
JUnit 1

5/31/2004 Vishnu Kotrajaras, PhD 1

JUnit

Vishnu

5/31/2004 Vishnu Kotrajaras, PhD 2

Introduction
unit tests = public classes that extend
the junit.framework.TestCase
methods with names beginning with the
word "test"
provides methods to easily assert things
about your own classes
as well as the ability to run a group of
tests

JUnit 2

5/31/2004 Vishnu Kotrajaras, PhD 3

How to write it?
create instances of your classes in the
test methods of your TestCase class
get results from any methods that you
call
and assert that those results match
your expectations

5/31/2004 Vishnu Kotrajaras, PhD 4

Steps (more detail)
At the top of the file, include:

import junit.framework.TestCase;
The main class of the file must:

be public
extend TestCase

Methods of this class to be run automatically
when the Test command is invoked must:

be public and not static
return void
take no arguments
have a name beginning with "test"

JUnit 3

5/31/2004 Vishnu Kotrajaras, PhD 5

Test methods
Test methods in this class can call any
of the following methods (among
others):

void assertTrue(String, boolean)
which issues an error report with the given
string if the boolean is false.

There are versions of each method without this string,
in such cases ->Java will manage error messages

5/31/2004 Vishnu Kotrajaras, PhD 6

assertEquals
void assertEquals(String, int, int)

which issues an error report with the given
string if the two integers are not equal.
The first int is the expected value, and the
second int is the actual (tested) value.
Note that this method can also be called using
any primitives or with Objects, using their
equals() methods for comparison.

JUnit 4

5/31/2004 Vishnu Kotrajaras, PhD 7

fail
void fail(String)

which immediately causes the test to fail,
issuing an error report with the given string.

5/31/2004 Vishnu Kotrajaras, PhD 8

Testing and exceptions
Test methods are permitted to throw
any type of exception, as long as it is
declared in the "throws" clause of the
method contract.
If an exception is thrown, the test fails
immediately.

JUnit 5

5/31/2004 Vishnu Kotrajaras, PhD 9

Common Initialization
If there is any common setup work to be
done before running each test (such as
initializing instance variables), do it in the
body of a method with the following contract:

protected void setUp()
This method is automatically run before any tests in the
class. (Similarly, you can write a protected void
tearDown() method to be called after each test.)

5/31/2004 Vishnu Kotrajaras, PhD 10

Example 1
Suppose you are writing a Calculator class

simple operations on pairs of integers.
Before you even write the class,

take a moment to write a few tests for it (By
writing tests early, you start thinking about which
cases might cause problems.)
Then write the Calculator class, compile both
classes, and run the tests to see if they pass. If
they do, write a few more test methods to check
other cases that you have realized are important.
In this way, you can build up programs with a
great deal of confidence.

JUnit 6

5/31/2004 Vishnu Kotrajaras, PhD 11

import junit.framework.TestCase;
public class CalculatorTest extends TestCase {

public void testAddition() {
Calculator calc = new Calculator(); // 3 + 4 = 7
int expected = 7;
int actual = calc.add(3, 4);
assertEquals("adding 3 and 4", expected, actual);

}
public void testDivision() {

Calculator calc = new Calculator(); // Divide by zero
try {

calc.divide(2, 0);
fail("Should have thrown exception!");

} catch (ArithmeticException e) {
// Good, that's what we expect
}

}
}

5/31/2004 Vishnu Kotrajaras, PhD 12

Creating Junit test in Eclipse
add the JUnit library to the build path.

Click on Project -> Properties, select
Java Build Path, Libraries, click Add
External JARs and browse to directory
where your JUnit is stored.
Pick junit.jar and click Open. You will see
that JUnit will appear on your screen in the
list of libraries. By clicking Okay you will
force Eclipse to rebuild all build paths

JUnit 7

5/31/2004 Vishnu Kotrajaras, PhD 13

5/31/2004 Vishnu Kotrajaras, PhD 14

Let us test HelloWorld
To create such a test, right-click on the
ProjectWithJUnit title, select New ->
Other, expand the "Java" selection,
and choose JUnit.
On the right column of the dialog,
choose Test Case, then click Next.

JUnit 8

5/31/2004 Vishnu Kotrajaras, PhD 15

5/31/2004 Vishnu Kotrajaras, PhD 16

JUnit 9

5/31/2004 Vishnu Kotrajaras, PhD 17

Type in the name of our yet-to-be
written class HelloWorld into the Test
class field, and choose a name for our
Test case -- for example,
TestHelloWorld (yes, it looks long, but it
clearly indicates what it does.) Click on
Finish.

5/31/2004 Vishnu Kotrajaras, PhD 18

import junit.framework.TestCase;
public class TestHelloWorld extends TestCase {

public TestHelloWorld(String name) {
super(name);

}
public void testSay() {

HelloWorld hi = new HelloWorld();
assertEquals("Hello World!", hi.say());

}
public static void main(String[] args) {

junit.textui.TestRunner.run(TestHelloWorld.class);
}

}

text output and Eclipse IDE
uses that to create its own
graphic presentation.
Normally we don’t need this
because eclipse evokes it
automatically

JUnit 10

5/31/2004 Vishnu Kotrajaras, PhD 19

Fail- > because we
Have not written
HelloWorld
Next , we write say() in

HelloWorld
public String say(){
return(“Hello World!”);}

Run ->Run as Junit Test

5/31/2004 Vishnu Kotrajaras, PhD 20

Run Junit again. This time the test
succeeds.

JUnit 11

5/31/2004 Vishnu Kotrajaras, PhD 21

What about unexpected
value?

Edit the assertEquals() to change the
expected return value from "Hello
World!" to "Hello Me!".

5/31/2004 Vishnu Kotrajaras, PhD 22

Run Junit again

Double click to go to that
Method, or line in the
method

JUnit 12

5/31/2004 Vishnu Kotrajaras, PhD 23

Junit in Eclipse runs every test
method

We know which method causes error.
We know whether old methods cause error
after inserting a new method.
Let us first fix say(), then create another
method -> goodBye() that prints “goodbye”
but we intentionally check only “goodbi”.
When we run Junit, it will report an error
indicating the incorrect method. The bar will
only be green after all methods are corrected.

5/31/2004 Vishnu Kotrajaras, PhD 24

Indicates that only one method is incorrect

JUnit 13

5/31/2004 Vishnu Kotrajaras, PhD 25

Test Suite
If you would rather control which methods
are called when running the tests (rather
than using all methods starting with "test"),
you can write a method to create a test suite.
This method should be of the form:

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTest(new <testclassname>("<testmethodname>")); ...
return suite;

}

5/31/2004 Vishnu Kotrajaras, PhD 26

Create Test Suite (can be
done from menu)
import junit.framework.Test;
import junit.framework.TestSuite;
public class AllTests {

public static Test suite() {
TestSuite suite = new TestSuite("Test for default

package");
//$JUnit-BEGIN$
suite.addTest(new

TestSuite(TestHelloWorld.class));
//$JUnit-END$
return suite;
}
}

JUnit 14

5/31/2004 Vishnu Kotrajaras, PhD 27

Running several test suites
TestSuites don't only have to contain TestCases.
They contain any object that implements the
Test interface. For example, you can create a
TestSuite in your code and I can create one in
mine, and we can run them together by creating
a TestSuite that contains both:

TestSuite suite= new TestSuite();
suite.addTest(Kent.suite());
suite.addTest(Erich.suite());
TestResult result= suite.run();

This line orders it
to run now
But we can return
the suite to be
run by
TestRunner

5/31/2004 Vishnu Kotrajaras, PhD 28

Testing idioms
The software does well those things that the tests
check.
Test a little, code a little, test a little, code a little...
Make sure all tests always run at 100%.
Run all the tests in the system at least once per
day (or night).
Write tests for the areas of code with the highest
probability of breakage.
Write tests that have the highest possible return on
your testing investment.

JUnit 15

5/31/2004 Vishnu Kotrajaras, PhD 29

Testing idioms 2
If you find yourself debugging using
System.out.println(), write a test to
automatically check the result instead.
When a bug is reported, write a test to
expose the bug.
The next time someone asks you for help
debugging, help them write a test.
Write unit tests before writing the code and
only write new code when a test is failing.

