][y]. Its width and height are the values of width and height respectively. If ink
equals 1, the method draws a black rectangle instead. If ink equals -1, the drawing
is done in a way that every pixels of the rectangle drawn by the method are
toggled from white to black, or black to white. The following array demonstrate an
example of p after performing drawRect(p,2,2,3,4,1) on an all-white array p whose
size is 10×10.

The method returns true if the drawing is performed successfully. It returns false
and does not perform any drawing when at least one of the following situations
take place:

• The value specified by ink is not -1, 0, ir 1.
• The specified topleft corner does not fall in the vicinity of p, i.e. the value of

x, y or both is not in the range of the array.
• The rectangle exceeds the vicinity of p.

19. Repeat the previous problem. However, this time, the method should attempt to

draw the specified rectangle even though the topleft corner does not fall in the
vicinity of p or the whole rectangle does fit in p.

p[0][0]

p[2][2]

2140101 COMPUTER PROGRAMMING FOR INTERNATIONAL ENGINEERS
DEPARTMENT OF COMPUTER ENGINEERING / INTERNATIONAL SCHOOL OF ENGINEERING

CHULALONGKORN UNIVERSITY

ATIWONG SUCHATO 2006 9-19

For example, if p and q are of the size 8×8 and initially all zeros.
drawRect(p,5,5,2,5,1) and drawRect(q,-2,-2,4,4,1) would result in the following
arrays.

20. In a seat reservation program of an airline, the seating chart of an airplane is

represented using a two-dimensional array, seats. The array seats[i][j] contains
the name of the passenger who has reserved the seat number j in the ith row,
where j is 0 for the seat number A, j is 1 for the seat number B, and so on.
seats[i][j] stores null if the seat is vacant. Note that different airplanes have
different numbers of rows. However, assume that the seats in a row always set in
the following setting.

Write methods, that have one of their input arguments being the array seats, for
performing the tasks in the following items. Decide on the names, their input
arguments, and their returned values appropriately.

a. Adding a passenger name to a selected seat. It returns true if the operation

is successful, and return false if the selected seat is not empty. Given that
the selected seat is specified in the form of a String in the form: “[row
number]-[seat number]”, such as “1-A”, “25-E”, and “36-I”.

b. Removing the passenger at a specified seats.
c. Searching for the seat reserved by a passenger by his/her name. The

method returns the String representing the seat location or “not found” if
there is no passgenger of the given name.

d. Counting the number of seats available in each row.
e. Searching for available n consecutive seats in a row. The method returns

the String representing the left-most seat location of the available n
consucutive seats in the front-most row that has such an avaialability. The
user must have a choice whether seats across an aisle are considered
adjacent or not.

f. Randomly relocating passengers in the seating chart. Each passenger must
be assigned a seat not conflicting with other passengers. (This method is
not going to be useful for any functioning airlines!)

p[0][0]

p[5][5]

q[0][0]

