
Creating a GUI with JFC/Swing

What are the JFC and Swing?

• JFC
– Java Foundation Classes
– a group of features to help people build

graphical user interfaces (GUIs)
• Swing

– Components for GUIs
– to use Swing, you have to import javax.swing

package.

What are the objects in an
application?

Frame – the top-level
container class

Menu Bar -- optional

Content Pane – contains the
visible components in the
top-level container’s GUI

How to make frames (main windows)?

• A frame, an instance of the JFrame, is a window that
typically has decorations such as a border, a title, and a
buttons for closing and iconifying the window.

• Every GUI components must be put into a container.
• Each GUI components can be contained only once.
• A frame has a content pane that contains the visible

components
• An optional menu bar can be added to a top-level

container

import java.awt.*;
import javax.swing.*;
public class App1 {
 public static void main(String[] args) {
 // 1. Optional: Specify who draws the window
 // decorations. (default: native window system)
 JFrame.setDefaultLookAndFeelDecorated(true);
 // 2. Create a top-level frame
 JFrame frame = new JFrame("Application 1");
 // 3. Optional: What happens when the frame closes?
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // 4. Optional: How the components are put in the
 // frame?
 Container cp = frame.getContentPane();
 cp.setLayout(new FlowLayout());

 // 5. Create GUI/Swing components
 JButton button1 = new JButton("A JButton");
 JButton exitButton = new JButton(" Exit ");
 JTextField text =
 new JTextField("This is a text field.", 20);
 // 6. Put the components in the frame
 cp.add(button1, BorderLayout.WEST);
 cp.add(text, BorderLayout.CENTER);
 cp.add(exitButton, BorderLayout.EAST);

 // 7. Set frame size
 // frame.setSize(int width, int hieght);
 frame.pack();

 // 8. Show it
 frame.setVisible(true);
 }
}

- without
JFrame.setDefaultLookAndFeelDecorated(true);

- with
JFrame.setDefaultLookAndFeelDecorated(true);

frame.pack();

frame.setSize(450, 200);

frame.setSize(250, 200);

Run the application

• When you click on a button, or type in a
text field and press enter, an event is
generated.

• Nothing happen, why?
• To make the program response to an action,

you need to create a listener object that
waits for a particular event to handle and
modified the correspondence method.

Example of actions

MouseMotionListenerUser moves the mouse over a component

MouseListenerUser presses a mouse button while the
cursor is over a component

WindowListenerUser closes a frame (main window)

ActionListenerUser clicks a button, presses Return
while typing in a text field, or chooses a
menu item

Listener TypeAct that results in the event

How to implement an event handler ?

• Define a new class that either implements
a listener interface or extends a class that
implements a listener interface (adapter
class)

public class MyListener implements ActionListener {
 .
 .
 .
}

How to implement an event handler ?

• Register an instance of the event handler
class as a listener upon one or more
components

 someComponent.addActionListener(anInstanceOfMyListener);

How to implement an event handler ?

• Implement all methods in the listener
interface.

 public void actionPerformed(ActionEvent e) {
 // code that reacts to the action
 . . .
 }

Example
// Program App3 with event handling

public class App3 {
 public static JTextField text;
 public static void main(String[] args) {
 . . .
 // 6.1. Register an event handler
 exitButton.addActionListener(
 new MyExitButtonListener());
 button1.addActionListener(new MyButtonListener());
 . . .
 }
}

// New classes that implement ActionListener

class MyExitButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
}

class MyButtonListener implements ActionListener {
 static int count = 0;
 public void actionPerformed(ActionEvent e) {
 App2.text.setText("A JButton has been pressed " +
 ++count + " times.");
 }
}

click
2

times

Using inner class
• A class defined inside any class.
• Advantages:

– Be able to access instance variables from the
enclosing class.

– Keep the event-handling code close to where event
occurs.

– Your event-handling class can inherit from other class.
• Disadvantages:

– lengthy class
– longer loading time
– increase memory requirements

// Example
// Program App4 with event handling using inner class

public class App4 {
 public static void main(String[] args) {
 . . .
 class MyExitButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }

 class MyButtonListener implements ActionListener {
 // code for event handling
 }

 // 6.1. Register an event handler
 exitButton.addActionListener(
 new MyExitButtonListener());
 button1.addActionListener(new MyButtonListener());
 . . .
 }
}

// Example
// Program App5 with event handling using
// anonymous inner class

public class App5 {
 public static void main(String[] args) {
 . . .

 // 6.1. Register an event handler
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 });
 button1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // code for event handling
 });
 . . .
 }
}

Writing Event Listeners

• The event-listener methods should execute
quickly. Because all event-handling and
drawing methods are executed in the same
thread.

• If the action that need to be performed will
take a long time, initialize as required and
perform the rest in a new thread (will
cover later).

Getting Event Info.: Event Objects

• EventObject – the root class of all event state objects
• Useful methods:

getSource
public Object getSource()
Returns:

The object on which the Event initially occurred.

toString
public String toString()
Overrides:

toString in class Object
Returns:

A a String representation of this EventObject.

Listeners supported by Swing
• Component listener – changes in the component’s size,

position, or visibility.
• Focus listener – whether the component gained or list the

ability to receive keyboard input.
• Key listener – keypresses; key events are fired only by

the component that has the current keyboard focus.
• Mouse events – mouse clicks and movement into or out

of the component’s drawing area.
• Mouse-motion events – changes in the cursor’s position

over the component

Common Event-Handling Problem

• A component does not generate the events
it should.
– Did you register the right kind of listener to

detect the events?
– Did you register the listener to the right object?
– Did you implement the event handler correctly?

Exercise

• Create a calculator application that has
buttons for 0 – 9, +, ? , and = signs. It
should have a display are that shows the
result.

• Modify the program from (1) to have
more functions such as, *, /, %, or handle
real number.

	Creating a GUI with JFC/Swing
	What are the JFC and Swing?
	What are the objects in an application?
	How to make frames (main windows)?
	frame.pack();
	frame.setSize(450, 200);
	Run the application
	Example of actions
	How to implement an event handler ?
	How to implement an event handler ?
	How to implement an event handler ?
	Example
	Using inner class
	Writing Event Listeners
	Getting Event Info.: Event Objects
	Listeners supported by Swing
	Common Event-Handling Problem
	Exercise

