
1

JavaDoc Tool

Vishnu Kotrajaras
Extraction from Java Documentation

What for?

• Making HTML documentation
– allows you to generate documentation for

source files whose code is incomplete or
erroneous.

– So we can generate documentation before all
debugging and troubleshooting is done.

– classes you create must either be loaded as an
extension or in the Javadoc tool's class path.

2

Default page creation
• Basic Content Pages

– One class or interface page (classname.html) for each
class or interface it is documenting.

– One package page (package-summary.html) for each
package it is documenting. The Javadoc tool will
include any HTML text provided in a file named
package.html in the package directory of the source
tree.

– One overview page (overview-summary.html) for the
entire set of packages. This is the front page of the
generated document. The Javadoc tool will include any
HTML text provided in a file specified with the -
overview option. Note that this file is created only if
you pass into javadoc two or more package names.

• Cross-Reference Pages
– One class hierarchy page for the entire set of

packages (overview-tree.html). To view this, click on
"Overview" in the navigation bar, then click on "Tree".

– One class hierarchy page for each package (package-
tree.html) To view this, go to a particular package, class
or interface page; click "Tree" to display the hierarchy
for that package.

– One "use" page for each package (package-use.html)
and a separate one for each class and interface (class-
use/classname.html). Given a class or interface A, its
"use" page includes

• subclasses of A
• fields declared as A
• methods that return A
• and methods and constructors with parameters of type A.
• You can access this page by first going to the package, class or

interface, then clicking on the "Use" link in the navigation bar.

3

– A deprecated API page (deprecated-list.html) listing
all deprecated names.

• (A deprecated name is not recommended for use, generally due
to improvements, and a replacement name is usually given)

– A constant field values page (constant-values.html)
for the values of static fields.

– A serialized form page (serialized-form.html) for
information about serializable and externalizable
classes.

• This information is of interest to re-implementors, not to
developers using the API.

• While there is no link in the navigation bar, you can get to this
information by going to any serialized class and clicking
"Serialized Form" in the "See also" section of the class
comment.

• The standard doclet automatically generates a serialized form
page: any class (public or non-public) that implements
Serializable is included, along with readObject and writeObject
methods, the fields that are serialized, and the doc comments
from the @serial, @serialField, and @serialData tags.

• Public serializable classes can be excluded by
marking them (or their package) with @serial
exclude, and package-private serializable classes can
be included by marking them (or their package) with
@serial include.

• As of 1.4, you can generate the complete serialized
form for public and private classes by running
javadoc without specifying the -private option.

– An index (index-*.html) of all class, interface,
constructor, field and method names,
alphabetically arranged. This is
internationalized for Unicode and can be
generated as a single file or as a separate file for
each starting character (such as A-Z for
English).

4

Support Files
• A help page (help-doc.html) that describes the

navigation bar and the above pages.
– You can provide your own custom help file to override

the default using -helpfile.

• One index.html file which creates the HTML
frames for display.
– This is the file you load to display the front page with

frames. This file itself contains no text content.

• Several frame files (*-frame.html) containing lists
of packages, classes and interfaces, used when
HTML frames are being displayed.

• A package list file (package-list), used by the -
link and -linkoffline options.
– This is a text file, not HTML, and is not reachable

through any links.

• A style sheet file (stylesheet.css) that controls a
limited amount of color, font family, font size,
font style and positioning on the generated pages.

• A doc-files directory that holds any image,
example, source code or other files that you want
copied to the destination directory.
– These files are not processed by the Javadoc tool in any

manner -- that is, any javadoc tags in them will be
ignored. This directory is not generated unless it exists
in the source tree.

5

Package Comment Files
• Each package can have its own documentation

comment, contained in its own "source" file, that
the Javadoc tool will merge into the package
summary page that it generates.
– You typically include in this comment any

documentation that applies to the entire package.

• To create a package comment file, you must name
it package.html and place it in the package
directory in the source tree along with the .java
files.
– The Javadoc tool will automatically look for this

filename in this location. Notice that the filename is
identical for all packages.

Package Comment Files (cont.)
• The content of the package comment file is one

big documentation comment, written in HTML,
with one exception:
– The documentation comment should not include the

comment separators /** and */ or leading asterisks.

• When writing the comment, you should make the
first sentence a summary about the package, and
not put a title or any other text between <body>
and the first sentence. You can include package
tags; as with any documentation comment, all tags
except {@link} must appear after the main
description. If you add a @see tag in a package
comment file, it must have a fully-qualified name.

6

Package Comment Files (cont2.)
• the Javadoc tool does the following:

– Copies all content between <body> and </body> tags
for processing.

– Processes any package tags that are present.
– Inserts the processed text at the bottom of the package

summary page it generates.
– Copies the first sentence of the package comment to the

top of the package summary page.
– It also adds the package name and this first sentence to

the list of packages on the overview page. The end-of-
sentence is determined by the same rules used for the
end of the first sentence of class and member main
descriptions.

Overview Comment File
• Each application or set of packages that you

are documenting can have its own overview
documentation comment, kept in its own
"source" file, that the Javadoc tool will
merge into the overview page that it
generates.

• You typically include in this comment any
documentation that applies to the entire
application or set of packages.

7

Overview Comment File (cont.)
• Name the file anything you want, typically

overview.html and place it anywhere,
typically at the top level of the source tree.

• You can have multiple overview comment
files for the same set of source files, in case
you want to run javadoc multiple times on
different sets of packages.

• For example, if the source files for the
java.applet package are contained in
C:\user\src\java\applet directory, you could
create an overview comment file at
C:\user\src\overview.html.

Overview Comment File (cont2.)
• The content of the overview comment file is

one big documentation comment, written in
HTML, like the package comment file
described previously.

• you specify the overview comment file
name with the -overview option. The file is
then processed similar to that of a package
comment file.

8

Miscellaneous Unprocessed Files
• You can also include in your source any

miscellaneous files that you want the Javadoc tool
to copy to the destination directory.

• These typically includes graphic files, example
Java source (.java) and class (.class) files, and self-
standing HTML files whose content would
overwhelm the documentation comment of a
normal Java source file.

• To include unprocessed files, put them in a
directory called doc-files which can be a
subdirectory of any package directory that contains
source files.
– You can have one such subdirectory for each package.

Miscellaneous Unprocessed Files
(cont.)

• You might include images, example code, source
files, .class files, applets and HTML files.

• For example, if you want to include the image of a
button button.gif in the java.awt.Button class
documentation, you place that file in the
/home/user/src/java/awt/doc-files/ directory.
Notice the doc-files directory should not be
located at /home/user/src/java/doc-files because
java is not a package -- that is, it does not directly
contain any source files.

9

Miscellaneous Unprocessed
Files (cont2.)

• All links to these unprocessed files must be
hard-coded, because the Javadoc tool does
not look at the files -- it simply copies the
directory and all its contents to the
destination.

• For example, the link in the Button.java doc
comment might look like:
/**
* This button looks like this:
*
*/

Test Files and Template Files
• If you are passing in package names or

wildcards, you need to follow certain rules
to ensure these test files and templates files
are not processed.

• Test files
– Often developers want to put compilable,

runnable test files for a given package in the
same directory as the source files for that
package.

– But they want the test files to belong to a
package other than the source file package.

10

Test Files and Template Files
(cont.)

– You need to put such test files in a subdirectory. For
example, if you want to add test files for source files in
com.package1, put them in a directory:

• com/package1/test-files/
• The test files will be ignored by the Javadoc tool (though this

warning might appear: "No source files for package
com.package1.test-files").

– If your test files contain doc comments, you can set up
a separate run of the Javadoc tool to produce
documentation of the test files by passing in source
filenames with wildcards, such as

• com/package1/test-files/*.java.

Test Files and Template Files
(cont2.)

• Templates for source files
– Template files have names that often end in ".java" and

are not compilable.
– If you have a template for a source file that you want to

keep in the source directory, you can name it with a
dash (such as Buffer-Template.java), or any other
illegal Java character, to prevent it from being
processed.

– This relies on the fact that the Javadoc tool will only
process source files whose name, when stripped of the
".java" suffix, is actually a legal class name

11

Command line

• javadoc [options] [packagenames] [sourcefilen
ames] [-subpackages pkg1:pkg2:...] [@argfiles]
Arguments can be in any order.

• options
– Command-line options, as specified in this document.

• packagenames
– A series of names of packages, separated by spaces,

such as java.lang java.lang.reflect java.awt.
– You must separately specify each package you want to

document. Wildcards are not allowed; use -subpackages
for recursion.

– The Javadoc tool uses -sourcepath to look for these
package names.

• sourcefilenames
– A series of source file names, separated by spaces, each

of which can begin with a path and contain a wildcard
such as asterisk (*).

– The Javadoc tool will process every file whose name
ends with ".java", and whose name, when stripped of
that suffix, is actually a legal class name.

12

– Therefore, you can name files with dashes (such as X-
Buffer), or other illegal characters, to prevent them
from being documented. This is useful for test files and
template files

– The path that precedes the source file name determines
where javadoc will look for the file. (The Javadoc tool
does not use -sourcepath to look for these source file
names.) Relative paths are relative to the current
directory, so passing in Button.java is identical to
./Button.java. A source file name with an absolute path
and a wildcard, for example, is
/home/src/java/awt/Graphics*.java.

• -subpackages pkg1:pkg2:...
– Generates documentation from source files in the

specified packages and recursively in their
subpackages. An alternative to supplying
packagenames or sourcefilenames.

• @argfiles
– One or more files that contain a list of Javadoc

options, packagenames and sourcefilenames in
any order. Wildcards (*) and -J options are not
allowed in these files.

13

Options
• All option names are case-insensitive, though their

arguments can be case-sensitive.
• -public

– Shows only public classes and members.

• -protected
– Shows only protected and public classes and members. This is the

default.

• -package
– Shows only package, protected, and public classes and members.

• -private
– Shows all classes and members.

Options(2)
• -doclet class

– Specifies the class file that starts the doclet used in
generating the documentation.

– Use the fully-qualified name.
– defines the content and formats the output.
– If the -doclet option is not used, javadoc uses the

standard doclet for generating the default HTML
format.

– This class must contain the start(Root) method. The
path to this starting class is defined by the -docletpath
option.

– For example, to call the MIF doclet, use:
• -doclet com.sun.tools.doclets.mif.MIFDoclet

14

Options(3)
• -docletpath classpathlist

– Specifies the path to the doclet starting class file
(specified with the -doclet option) and any jar files it
depends on.

– If the starting class file is in a jar file, then this specifies
the path to that jar file.

– You can specify an absolute path or a path relative to
the current directory.

– If classpathlist contains multiple paths or jar files, they
should be separated with a colon (:) on Solaris and a
semi-colon (;) on Windows. This option is not
necessary if the doclet starting class is already in the
search path.

– Example
• -docletpath C:\user\mifdoclet\lib\mifdoclet.jar
• -docletpath

C:\user\mifdoclet\classes\com\sun\tools\doclets\mif\

specify .jar

Don’t need .class

Options(4)
• -sourcepath sourcepathlist

– Specifies the search paths for finding source files
(.java) when passing package names or -subpackages
into the javadoc command.

– The sourcepathlist can contain multiple paths by
separating them with a semicolon (;). The Javadoc tool
will search in all subdirectories of the specified paths.

– This option is also used to find source files that are not
being documented but whose comments are inherited
by the source files being documented.

– You can use the -sourcepath option only when passing
package names into the javadoc command -- it will not
locate .java files passed into the javadoc command. (To
locate .java files, cd to that directory or include the path
ahead of each file.

15

Options(5)
– If -sourcepath is omitted, javadoc uses the class path to find the

source files. Therefore, the default -sourcepath is the value of
class path. If -classpath is omitted and you are passing package
names into javadoc, it looks in the current directory (and
subdirectories) for the source files.

– Set sourcepathlist to the root directory of the source tree for the
package you are documenting.

– For example, suppose you want to document a package called
com.mypackage whose source files are located at
C:\user\src\com\mypackage*.java In this case you would
specify the sourcepath to C:\user\src, the directory that contains
com\mypackage, and then supply the package name
com.mypackage:

• C:> javadoc -sourcepath C:\user\src com.mypackage

– To point to two source paths:
• C:> javadoc -sourcepath C:\user1\src;C:\user2\src com.mypackage

Options(6)
• -classpath classpathlist

– Specifies the paths where javadoc will look for referenced
classes (.class files) -- these are the documented classes plus
any classes referenced by those classes.

– The classpathlist can contain multiple paths by separating
them with a semicolon (;). The Javadoc tool will search in all
subdirectories of the specified paths.

– If -sourcepath is omitted, the Javadoc tool uses -classpath to
find the source files as well as class files (for backward
compatibility). Therefore, if you want to search for source
and class files in separate paths, use both -sourcepath and -
classpath.

– For example, if you want to document com.mypackage,
whose source files reside in the directory
C:\user\src\com\mypackage, and if this package relies on a
library in C:\user\lib, you would specify:

• C:> javadoc -classpath \user\lib -sourcepath \user\src
com.mypackage

16

Options(7)
– As with other tools, if you do not specify -classpath, the

Javadoc tool uses the CLASSPATH environment
variable, if it is set. If both are not set, the Javadoc tool
searches for classes from the current directory.

• -verbose
– Provides more detailed messages while javadoc is

running. Without the verbose option, messages appear
for loading the source files, generating the
documentation (one message per source file), and
sorting. The verbose option causes the printing of
additional messages specifying the number of
milliseconds to parse each java source file.

• -quiet
– Shuts off non-error and non-warning messages, leaving

only the warnings and errors appear, making them
easier to view. Also suppresses the version string.

Options(8)
• -d directory

– Specifies the destination directory where javadoc saves
the generated HTML files.

– Omitting this option causes the files to be saved to the
current directory.

– The value directory can be absolute, or relative to the
current working directory.

– As of 1.4, the destination directory is automatically
created when javadoc is run.

– For example, the following generates the
documentation for the package com.mypackage and
saves the results in the C:\user\doc\ directory:

• C:> javadoc -d \user\doc com.mypackage

17

Options(9)
• -use

– Includes one "Use" page for each documented class and
package.

– The page describes what packages, classes, methods,
constructors and fields use any API of the given class
or package.

– Given class C, things that use class C would include
subclasses of C, fields declared as C, methods that
return C, and methods and constructors with parameters
of type C.

– For example:
• The getName() method in the java.awt.Font class returns type

String. Therefore, getName() uses String, and you will find
that method on the "Use" page for String.

– If a method uses String in its implementation but does
not take a string as an argument or return a string, that
is not considered a "use" of String.

Options(10)
• -windowtitle title

– Specifies the title to be placed in the HTML <title> tag.
This appears in the window title and in any browser
bookmarks (favorite places) that someone creates for
this page.

– If -windowtitle is omitted, the Javadoc tool uses the
value of -doctitle for this option.

• C:> javadoc -windowtitle "Java 2 Platform"
com.mypackage

• -doctitle title
– Specifies the title to be placed near the top of the

overview summary file. The title will be placed as a
centered, level-one heading directly beneath the upper
navigation bar. The title may contain html tags and
white space, though if it does, it must be enclosed in
quotes.

• C:> javadoc -doctitle "Java<sup><font size=\"-
2\">TM</sup>" com.mypackage

18

Options(11)
• -header header

– Specifies the header text to be placed at the top
of each output file.

– The header will be placed to the right of the
upper navigation bar.

– header may contain HTML tags and white
space, but it must be enclosed in quotes.

– Any internal quotation marks within header
may have to be escaped.

• C:> javadoc -header "Java 2
Platform
v1.4" com.mypackage

• -footer footer
• -bottom text

Options(12)
• -linksource

– Creates an HTML version of each source file (with line
numbers) and adds links to them from the standard
HTML documentation.

– Links are created for classes, interfaces, constructors,
methods and fields whose declarations are in a source
file. Otherwise, links are not created, such as for default
constructors and generated classes.

– This option exposes all private implementation
details in the included source files, including private
classes, private fields, and the bodies of private
methods, regardless of the -public, -package, -
protected and -private options.

– Unless you also use the -private option, not all private
classes or interfaces will necessarily be accessible via
links.

19

Options(13)

– Each link appears on the name of the identifier
in its declaration. For example, the link to the
source code of the Button class would be on the
word "Button":

• public class Button extends Component implements
Accessible

– and the link to the source code of the getLabel()
method in the Button class would be on the
word "getLabel":

• public String getLabel()

Options(14)
• -nodeprecated

– Prevents the generation of any deprecated API at all in
the documentation.

– This does what -nodeprecatedlist does, plus it does not
generate any deprecated API throughout the rest of the
documentation.

• -nodeprecatedlist
– Prevents the generation of the file containing the list of

deprecated APIs (deprecated-list.html) and the link in
the navigation bar to that page. (However, javadoc
continues to generate the deprecated API throughout
the rest of the document.)

– This is useful if your source code contains no
deprecated API, and you want to make the navigation
bar cleaner.

20

Options(15)
• -noindex

– Omits the index from the generated docs. The index is
produced by default.

• -nohelp
– Omits the HELP link in the navigation bars at the top

and bottom of each page of output.
• -nonavbar

– Prevents the generation of the navigation bar, header
and footer, otherwise found at the top and bottom of the
generated pages.

– Has no affect on the "bottom" option.
– The -nonavbar option is useful when you are interested

only in the content and have no need for navigation,
such as converting the files to PostScript or PDF for
print only.

Options(16)
• -helpfile path\filename

– Specifies the path of an alternate help file
path\filename that the HELP link in the top and
bottom navigation bars link to.

– Without this option, the Javadoc tool
automatically creates a help file help-doc.html
that is hard-coded in the Javadoc tool. This
option enables you to override this default.

– The filename can be any name and is not
restricted to help-doc.html -- the Javadoc tool
will adjust the links in the navigation bar
accordingly. For example:

• C:> javadoc -helpfile C:\user\myhelp.html
java.awt

21

Options(17)
• -stylesheetfile path\filename

– Specifies the path of an alternate HTML
stylesheet file.

– Without this option, the Javadoc tool
automatically creates a stylesheet file
stylesheet.css that is hard-coded in the Javadoc
tool. This option enables you to override this
default.

– The filename can be any name and is not
restricted to stylesheet.css. For example:

• C:> javadoc -stylesheetfile
C:\user\mystylesheet.css com.mypackage

Option (18- define our own tag)
• -tag tagname:Xaoptcmf:"taghead"

– Enables the Javadoc tool to interpret a simple, one-
argument custom block tag @tagname in doc
comments. So the Javadoc tool can "spell-check" tag
names.

– It is important to include a -tag option for every custom
tag that is present in the source code, disabling (with X)
those that are not being output in the current run.

– The colon (:) can be replaced with a dash (-), which
frees up the colon character to appear in the tagname.

– The -tag option outputs the tag's heading taghead in
bold, followed on the next line by the text from its
single argument.

– This argument's text can contain inline tags, which are
also interpreted.

– Omitting taghead causes tagname to appear as the
heading.

22

• Placement of tags - The Xaoptcmf part of the
argument determines where in the source code
the tag is allowed to be placed, and whether the
tag can be disabled (using X). You can supply
either a, to allow the tag in all places, or any
combination of the other letters:
X (disable tag)
a (all)
o (overview)
p (packages)
t (types, that is classes and interfaces)
c (constructors)
m (methods)
f (fields)

• Examples of single tags - An example of a tag option
for a tag that that can be used anywhere in the source
code is

-tag todo:a:"To Do:"

• If you wanted @todo to be used only with constructors,
methods and fields, you would use:

-tag todo:cmf:"To Do:"

• Notice the last colon (:) above is not a parameter
separator, but is part of the heading text (as shown
below). You would use either tag option for source
code that contains the tag @todo, such as:

@todo The documentation for this method needs work.

• This line would produce output something like:
To Do:

The documentation for this method needs work.

23

• Use of Colon as Separator - The colon separator can be
replaced by the dash, making the following two equivalent:

-tag todo:a:"To Do:"
-tag todo-a-"To Do:"

• This frees up the colon to be used in the tagname:
-tag ejb:bean-a-"EJB Bean:"

• Spell-checking tag names (Disabling tags) –
• Some developers put custom tags in the source code that they don't

always want to output. In these cases, it is important to list all tags that
are present in the source code, enabling the ones you want to output
and disabling the ones you don't want to output. The presence of X
disables the tag, while its absence enables the tag. This gives the
Javadoc tool enough information to know if a tag it encounters is
unknown, probably the results of a typo or a misspelling. It prints a
warning in these cases.

• You can add X to the placement values already
present, so that when you want to enable the
tag, you can simply delete the X. For example,
if @todo is a tag that you want to suppress on
output, you would use:

• -tag todo:Xcmf:"To Do:"

• or, if you'd rather keep it simple:
• -tag todo:X

• The syntax -tag todo:X works even if @todo is
defined by a taglet.

24

• Order of tags - The order of the -tag (and -taglet)
options determine the order the tags are output. You
can mix the custom tags with the standard tags to
intersperse them. The tag options for standard tags are
placeholders only for determining the order -- they take
only the standard tag's name. (Subheadings for standard
tags cannot be altered.) This is illustrated in the
following example.

• If -tag is missing, then the position of -taglet determines
its order. If they are both present, then whichever
appears last on the command line determines its order.
(This happens because the tags and taglets are
processed in the order that they appear on the command
line. For example, if -taglet and -tag both have the name
"todo", the one that appears last on the command line
will determine its order.

• Example of a complete set of tags - This example
inserts "To Do" after "Parameters" and before "Throws"
in the output. By using "X", it also specifies that
@example is a tag that might be encountered in the
source code that should not be output during this run.
Notice that if you use @argfile, you can put the tags on
separate lines in an argument file like this (no line
continuation characters needed):

-tag param
-tag return
-tag todo:a:"To Do:"
-tag throws
-tag see
-tag example:X
• When javadoc parses the doc comments, any tag

encountered that is neither a standard tag nor passed in
with -tag or -taglet is considered unknown, and a
warning is thrown.

25

• The standard tags are initially stored internally in a list
in their default order. Whenever -tag options are used,
those tags get appended to this list -- standard tags are
moved from their default position. Therefore, if a -tag
option is omitted for a standard tag, it remains in its
default position.

• Avoiding Conflicts - If you want to slice out your own
namespace, you can use a dot-separated naming
convention similar to that used for packages:
com.mycompany.todo. Sun will continue to create
standard tags whose names do not contain dots. Any tag
you create will override the behavior of a tag by the
same name defined by Sun. In other words, if you
create a tag or taglet @todo, it will always have the
same behavior you define, even if Sun later creates a
standard tag of the same name.

Options(19)
• -subpackages package1:package2:...

– Generates documentation from source files in the
specified packages and recursively in their
subpackages.

– This option is useful when adding new subpackages to
the source code, as they are automatically included.

– Each package argument is any top-level subpackage
(such as java) or fully qualified package (such as
javax.swing) that does not need to contain source files.

– Arguments are separated by colons (on all operating
systmes). Wildcards are not needed or allowed. Use -
sourcepath to specify where to find the packages.

– For example:
• C:> javadoc -d docs -sourcepath C:\user\src -subpackages

java:javax.swing
• This command generates documentation for packages named

"java" and "javax.swing" and all their subpackages.

26

Options(20)
• -exclude packagename1:packagename2:...

– Unconditionally excludes the specified
packages and their subpackages from the list
formed by -subpackages. It excludes those
packages even if they would otherwise be
included by some previous or later -
subpackages option. For example:

• C:> javadoc -sourcepath C:\user\src -
subpackages java -exclude java.net:java.lang

• would include java.io, java.util, and java.math
(among others), but would exclude packages rooted
at java.net and java.lang. Notice this excludes
java.lang.ref, a subpackage of java.lang).

COMMAND LINE
ARGUMENT FILES

• This enables you to create javadoc commands of
any length on any operating system.

• An argument file can include Javadoc options,
source filenames and package names in any
combination, or just arguments to Javadoc options.

• The arguments within a file can be space-
separated or newline-separated.

• Filenames within an argument file are relative to
the current directory, not the location of the
argument file.

27

• Wildcards (*) are not allowed in these lists (such
as for specifying *.java). Use of the '@' character
to recursively interpret files is not supported. The -
J options are not supported because they are
passed to the launcher, which does not support
argument files.

• When executing javadoc, pass in the path and
name of each argument file with the '@' leading
character. When javadoc encounters an argument
beginning with the character `@', it expands the
contents of that file into the argument list.

Example - Single Arg File

• You could use a single argument file named
"argfile" to hold all Javadoc arguments:

C:> javadoc @argfile

28

Example - Two Arg Files
• Create a file named "options" containing:

– -d docs-filelist
– -use -splitindex
– -windowtitle 'Java 2 Platform v1.3 API Specification'
– -doctitle 'Java^{TM}

2 Platform v1.4 API Specification'
– -header 'Java 2 Platform
<font size="-

1">v1.4'
– -bottom 'Copyright 1993-2000 Sun Microsystems, Inc.

All Rights Reserved.'
– -group "Core Packages" "java.*"
– -overview

\java\pubs\ws\1.3\src\share\classes\overview-core.html
– -sourcepath \java\pubs\ws\1.3\src\share\classes

• Create a file named "packages" containing:
– com.mypackage1
– com.mypackage2
– com.mypackage3

• You would then run javadoc with:
– C:> javadoc @options @packages

29

Example - Arg Files with Paths

• The argument files can have paths, but any
filenames inside the files are relative to the
current working directory (not path1 or path2):
– C:> javadoc @path1\options @path2\packages

Example - Option Arguments

• You could create a file named "bottom"
containing long argument

• Then run the Javadoc tool with:
– C:> javadoc -bottom @bottom @packages

• Or you could include the -bottom option at
the start of the argument file, and then just
run it as:
– C:> javadoc @bottom @packages

30

Other running examples (1)
• This example uses -sourcepath so javadoc can be

run from any directory and -subpackages (a new
1.4 option) for recursion. It traverses the
subpackages of the java directory excluding
packages rooted at java.net and java.lang. Notice
this excludes java.lang.ref, a subpackage of
java.lang).
– % javadoc -d \home\html -sourcepath \home\src -

subpackages java -exclude java.net:java.lang

• To also traverse down other package trees, append
their names to the -subpackages argument, such as
java:javax:org.xml.sax.

Other running examples (2)

• Change to the parent directory of the fully-
qualified package. Then run javadoc,
supplying names of one or more packages
you want to document:
– C:> cd C:\home\src\
– C:> javadoc -d C:\home\html java.awt

java.awt.event

31

Other running examples (3)

• In this case, it doesn't matter what the
current directory is. Run javadoc supplying
-sourcepath with the parent directory of the
top-level package, and supplying names of
one or more packages you want to
document:
– C:> javadoc -d C:\home\html -sourcepath

C:\home\src java.awt java.awt.event

Other running examples (4)

• Run from any directory on explicit packages in
multiple directory trees - This is the same as
case 3, but for packages in separate directory trees.
Run javadoc supplying -sourcepath with the path
to each tree's root (colon-separated) and supply
names of one or more packages you want to
document. All source files for a given package do
not need to be located under a single root directory
-- they just need to be found somewhere along the
sourcepath.
– C:> javadoc -d C:\home\html -sourcepath

C:\home\src1;C:\home\src2 java.awt java.awt.event

32

Other running examples (5)

• Change to the directory holding the .java files.
Then run javadoc, supplying names of one or
more source files you want to document.
– C:> cd C:\home\src\java\awt
– C:> javadoc -d C:\home\html Button.java

Canvas.java Graphics*.java
• This example generates HTML-formatted

documentation for the classes Button, Canvas and
classes beginning with Graphics. Because source
files rather than package names were passed in as
arguments to javadoc, the document has two
frames -- for the list of classes and the main page.

Other running examples (6)

• This is useful for documenting individual source
files from different subpackages off the same root.
Change to the package root directory, and supply
the source files with paths from the root.
– C:> cd C:\home\src
– C:> javadoc -d \home\html java\awt\Button.java

java\applet\Applet.java

• This example generates HTML-formatted
documentation for the classes Button and Applet.

33

Other running examples (7)

• In this case, it doesn't matter what the
current directory is. Run javadoc supplying
the absolute path (or path relative to the
current directory) to the .java files you want
to document.
– C:> javadoc -d C:\home\html

C:\home\src\java\awt\Button.java
C:\home\src\java\awt\Graphics*.java

