
Advanced search

HOME

RESEARCH CENTERS

+ Java Standard Edition

+ Java Enterprise
Edition

+ Java Micro Edition

Development Tools
Application
Management
Data Access Tools
Gaming Tools
Web Development
Frameworks
Security & Testing
Java Application
Servers
Profiling and
Monitoring
Reporting

SITE RESOURCES
Featured Articles
News & Views
JW Blogs
Forums
Podcasts
Newsletters
Whitepapers
RSS Feeds

CAREERS

PARTNER SITES
Demo.com
LinuxWorld.com
NetworkWorld.com

ABOUT US

DEVELOPMENT TOOLS

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

1 of 4 8/12/2008 9:29 PM

Best of JavaWorld

Sun's mistake
"During the early days of Java I had lunch
with one of the developers of the language
and asked him how they planned on making
money on Java. He explained that Sun made
most of the web servers on the internet and
anything that got people using the internet

FEATURED WHITEPAPERS
Enterprise AJAX - Transcend the Hype

Memory Analysis in Eclipse

Oracle Compatibility Developer's Guide

Memory Analysis in Eclipse

SPONSORED LINKS
New Webcast: How to Profit with Remote Support.
Discover how REMOTE SUPPORT can fuel your IT
business in ways you've never thoug...
Listen to this valuable Webcast Today!
www.LogMeInRescue.com

Buy a Link Now

JavaWorld.com > Java Development Tools >

Reveal the magic behind subtype polymorphism
Behold polymorphism from a type-oriented point of view

By Wm. Paul Rogers, JavaWorld.com, 04/13/01

Page 6 of 7

The interface to an object
So polymorphism relies on separating the concerns of type and
implementation, which is often referred to as separating interface and
implementation. But that latter statement seems confusing in light of
the Java keyword interface.

More importantly, what do developers mean by the common phrase the
interface to an object? Typically, the statement's context indicates that
the phrase refers to the set of all public methods defined by the object's
class hierarchy -- that is, the set of all publicly available methods that
may be called on the object. That definition, however, leans toward an
implementation-centric view by concentrating our focus on an object's
runtime capability, rather than on a type-oriented view of the object. In
Figure 3, the interface to the object refers to the panel labeled
"Derived2 Object." That panel lists all available methods for the Derived2
object. But to understand polymorphism, we must free ourselves from
an implementation level and view the object from the perspective of the
type-oriented panel labeled "Base Reference." At that level, the
reference variable's type dictates an interface to the object. That's an
interface, not the interface. Under the guidance of type conformance,
we may attach multiple type-oriented views to a single object. There is
no singularly specified interface to an object.

So in terms of type, the interface to an object refers to the widest
possible type-oriented view of that object -- as in Figure 2. A super type
reference attached to the same object typically narrows the view -- as in
Figure 3. The concept of type best captures the spirit of freeing object
interactions from the details of object implementation. Rather than refer
to the interface of an object, a type-oriented perspective encourages
referring to the reference type attached to an object. The reference type
dictates the permissible interaction with the object. Think type when
you want to know what an object can do, as opposed to how the object
implements its responsibilities.

Java interfaces
The previous examples of polymorphic behavior use subtype
relationships established through class inheritance. Java interfaces also
declare user-defined types, and correspondingly, Java interfaces enable
polymorphic behavior by establishing type inheritance structure.
Suppose a reference variable named ref attaches to an object whose
class contains the following method definition:

public String poly2(IType iType)
{
 return iType.m3();
}

To explore polymorphic behavior inside poly2(IType), the following code creates two objects from different classes and
passes a reference to each into poly2(IType):

Derived2 derived2 = new Derived2();
Separate separate = new Separate();
String tmp;
tmp = ref.poly2(derived2); // tmp is "Derived.m3()"
tmp = ref.poly2(separate); // tmp is "Separate.m3()"

Editor's Choice

NEWSLETTER SIGN-UP
Sign up for our technology specific newsletters.

Enterprise Java
View all newsletters

Email Address:

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

2 of 4 8/12/2008 9:29 PM

BenQ
Pencil

BenQ
Pencil

 Print E-Mail article Feedback Add to del.icio.us

The above code resembles the previous discussion of polymorphic behavior inside poly1(Base). The implementation code
in poly2(IType) calls method m3() for each object, using a local IType reference. As before, code comments note the
String result of each call. Figure 5 shows the conceptual structure of the two calls to poly2(IType):

Figure 5. IType reference attached to a Derived2 and a Separate object

The similarity between the polymorphic behavior occurring inside methods poly1(Base) and poly2(IType) results directly
from a type-oriented perspective. Raising our view above the implementation level allows an identical understanding of
the two code samples' mechanics. Local super type references attach to incoming objects and make type-restricted calls to
those objects' methods. Neither reference knows (nor cares) what implementation code actually executes. The subtype
relationship verified at compile time guarantees the passed object's capability to perform appropriate implementation code
when called upon.

However, an important distinction manifests itself at the implementation level. In the poly1(Base) example (Figures 3 and
4), the Base-Derived-Derived2 class inheritance chain establishes the requisite subtype relations, and method overriding
determines the implementation code mappings. In the poly2(IType) example (Figure 5), a completely different dynamic
occurs. Classes Derived2 and Separate do not share any implementation hierarchy, yet objects instantiated from those
classes exhibit polymorphic behavior through an IType reference.

Such polymorphic behavior highlights a significant utility of Java interfaces. The UML diagram in Figure 1 shows that type
Derived subtypes both Base and IType. By defining a type completely free of implementation, Java interfaces allow
multiple type inheritance without the thorny issues of multiple implementation inheritance, which Java prohibits. Classes
from completely separate implementation hierarchies may be grouped by a Java interface. In Figure 1, interface IType
groups Derived and Separate (and any subtypes of those types).

By grouping objects from disparate implementation hierarchies, Java interfaces facilitate polymorphic behavior even in the
absence of any shared implementation or overridden methods. As shown in Figure 5, an IType reference polymorphically
accesses the m3() methods of the underlying Derived2 and Separate objects.

The interface to an object (again)
Note that objects Derived2 and Separate in Figure 5 each possess mappings for method m1(). As previously discussed, the
interface to each object includes that m1() method. But there is no way, using these two objects, to engage method m1()
in polymorphic behavior. It is insufficient that each object possesses an m1() method. A common type must exist with
operation m1(), through which to view the objects. The objects may seem to share m1() in their interfaces, but without a
common super type, polymorphism is impossible. Thinking in terms of the interface to an object simply confounds this
issue.

< Prev 1 2 3 4 5 7 Next >

Resources
"On Understanding Types, Data Abstraction, and Polymorphism," Luca Cardelli and Peter Wegner from Computing
Surveys, (December, 1985) -- an academic treatise of three important object-oriented concepts
http://research.microsoft.com/Users/luca/Papers/OnUnderstanding.pdf

"Behold the Power of Parametric Polymorphism," Eric Allen (JavaWorld, February 2000) -- an excellent overview of the
need for introducing generic types to the Java language
http://www.javaworld.com/jw-02-2000/jw-02-jsr.html

"Add Generic Types to the Java Programming Language," (Java Community Process Program, JSR #000014) -- the Java
Specification Request regarding extending the Java language to incorporate parametric polymorphism
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_014_gener.html

6

Related Article

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

3 of 4 8/12/2008 9:29 PM

IDG Network: CIO Computerworld CSO Demo GamePro Games.net IDGconnect.com IDG World Expo Infoworld Linuxworld.com MacUser
Macworld NetworkWorld.com PC World Playlistmag.com

Read more from Wm. Paul Rogers:

"Thanks Type and Gentle Class" (JavaWorld, January 19, 2001) explores the importance of separating the object-
oriented concepts of type and class.

"A Primordial Interface?" (JavaWorld, March 9, 2001) uses a type-oriented perspective to explore the implicit existence
of a primordial interface in Java.

Wm. Paul Rogers comoderates the Java Beginner discussion. Ask him your beginner-level questions here
http://www.itworld.com/jump/jw-0413-polymorph/forums.itworld.com/webx?230@@.ee6b804!skip=2899

Sign up for the JavaWorld This Week free weekly email newsletter and keep up with what's new at JavaWorld
http://www.idg.net/jw-subscribe

Browse JavaWorld's Topical Index
http://www.javaworld.com/javaworld/topicalindex/jw-ti-index.html

RESEARCH CENTERS: Java Standard Edition | Java Enterprise Edition | Java Micro Edition | Development Tools

About Us | Advertise | Contact Us | Terms of Service/Privacy

Copyright, 2006-2008 Network World, Inc. All rights reserved.

Reveal the magic behind subtype polymorphism - Java World http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph...

4 of 4 8/12/2008 9:29 PM

