
1

How to write JavaDoc Comments

Vishnu Kotrajaras, PhD
Modified from Sun’s document

Where to place?

• Immediately ahead of declarations for any
class, interface, method, constructor, or
field.

• Documentation comments placed in the
body of a method are ignored.

• Only one documentation comment per
declaration statement is recognized by the
Javadoc tool.

2

What does it look like?
/**
*This is the typical format of
*…..
*/
To save space you can put a comment on one line:
/** This comment takes up only one line. */

The comment text should use HTML entities
and can use HTML tags. But don’t use HTML
heading tags such as <H1> and <H2>, because
Javadoc will get confused.

Careful about positioning

• A common mistake is to put an import statement
between the class comment and the class
declaration. Avoid this, as the Javadoc tool will
ignore the class comment.

/**
*This is the class comment for the class Whatever.
*/
import com.sun; // MISTAKE
public class Whatever { }

3

Comment can be divided to 2
regions

/**
* This sentence would hold the main
*description for this doc comment.
* @see java.lang.Object
*/

Main
description

Tag section

The argument to a tag
can span multiple
lines. There can be
any number of tags

The main
description cannot
continue after the tag
section begins.

First Sentence of JavaDoc
comment

• The first sentence of each doc comment
should be a summary sentence

• The Javadoc tool copies this first sentence
to the appropriate member, class/interface
or package summary

4

First Sentence of JavaDoc
comment (cont.)

• This sentence ends at the first period that is
followed by a blank, tab, or line terminator,
or at the first tag (as defined below). For
example, this first sentence ends at "Prof.":

/**
* This is a simulation of Prof. Knuth's MIX computer.
*/

First Sentence of JavaDoc
comment (cont2.)

• However, you can work around this by typing an
HTML meta-character such as "&" or "<"
immediately after the period, such as:

/**
* This is a simulation of Prof. Knuth's MIX computer.
*/
or
/**
* This is a simulation of Prof.<!-- --> Knuth's MIX computer.
*/

5

First Sentence of JavaDoc
comment (cont3.)

• In particular, write summary sentences that
distinguish overloaded methods from each other.
For example:

/**
* Class constructor.

*/
foo() { ...
/**
* Class constructor specifying number of objects to create.
*/
foo(int n) { ...

Block tags and in-line tags
• block tags appear as @tag

– must appear at the beginning of a line, ignoring leading
asterisks, white space, and separator (/**).

– This means you can use the @ character elsewhere in
the text and it will not be interpreted as the start of a
tag.

– Each block tag has associated text:
• any text following the tag up to, but not including, either the

next tag, or the end of the doc comment. This associated text
can span multiple lines.

• in-line tags appears within curly braces, as
{@tag}.

6

Example of block and inline tag

/**
* @deprecated As of JDK 1.1, replaced by

*{@link#setBounds(int,int,int,int)}
*/

Example of HTML tag in comment
/**
*This is a doc comment.
* @see java.lang.Object
*/

bold

less-than (<) and greater-than (>) symbols
should be written < and >.

the ampersand (&) should be written &

7

Declaration with multiple fields
/**
*The horizontal and vertical distances of point (x,y)
*/
public int x, y;

• The Javadoc tool will copy one comment for every
variable.

public int x
The horizontal and vertical distances of point (x,y)

public int y
The horizontal and vertical distances of point (x,y)

• So we should write their comments separately.

Automatic Copying of Method
Comments

• Constructors, fields and nested classes do not
inherit doc comments.

• Automatically inherit comment to fill in
missing text
– When a main description, or @return, @param or

@throws tag is missing from a method comment, the
Javadoc tool copies the corresponding main description
or tag comment from the method it overrides or
implements (if any).

• when a @param tag for a particular parameter is missing, then
the comment for that parameter is copied from the method
further up the inheritance hierarchy.

• When a @throws tag for a particular exception is missing, the
@throws tag is copied only if that exception is declared.

8

– This behavior contrasts with version 1.3 and earlier,
where the presence of any main description or tag
would prevent all comments from being inherited.

• Explicitly inherit comment with {@inheritDoc}
tag
– Insert the inline tag {@inheritDoc} in a method main

description or @return, @param or @throws tag
comment -- the corresponding inherited main
description or tag comment is copied into that spot.

• The source file for the inherited method need only
be on the path specified by -sourcepath for the doc
comment to actually be available to copy. Neither
the class nor its package needs to be passed in on
the command line.
– This contrasts with 1.3.x and earlier releases, where the

class had to be a documented class

Inherit from classes and interfaces
• When a method in a class overrides a method in a

superclass
• When a method in an interface overrides a method

in a superinterface
– In these two cases, for method overrides, the Javadoc

tool generates a subheading "Overrides" in the
documentation for the overriding method, with a link to
the method it is overriding, whether or not the comment
is inherited.

• When a method in a class implements a method in
an interface
– In this case, the Javadoc tool generates a subheading

"Specified by" in the documentation for the overriding
method, with a link to the method it is implementing.
This happens whether or not the comment is inherited.

9

Algorithm for Inheriting
Method Comments

1. Look in each directly implemented (or extended)
interface in the order they appear following the word
implements (or extends) in the method declaration.
Use the first doc comment found for this method.

2. If step 1 failed to find a doc comment, recursively
apply this entire algorithm to each directly
implemented (or extended) interface, in the same
order they were examined in step 1.

3. If step 2 failed to find a doc comment and this is a
class other than Object (not an interface):

a. If the superclass has a doc comment for this method, use it.
b. If step 3a failed to find a doc comment, recursively apply

this entire algorithm to the superclass.

Tags
• @author name-text

– Adds an "Author" entry with the specified name-text to
the generated docs when the -author option is used.

– A doc comment may contain multiple @author tags.
– can only be applied at the overview, package and class

level
– You can specify one name per @author tag

• the Javadoc tool inserts a comma (,) and space between names.
– or multiple names per tag.

• the entire text is simply copied to the generated document
without being parsed. Therefore, you can use multiple names
per line if you want a localized name separator other than
comma.

10

• @deprecated deprecated-text
– Adds a comment indicating that this API should no

longer be used (even though it may continue to work).
The Javadoc tool moves the deprecated-text ahead of
the main description, placing it in italics and preceding
it with a bold warning: "Deprecated". This tag is valid
in all doc comments: overview, package, class,
interface, constructor, method and field.

– The first sentence of deprecated-text should at least tell
the user when the API was deprecated and what to use
as a replacement. The Javadoc tool copies just the first
sentence to the summary section and index. Subsequent
sentences can also explain why it has been deprecated.

– You should include a {@link} tag (for Javadoc 1.2 or
later) that points to the replacement API:

/**
*@deprecated As of JDK 1.1, replaced by {@link #setBounds(int,int,int,int)}
*/

11

• {@docRoot}
– Represents the relative path to the generated document's

(destination) root directory from any generated page.
– It is useful when you want to include a file, such as a

copyright page or company logo, that you want to
reference from all generated pages.

– Linking to the copyright page from the bottom of each
page is common.

– This {@docRoot} tag can be used both on the
command line and in a doc comment.

– This tag is valid in all doc comments: overview,
package, class, interface, constructor, method and field,
including the text portion of any tag (such as @return,
@param and @deprecated).

1. On the command line, where the
header/footer/bottom are defined:

javadoc -bottom 'Copyright'

2. In a doc comment:
/**
*See the Copyright.

*/

would resolve to: for

java/lang/Object.java and

 for
java/lang/ref/Reference.java

12

• {@inheritDoc}
– Note: This feature is broken in 1.4.0, but fixed in

1.4.1
– Inherits (copies) documentation from the "nearest"

inheritable class or implementable interface into the
current doc comment at this tag's location.

– This allows you to write more general comments higher
up the inheritance tree, and to write around the copied
text.

– This tag is valid only in these places in a doc comment:
• In the main description block of a method. In this case, the

main description is copied from a class or interface up the
hierarchy.

• In the text arguments of the @return, @param and @throws
tags of a method. In this case, the tag text is copied from the
corresponding tag up the hierarchy.

• {@link package.class#member label}
– Inserts an in-line link with visible text label that points to the

documentation for the specified package, class or member
name of a referenced class.

– This tag is valid in all doc comments: overview, package, class,
interface, constructor, method and field, including the text
portion of any tag (such as @return, @param and
@deprecated).

– There is no limit to the number of {@link} tags allowed in a
sentence.

– This tag is very simliar to @see -- both require the same
references and accept exactly the same syntax for
package.class#member and label. The main difference is that
{@link} generates an in-line link rather than placing the link in
the "See Also" section. Also, the {@link} tag begins and ends
with curly braces to separate it from the rest of the in-line text.

– If you need to use "}" inside the label, use the HTML entity
notation }

13

Link example
• Use the {@link #getComponentAt(int, int) getComponentAt} method.

label
becomes

Use the <a href="Component.html#getComponentAt(int,
int)">getComponentAt method.

Use the getComponentAt
method.

On the web, it’ll be

• {@linkplain package.class#member label
}
– Identical to {@link}, except the link's label is

displayed in plain text than code font. Useful
when the label is plain text.

– Example:
Refer to {@linkplain add() the overridden method}.

– This would display as:
Refer to the overridden method.

14

• @param parameter-name description
– Adds a parameter to the "Parameters" section. The description may be

continued on the next line.
– Additional spaces can be inserted between the name and description so

that the descriptions line up in a block.
– This tag is valid only in a doc comment for a method or constructor.
– @param tag is "required" (by convention) for every parameter, even when

the description is obvious.
– The @param tag is followed by the name (not data type) of the

parameter, followed by a description of the parameter. The first noun
in the description is the data type of the parameter, except if the
parameter is primitive- > we can omit this type.

– Dashes or other punctuation should not be inserted before the
description, as the Javadoc tool inserts one dash.

– The data type starts with a lowercase letter.
– The description begins with a lowercase letter if it is a phrase

(contains no verb), or an uppercase letter if it is a sentence.
– End the phrase with a period only if another phrase or sentence

follows it.

@param example
* @param ch the character to be tested
* @param observer the image observer to be

notified

• Do not bracket the name of the parameter after the
@param tag with <code>...</code> since Javadoc
1.2 and later automatically do this.

15

@param example 2
• When writing a phrase, do not capitalize and do not end

with a period:
@param x the x-coordinate, measured in pixels

• When writing a phrase followed by a sentence, do not
capitalize the phrase, but end it with a period to distinguish
it from the start of the next sentence:
@param x the x-coordinate. Measured in pixels.

• If you prefer starting with a sentence, capitalize it and end
it with a period:
@param x Specifies the x-coordinate, measured in pixels.

• When writing multiple sentences, follow normal sentence
rules:
@param x Specifies the x-coordinate. Measured in pixels.

• @return description
– Adds a "Returns" section with the description

text. This text should describe the return type
and permissible range of values. This tag is
valid only in a doc comment for a method.

– The @return tag is required for every method
that returns something other than void, even if
it is redundant with the method description.

16

• @see reference
– Adds a "See Also" heading with a link or text

entry that points to reference.
– A doc comment may contain any number of

@see tags, which are all grouped under the
same heading.

– This tag is valid in any doc comment:
overview, package, class, interface, constructor,
method or field.

– This tag has 3 forms

• @see “string”
Adds a text entry for string. No link is generated.
The Javadoc tool distinguishes this from the

previous
cases by looking for a double-quote (") as the first
character. For example:

@see "The Java Programming Language"

See Also:
"The Java Programming Language"

17

• @see label
– Adds a link as defined by URL#value. The URL#value is a

relative or absolute URL. For example:

@see Java Spec

See Also:
Java Spec

• @see package.class#member label
– Adds a link, with visible text label, that points to the documentation for

the specified name in the Java Language that is referenced. The label is
optional; if omitted, package.class.member will appear, suitably shortened
relative to the current class and package

– <code> is always included around the visible text
– package.class#member is any valid program element name that is

referenced -- a package, class, interface, constructor, method or field
name -- except that the character ahead of the member name should be a
hash character (#).

» The class represents any top-level or nested class or interface.
» The member represents any constructor, method or field (not a nested

class or interface).
» If this name is in the documented classes, the Javadoc tool will

automatically create a link to it.
» To create links to external referenced classes, use the -link option.

• label is optional text that is visible as the link's label.
• The label can contain whitespace.
• A space is the delimiter between package.class#member and label. A

space inside parentheses does not indicate the start of a label, so
spaces may be used between parameters in a method.

18

@see example

/**
* @see String#equals(Object) equals
*/

<dl>
<dt>See Also:
<dd><code>equals<co
de>

</dl>

Specifying a name
• This package.class#member name can be either

fully-qualified, such as
java.lang.String#toUpperCase() or not, such as
String#toUpperCase() or #toUpperCase(). If less
than fully-qualified, the Javadoc tool uses the
normal Java compiler search order to find it

Referencing a member of the current class
@see #field
@see #method(Type, Type,...)
@see #method(Type argname, Type argname,...)
@see #constructor(Type, Type,...)
@see #constructor(Type argname, Type argname,...)

19

Referencing another class in the current or imported packages
@see Class#field
@see Class#method(Type, Type,...)
@see Class#method(Type argname, Type argname,...)
@see Class#constructor(Type, Type,...)
@see Class#constructor(Type argname, Type argname,...)
@see Class.NestedClass
@see Class

Referencing an element in another package (fully qualified)
@see package.Class#field
@see package.Class#method(Type, Type,...)
@see package.Class#method(Type argname, Type argname,...)
@see package.Class#constructor(Type, Type,...)
@see package.Class#constructor(Type argname, Type argname,...)
@see package.Class.NestedClass
@see package.Class
@see package

Search order for @see
• the Javadoc tool will process a @see tag that appears in a

source file (.java), package file (package.html) or overview
file (overview.html). In the latter two files, you must fully-
qualify the name you supply with @see.

• When the Javadoc tool encounters a @see tag in a .java file
that is not fully qualified, it searches for the specified name in
in this order:

1. the current class or interface
2. any enclosing classes and interfaces, searching closest first
3. any superclasses and superinterfaces, searching closest first
4. the current package
5. any imported packages, classes and interfaces, searching in

the order of the import statement
---after it searches through the current class and its enclosing

class E, it will search through E's superclasses before E's
enclosing classes.

20

• @serial field-description | include | exclude
• Used in the doc comment for a default serializable field.

An optional field-description should explain the meaning
of the field and list the acceptable values. If needed, the
description can span multiple lines. The standard doclet
adds this information to the serialized form page.

• If a serializable field was added to a class some time
after the class was made serializable, a statement should
be added to its main description to identify at which
version it was added.

• The include and exclude arguments identify whether a
class or package should be included or excluded from the
serialized form page. They work as follows:

• A public or protected class that implements
Serializable is included unless that class (or its
package) is marked @serial exclude.

• A private or package-private class that implements
Serializable is excluded unless that class (or its
package) is marked @serial include.

21

• @serialField field-name field-type field-
description

– Documents an ObjectStreamField component of a
Serializable class's serialPersistentFields member. One
@serialField tag should be used for each
ObjectStreamField component.

• @serialData data-description
– The data-description documents the types and order of

data in the serialized form. Specifically, this data includes
the optional data written by the writeObject method and
all data (including base classes) written by the
Externalizable.writeExternal method.

– The @serialData tag can be used in the doc comment for
the writeObject, readObject, writeExternal, and
readExternal methods.

• @since since-text
– Adds a "Since" heading with the specified since-text to the

generated documentation. The text has no special internal
structure.

– This tag is valid in any doc comment: overview, package,
class, interface, constructor, method or field.

– This tag means that this change or feature has existed since
the software release specified by the since-text. For
example:

– For source code in the Java platform, this tag indicates
the version of the Java platform API specification (not
necessarily when it was added to the reference
implementation).

– Multiple @since tags are allowed and are treated like
multiple @author tags.

– You could use multiple tags if the program element is
used by more than one API.

@since 1.4

22

• When a package is introduced, specify an
@since tag in its package description and each
of its classes.

• When a class (or interface) is introduced,
specify one @since tag in its class description
and no @since tags in the members. Add an
@since tag only to members added in a later
version than the class.

• If a member changes from protected to public
in a later release, the @since tag would not
change.

• @throws class-name description
– The @throws and @exception tags are synonyms.
– Adds a "Throws" subheading to the generated

documentation, with the class-name and description text.
– The class-name is the name of the exception that may be

thrown by the method.
– This tag is valid only in the doc comment for a method or

constructor.
– If this class is not fully-specified, the Javadoc tool uses the

search order to look up this class.
– Multiple @throws tags can be used in a given doc

comment for the same or different exceptions.
– To ensure that all checked exceptions are documented, if a

@throws tag does not exist for an exception in the throws
clause, the Javadoc tool automatically adds that exception
to the HTML output (with no description) as if it were
documented with @throws tag

– The @throws documentation is copied from an
overridden method to a subclass only when the
exception is explicitly declared in the overridden
method.

23

@throws example
• A @throws tag should be included for any

checked exceptions (declared in the throws
clause), and for any unchecked exceptions that
the caller might reasonably want to catch, with
the exception of NullPointerException.

• Errors should not be documented as they are
unpredictable.

/**
* @throws IOException If an input or output exception occurred
*/

public void f() throws IOException { // body }

@throws example 2

• a method that takes an index and uses an array
internally should not be documented to throw an
ArrayIndexOutOfBoundsException, as another
implementation could use a data structure other
than an array internally.

• It is, however, generally appropriate to document
that such a method throws an
IndexOutOfBoundsException.

24

• {@value}
– When used in the doc comment of a static field, displays

the value of the constant. These are the values displayed
on the Constant Field Values page. This tag is valid only
in doc comments for fields.

• @version version-text
– Adds a "Version" subheading with the specified version-

text to the generated docs when the -version option is
used.

– This tag is intended to hold the current version number of
the software that this code is part of (as opposed to
@since, which holds the version number where this code
was introduced).

– The version-text has no special internal structure.
– A doc comment may contain multiple @version tags.
– If it makes sense, you can specify one version number per

@version tag
» the Javadoc tool inserts a comma (,) and space

between names.
– or multiple version numbers per tag.

» the entire text is simply copied to the generated
document without being parsed. Therefore, you can
use multiple names per line if you want a localized
name separator other than comma.

25

Overview Tags

@see
@since

@author
@version

{@link}

{@linkplain}

{@docRoot}

appear in the
documentation
comment for the
overview page
(overview.html).

Package Tags

@see

@since

@serial

@author

@version

{@link}

{@linkplain}

{@docRoot}

can appear in the
documentation
comment for a
package
(package.html).

The @serial tag can
only be used here
with the include or
exclude argument.

26

Class/Interface Tags

@see
@since

@deprecated
@serial
@author
@version

{@link}

{@linkplain}

{@docRoot}

appear in the documentation
comment for a class or
interface.

The @serial tag can only be used
here with the include or exclude
argument.

Class comment example

/**
*A class representing a window on the screen.
* For example:
* <pre>
* Window win = new Window(parent);
* win.show();
* </pre>
*
* @author Sami Shaio
* @version %I%, %G%
* @see java.awt.BaseWindow
* @see java.awt.Button
*/
class Window extends BaseWindow { ... }

27

Field Tags

@see
@since

@deprecated
@serial
@serialField

{@link}

{@linkplain}

{@docRoot}

{@value}

An example of a field comment:
/**
*The X-coordinate of the component.
*
* @see #getLocation()
*/
int x = 1263732;

Method/Constructor Tags

@see
@since

@deprecated
@param
@return
@throws
and @exception

@serialData
{@link}

{@linkplain}

{@inheritDoc}

{@docRoot}

except for @return, which cannot appear in a
constructor.

{@inheritDoc}, which has certain restrictions.

The @serialData tag can only be used in the doc
comment for certain serialization methods.

/**
*Returns the character at the specified index. An index
* ranges from <code>0</code> to <code>length() - 1</code>.
*
* @param index the index of the desired character.
* @return the desired character.
* @exception StringIndexOutOfRangeException
* if the index is not in the range <code>0</code>
* to <code>length()-1</code>.
* @see java.lang.Character#charValue()
*/
public char charAt(int index) { ... }

28

Guidelines

• Implementation-Independence
– Define clearly what is required and what is allowed to

vary across platforms/implementations.
– If you must document implementation-specific

behavior, please document it in a separate paragraph.
– If the implementation varies according to platform, then

specify "On <platform>" at the start of the paragraph.
– In other cases that might vary with implementations on

a platform you might use the lead-in phrase
"Implementation-Specific. For example:

• On Windows systems, ……

• Use <code> style for keywords and names.
Keywords and names are offset by
<code>...</code> when mentioned in a
description. This includes:
– Java keywords
– package names
– class names
– method names
– interface names
– field names
– argument names
– code examples

29

• Use in-line links economically
– adding a link:

• Only if the user might actually want to click on it for
more information (in your judgment), and

• Only for the first occurrence of each API name in
the doc comment (don't bother repeating a link)

• It is not necessary to link to API in the java.lang
package, it is well-known anyway.

• Omit parentheses for the general form of
methods and constructors
– add(Object) and add(int, Object)
– if referring to both forms of the method, omit

the parentheses altogether.
• Okay to use phrases instead of complete

sentences.
• Use 3rd person (descriptive) not 2nd

person (prescriptive).
– The description is in 3rd person declarative

rather than 2nd person imperative.
• Gets the label. (preferred)
• Get the label. (avoid)

30

• Method descriptions begin with a verb
phrase. For example:
– “Gets the label of this button.”

• Class/interface/field descriptions can
omit the subject and simply state the
object.
– “A button label.”

• Use "this" instead of "the" when
referring to an object created from the
current class.
– “Gets the toolkit for this component.”

/**
* Sets the tool tip text.
*
* @param text the text of the tool tip
*/
public void setToolTipText(String text) {

/**
* Registers the text to display in a tool tip. The text
* displays when the cursor lingers over the component.
*
* @param text the string to display. If the text is null,
* the tool tip is turned off for this component.
*/
public void setToolTipText(String text) {

Unnecessary comment
must be avoided

Good and
useful
comment

31

• Be clear when using the term "field". Be aware
that the word "field" has two meanings:
– static field, which is another term for "class variable"
– text field, as in the TextField class.

• Avoid Latin
– use "also known as" instead of "aka",
– use "that is" or "to be specific" instead of "i.e.",
– use "for example" instead of "e.g.", and
– use "in other words" or "namely" instead of "viz."

Order of Tags
• Include tags in the following order:

– @author (classes and interfaces only, required)
– @version (classes and interfaces only, required) (see

footnote 1)
– @param (methods and constructors only)
– @return (methods only)
– @exception (@throws is a synonym added in Javadoc

1.2)
– @see
– @since
– @serial (or @serialField or @serialData)
– @deprecated

32

Ordering Multiple Tags
• Multiple @author tags should be listed in

chronological order, with the creator of the
class listed at the top.

• Multiple @param tags should be listed in
argument-declaration order.

• Multiple @throws tags (also known as
@exception) should be listed alphabetically
by the exception names.

Ordering Multiple @see tags

• from nearest to farthest access, from least-
qualified to fully-qualified

• methods and constructors are in
"telescoping" order, which means the "no
arg" form first, then the "1 arg" form, then
the "2 arg" form.

33

• @see #field
• @see #Constructor(Type, Type...)
• @see #Constructor(Type id, Type id...)
• @see #method(Type, Type,...)
• @see #method(Type id, Type, id...)
• @see Class
• @see Class#field
• @see Class#Constructor(Type, Type...)
• @see Class#Constructor(Type id, Type id)
• @see Class#method(Type, Type,...)
• @see Class#method(Type id, Type id,...)
• @see package.Class
• @see package.Class#field
• @see package.Class#Constructor(Type, Type...)
• @see package.Class#Constructor(Type id, Type id)
• @see package.Class#method(Type, Type,...)
• @see package.Class#method(Type id, Type, id)
• @see package

Documenting Anonymous
Inner Classes

• do it in a doc comment of its outer class, or another
closely associated class.

• For example, anonymous inner class
TreeSelectionListener in a method makeTree that
returns a JTree object

/**
* The method used for creating the tree. Any structural modifications
* to the display of the Jtree should be done by overriding this method.
* This method adds an anonymous TreeSelectionListener to the returned JTree.
* Upon receiving TreeSelectionEvents, this listener calls refresh with
* the selected node as a parameter.
*/
public JTree makeTree(AreaInfo ai){ }

