
Advanced search

HOME

RESEARCH CENTERS

+ Java Standard Edition

+ Java Enterprise
Edition

+ Java Micro Edition

Development Tools
Application
Management
Data Access Tools
Gaming Tools
Web Development
Frameworks
Security & Testing
Java Application
Servers
Profiling and
Monitoring
Reporting

SITE RESOURCES
Featured Articles
News & Views
JW Blogs
Forums
Podcasts
Newsletters
Whitepapers
RSS Feeds

CAREERS

PARTNER SITES
Demo.com
LinuxWorld.com
NetworkWorld.com

ABOUT US

DEVELOPMENT TOOLS

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

1 of 5 8/12/2008 8:44 PM

Best of JavaWorld

Sun's mistake
"During the early days of Java I had lunch
with one of the developers of the language
and asked him how they planned on making
money on Java. He explained that Sun made
most of the web servers on the internet and
anything that got people using the internet

FEATURED WHITE PAPERS

Enterprise AJAX - Transcend the Hype

Memory Analysis in Eclipse

Oracle Compatibility Developer's Guide

Memory Analysis in Eclipse

SPONSORED LINKS
Free DB Modeling Trial with ER/Studio
Design and Build More Powerful Databases with
ER/Studio.
www.embarcadero.com

Buy a Link Now

JavaWorld.com > Java Development Tools >

Reveal the magic behind subtype polymorphism
Behold polymorphism from a type-oriented point of view

By Wm. Paul Rogers, JavaWorld.com, 04/13/01

Page 3 of 7

At first glance, the above List abstraction may seem to be the utility of
the class java.util.List. However, Java does not support true
parametric polymorphism in a type-safe manner, which is why
java.util.List and java.util's other collection classes are written in
terms of the primordial Java class, java.lang.Object. (See my article "A
Primordial Interface?" for more details.) Java's single-rooted
implementation inheritance offers a partial solution, but not the true
power of parametric polymorphism. Eric Allen's excellent article, "Behold
the Power of Parametric Polymorphism," describes the need for generic
types in Java and the proposals to address Sun's Java Specification
Request #000014, "Add Generic Types to the Java Programming
Language." (See Resources for a link.)

Inclusion
Inclusion polymorphism achieves polymorphic behavior through an
inclusion relation between types or sets of values. For many object-
oriented languages, including Java, the inclusion relation is a subtype
relation. So in Java, inclusion polymorphism is subtype polymorphism.

As noted earlier, when Java developers generically refer to
polymorphism, they invariably mean subtype polymorphism. Gaining a
solid appreciation of subtype polymorphism's power requires viewing the
mechanisms yielding polymorphic behavior from a type-oriented
perspective. The rest of this article examines that perspective closely.
For brevity and clarity, I use the term polymorphism to mean subtype
polymorphism.

Type-oriented view
The UML class diagram in Figure 1 shows the simple type and class
hierarchy used to illustrate the mechanics of polymorphism. The model
depicts five types, four classes, and one interface. Although the model is
called a class diagram, I think of it as a type diagram. As detailed in
"Thanks Type and Gentle Class," every Java class and interface declares
a user-defined data type. So from an implementation-independent view
(i.e., a type-oriented view) each of the five rectangles in the figure
represents a type. From an implementation point of view, four of those
types are defined using class constructs, and one is defined using an
interface.

Figure 1. UML class diagram for the example code

The following code defines and implements each user-defined data type. I purposely keep the implementation as simple as

Editor's Choice

NEWSLETTER SIGN-UP
Sign up for our technology specific newsletters.

Enterprise Java
View all newsletters

Email Address:

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

2 of 5 8/12/2008 8:44 PM

possible:

/* Base.java */
public class Base
{
 public String m1()
 {
 return "Base.m1()";
 }
 public String m2(String s)
 {
 return "Base.m2(" + s + ")";
 }
}
/* IType.java */
interface IType
{
 String m2(String s);
 String m3();
}
/* Derived.java */
public class Derived
 extends Base
 implements IType
{
 public String m1()
 {
 return "Derived.m1()";
 }
 public String m3()
 {
 return "Derived.m3()";
 }
}
/* Derived2.java */
public class Derived2
 extends Derived
{
 public String m2(String s)
 {
 return "Derived2.m2(" + s + ")";
 }
 public String m4()
 {
 return "Derived2.m4()";
 }
}
/* Separate.java */
public class Separate
 implements IType
{
 public String m1()
 {
 return "Separate.m1()";
 }
 public String m2(String s)
 {
 return "Separate.m2(" + s + ")";
 }
 public String m3()
 {
 return "Separate.m3()";
 }
}

Using these type declarations and class definitions, Figure 2 depicts a conceptual view of the Java statement:

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

3 of 5 8/12/2008 8:44 PM

Derived2 derived2 = new Derived2();

Figure 2. Derived2 reference attached to Derived2 object

The above statement declares an explicitly typed reference variable, derived2, and attaches that reference to a newly
created Derived2 class object. The top panel in Figure 2 depicts the Derived2 reference as a set of portholes, through
which the underlying Derived2 object can be viewed. There is one hole for each Derived2 type operation. The actual
Derived2 object maps each Derived2 operation to appropriate implementation code, as prescribed by the implementation
hierarchy defined in the above code. For example, the Derived2 object maps m1() to implementation code defined in class
Derived. Furthermore, that implementation code overrides the m1() method in class Base. A Derived2 reference variable
cannot access the overridden m1() implementation in class Base. That does not mean that the actual implementation code
in class Derived can't use the Base class implementation via super.m1(). But as far as the reference variable derived2 is
concerned, that code is inaccessible. The mappings of the other Derived2 operations similarly show the implementation
code executed for each type operation.

Now that you have a Derived2 object, you can reference it with any variable that conforms to type Derived2. The type
hierarchy in Figure 1's UML diagram reveals that Derived, Base, and IType are all super types of Derived2. So, for
example, a Base reference can be attached to the object. Figure 3 depicts the conceptual view of the following Java
statement:

Base base = derived2;

Figure 3. Base reference attached to Derived2 object

There is absolutely no change to the underlying Derived2 object or any of the operation mappings, though methods m3()

and m4() are no longer accessible through the Base reference. Calling m1() or m2(String) using either variable derived2 or
base results in execution of the same implementation code:

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

4 of 5 8/12/2008 8:44 PM

IDG Network: CIO Computerworld CSO Demo GamePro Games.net IDGconnect.com IDG World Expo Infoworld Linuxworld.com MacUser
Macworld NetworkWorld.com PC World Playlistmag.com

 Print E-Mail article Feedback Add to del.icio.us

String tmp;
// Derived2 reference (Figure 2)
tmp = derived2.m1(); // tmp is "Derived.m1()"
tmp = derived2.m2("Hello"); // tmp is "Derived2.m2(Hello)"
// Base reference (Figure 3)
tmp = base.m1(); // tmp is "Derived.m1()"
tmp = base.m2("Hello"); // tmp is "Derived2.m2(Hello)"

Realizing identical behavior through both references makes sense because the Derived2 object does not know what calls
each method. The object only knows that when called upon, it follows the marching orders defined by the implementation
hierarchy. Those orders stipulate that for method m1(), the Derived2 object executes the code in class Derived, and for
method m2(String), it executes the code in class Derived2. The action performed by the underlying object does not depend
on the reference variable's type.

< Prev 1 2 4 5 6 7 Next >

Resources
"On Understanding Types, Data Abstraction, and Polymorphism," Luca Cardelli and Peter Wegner from Computing
Surveys, (December, 1985) -- an academic treatise of three important object-oriented concepts
http://research.microsoft.com/Users/luca/Papers/OnUnderstanding.pdf

"Behold the Power of Parametric Polymorphism," Eric Allen (JavaWorld, February 2000) -- an excellent overview of the
need for introducing generic types to the Java language
http://www.javaworld.com/jw-02-2000/jw-02-jsr.html

"Add Generic Types to the Java Programming Language," (Java Community Process Program, JSR #000014) -- the Java
Specification Request regarding extending the Java language to incorporate parametric polymorphism
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_014_gener.html

Read more from Wm. Paul Rogers:

"Thanks Type and Gentle Class" (JavaWorld, January 19, 2001) explores the importance of separating the object-
oriented concepts of type and class.

"A Primordial Interface?" (JavaWorld, March 9, 2001) uses a type-oriented perspective to explore the implicit existence
of a primordial interface in Java.

Wm. Paul Rogers comoderates the Java Beginner discussion. Ask him your beginner-level questions here
http://www.itworld.com/jump/jw-0413-polymorph/forums.itworld.com/webx?230@@.ee6b804!skip=2899

Sign up for the JavaWorld This Week free weekly email newsletter and keep up with what's new at JavaWorld
http://www.idg.net/jw-subscribe

Browse JavaWorld's Topical Index
http://www.javaworld.com/javaworld/topicalindex/jw-ti-index.html

RESEARCH CENTERS: Java Standard Edition | Java Enterprise Edition | Java Micro Edition | Development Tools

About Us | Advertise | Contact Us | Terms of Service/Privacy

Copyright, 2006-2008 Network World, Inc. All rights reserved.

3

Related Article

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

5 of 5 8/12/2008 8:44 PM

