
Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 436732, 9 pages
doi:10.1155/2009/436732

Research Article

Fine-Tuning Parameters for Emergent Environments in
Games Using Artificial Intelligence

Vishnu Kotrajaras and Tanawat Kumnoonsate

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Payathai Road,
Patumwan Bangkok 10330, Thailand

Correspondence should be addressed to Vishnu Kotrajaras, ajarntoe@gmail.com

Received 30 May 2008; Accepted 8 September 2008

Recommended by Kok Wai Wong

This paper presents the design, development, and test results of a tool for adjusting properties of emergent environment maps
automatically according to a given scenario. Adjusting properties for a scenario allows a specific scene to take place while still
enables players to meddle with emergent maps. The tool uses genetic algorithm and steepest ascent hill-climbing to learn and
adjust map properties.Using the proposed tool, the need for time-consuming and labor-intensive parameter adjustments when
setting up scenarios in emergent environment maps is greatly reduced. The tool works by converting the paths of events created
by users (i.e., the spreading of fire and the flow of water) for a map to the properties of the map that plays out the scenario set by
the given paths of events. Vital event points are preserved while event points outside the given scenario are minimized. Test results
show that the tool preserves more than 70 percent of vital event points and reduces event points outside given scenarios to less
than 3 percent.

Copyright © 2009 V. Kotrajaras and T. Kumnoonsate. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

For computer games that rely on players interacting with
the game maps, emergent and realistic environments become
crucial to their degree of realism. Emergent environments
can be created on a map by dividing the map into cells,
augmenting the cells with various physical properties, and
building rules for influencing properties between each cell
[1]. Natural phenomena, such as the spreading of fire or the
flow of water, look more dynamic and realistic than similar
phenomena created using scripts [2].

Emergent maps have been widely used in ecological
modeling [3], but for computer games, emergent maps have
not seen much use. One reason is because when a given
scenario is required to take place on a map, every property
of every cell needs to be set in order to produce such
scenario. Developers need to put in a lot of time and effort.
Moreover, scenarios that have not been well set may behave
in ways that the developers had not anticipated. One way to
produce a scenario is to make properties inactive and play
out the scenario using a script, and then switch the properties

back on later. This solution has a limitation because players
cannot interfere with the scenario. Players must wait until
the scenario is completely played out before being able to
do any change to parts of the map that are changed by the
scenario. In ecological modeling, an emergent map is used
by setting all its properties first (usually imitating a real world
map) then allowing the scenario to play itself out. The study
of what causes a given scenario is through trial and error.
Therefore, it will be very useful if, given a scenario, natural
properties that cause it can be found automatically.

We present in this paper a hybrid of genetic algorithm
and steepest ascent hill-climbing for adjusting properties of
every cell on a cellular automata map in order to produce
a given scenario. With a tool based on our technique, game
developers are able to focus on designing their scenario and
spend much less time setting cell properties. Controllable
games scenarios lead to the following features, which are
usually unavailable in emergent games.

(i) Editable scenario—scenario are very important for
games. Crucial moments in a game story can be revealed
using well-set scenarios. Furthermore, a well-set scenario can

mailto:ajarntoe@gmail.com


2 International Journal of Computer Games Technology

provide challenge for players. Normally, a scenario is played
out using scripts, sacrificing any possible interactions from
players. Our editable scenario is different. Developers can
specify how a scene is played out just like writing scripts to
dictate what happens during the game, but the environment
remains emergent throughout the entire play.

(ii) In-game cut scene—although cut scenes produced as
movies can be used, in-game cut scenes can tell stories while
players are still in the middle of scenarios, without disrupting
game flow.

2. Related Works

Regarding game environment, Sweetser and Wiles [1] have
developed and tested a cellular automata map for real-time
strategy games. Sweetser’s experimental system was called
EmerGEnT system. Although EmerGEnT system did not
model an environment in great detail, it was good enough
for using in games, with fire, water, and explosions being
integrated into its cellular automata properties. EmerGEnT
system can be divided into 3 levels. The first layer is the
behavior layer, which shows the effects that players see. The
second layer is the rule layer, which controls behavior both
between cells and within each cell. The final layer is the
property layer, which determines how cells interact according
to the rules. Sweetser’s work, although consists of many
physical properties, does not provide any feature for setting
cell properties following given effects that users see.

A probabilistic model can also be used to simulate fire
in broad scale over long time periods [3, 4]. Hargrove’s
model was designed for simulating real forest fires. It
included humidity, fuel types, wind, and firebrand. These
factors influenced the probability of fire spreading from
one cell to another, and the probability of isolated cells
getting ignited. Probabilistic models do not perform well
for small cell sizes compared to thermodynamic models.
To be able to work with cells in a game map, which
generally represents small areas, thermodynamic models are
more suitable. Probabilistic models are also more difficult
to control compared to thermodynamic models, which have
precise rules for events.

Hill-climbing can be used for tuning system parameters.
Merz et al. [5] developed Opi-MAX for tuning MAX’s
numeric parameters. MAX is an expert system for high-level
diagnosis of customer-reported telephone troubles. It can be
customized by changing a set of numeric parameters. Opi-
MAX uses a searching algorithm called greedy hill-climbing
to optimize parameters. It works by randomly changing
parameters one by one. A parameter is repeatedly changed
from its initial value and each of its change effect can be
observed from overall output. A change that results in a
better output will be carried out, and a change that does not
contribute to a better output will be ignored. Each parameter
is changed for a constant number of times. The system stops
when all parameters are dealt with. This technique, however,
is not suitable for our work, since we have no good initial
values of any property. It can be used to help improving some
partially tuned parameters, nevertheless. Therefore, we use it

for fine-tuning environment properties adjusted during our
genetic algorithm runs.

Neural networks can also be used for parameter tuning.
Legenstein et al. [6] developed a movement prediction
method for objects moving on 8×8 grids. Each cell on a grid
provides an input to the recurrent unsupervised neural net-
works. It can predict object movement by predicting sensor
inputs, which are numeric values like cell properties. Given
previous events, Legenstein et al. work predicts the next
event, while our work predicts the initial condition given
a sequence of events in time. We have experimented with
neural networks but found that results were unsatisfactory.
Fire only followed given waypoints for about 50% and spread
out of the waypoints more than 100%. We believe it was
because cells that had different cell properties were allowed
to produce similar events (even though the intensity of fire
might be different). Therefore, fires with different intensity
were trained with similar events, causing the neural network
to fail to learn effectively. Therefore, we switched to genetic
algorithm.

Breukelaar and Bäck [7] used genetic algorithm to
generate cellular automata’s transition rules that display a
desired behavior. The work was demonstrated by finding
rules that evolve all cells to the same state by majority, evolve
cells to form a checkerboard, and evolve cells to form desired
bitmaps. The main focus was to find transition rules, given
a single parameter. In our work, the rules are given, but we
need to find several parameter values of all cells at the start
of each scenario. Therefore, the genetic encoding is totally
different from [7]. Karafyllidis [8] used genetic algorithm
to convert continuous-state cellular automata that predicts
forest fire spreading to discrete-state cellular automata that
outputs nearest results. The number of cells and states for
the discrete-state version were also minimized. The outcome
cellular automata were used to build a dedicated parallel
processor for real-time processing. Only one parameter was
used in each cell. It was the rate of fire spreading. Using
only one parameter allows faster execution. However, such
approximation is not applicable for our work since we want
players to still be able to physically change all properties of
each cell.

3. Tool for Adjusting Properties of
Emergent Environment Maps

3.1. Overview. We base our cellular automata maps and rules
on EmerGEnT system [1]. Our tool can adjust properties
in EmerGEnT system-like map automatically to create a
scenario of fire spreading and water flowing that matches
the scenario given by a user. Properties that our tool adjusts
include material, temperature, mass, damage, and wetness
for the spreading of fire, and height for the flow of water.
Paths of both kinds of events are controlled by waypoints
(currently, there are two kinds of events, fire and water
flow). Each waypoint is defined by its position, the time
an event takes place at that position, and the radius of the
event, as shown in Figure 1. The tool then creates a timetable
containing the beginning and the end of each event on every



International Journal of Computer Games Technology 3

Position

Radius Time
[1][1]

Figure 1: Waypoint.

cell. Impossible paths, such as fire crossing water ways or
fire spreading in the opposite direction to the wind, are not
produced. When a fire is spreading, its burning area moves
along the given waypoints. For water, flooding areas never
dry out. At the beginning of the spreading of fire, an object
that changes temperature to 3000 units is put into the first
waypoint at the time given by a user. For water, an object
that adds 30 units of water per unit time is put into the
first waypoint at the time given by the user. There can be
more than one starting waypoint for both fire and water,
depending on each designed scenario. The map properties
are then adjusted by genetic algorithm, with steepest ascent
hill-climbing being applied at selected generations. Finally,
the best chromosomes are kept to be included in the
initial population of genetic algorithm when adjusting other
scenarios. These chromosomes will be chosen during genetic
algorithm if they fit any newly given scenario.

3.2. Genetic Algorithm. Each individual in our population
contains 2 strands of chromosomes, chromosomes that store
properties related to fire (see Figure 2) and chromosomes
that store properties related to water (see Figure 3). Separat-
ing fire and water properties results in a reduced search space
for each type of events because for each type of events, there
are some properties unrelated to it. Properties related to fire
include material, temperature, mass, damage, and wetness.
There is, according to EmerGEnT model, only 1 property
related to water. It is the water’s height. All property values
are stored in real number, except the material value, which
is stored as an integer representing the material identifier
of a cell. Each cell does not need a special firing condition
because its properties (including how much it burns and
how much water is in it) constantly change according to
properties of neighbor cells and related properties within
that cell, according to the terrain physical rules given for
EmerGEnT model. In order for a scenario to take place, we
only need a starting condition, which the system gives by
putting in fire sources or water sources at starting waypoints.

Our genetic algorithm has population of 1000 chromo-
somes and evolves for 100 generations. The initial population
is generated randomly, with some limited range defined
for each value in order to speedup convergence. A new
generation is selected from the following.

(i) The highest fitness chromosome.

(ii) The first 1% elitist chromosomes. These will be
subjected to mutation.

Cell(0,0) temp

Cell(0,0) mass

Cell(0,0) damage

Cell(0,0) wetness

Cell(0,0) material

Cell(7,7) temp

Cell(7,7) mass

Cell(7,7) damage

Cell(7,7) wetness

Cell(7,7) material

...

Figure 2: Chromosome for fire event.

Cell(0,0) height

Cell(7,7) height

...

Figure 3: Chromosome for water event.

(iii) The crossover of chromosomes chosen by (1).
selectPopulation is an integer used to identify a
chromosome. The lower the value, the higher the
fitness of the selected chromosome. For example, if
selectPopulation is 0, we know we have selected the
highest fitness chromosome. Function random(a, b)
returns a random number between a and b, but not
including b. Equation (1) guarantees that the bottom
half of the chromosomes will never be chosen for
crossover. After the crossover finishes, half of the
resulting chromosomes are mutated.

Our genetic algorithm uses elite strategy because it tries to
select elite chromosomes first. The first 1% of the highest
fitness chromosomes is selected for certain and the rest are
in the top half:

selectPopulation = random
(

0,
populationSize
random(2, 6)

)
. (1)

When we perform a crossover between two chromosomes,
each property value on the first chromosome can be



4 International Journal of Computer Games Technology

combined with its counterpart from the second chromo-
some. We use uniform crossover with blending defined by
(2):

pnew1 = βp1 + (1− β)p2,

pnew2 = βp2 + (1− β)p1.
(2)

From (2), p1 is a property value (in real number) selected
from the first chromosome, for example, it can be the
temperature of a cell at coordinate (2, 3) in our map, as
defined by the first chromosome. p2 is a corresponding
property value from the second chromosome. For example, if
p1 is the temperature of a cell at coordinate (2, 3), as defined
by the first chromosome, then p2 must be the temperature
of a cell at coordinate (2, 3), as defined by the second
chromosome. pnew1 is the new value of that property in the
first resulting chromosome. pnew2 is the new value of that
property in the second resulting chromosome. β is used to
combine the values from p1 and p2. The value of β varies
in each crossover. β is selected randomly from 0, 1 and a
random value between 0 and 1. The chance of selecting each
choice from these 3 choices is equal. We experimented with
2 other ratios for these 3 choices on 3 sample maps (the first
map has more than 1 fire path, the second map has a very
long fire path, and the third map contains a very long water
flow). With all other settings equal, on average, equal ratio
gave the best result. Therefore, we decided to use it in our
genetic algorithm.

Mutation rate of 10, 20, and 30% were tested on the
3 sample maps above. It was found that the mutation
rate of 20% gave the best result on average. Therefore, we
choose the mutation rate of 20% for our genetic algorithm.
The mutation range is constrained to be within 50 units
away from the old value in order to prevent very odd
chromosomes with low fitness from being produced.

The fitness value of each chromosome is calculated from
the average of the fitness of each time unit that events occur,
with weight defined by (3). Any time frame that contains
event(s) at waypoint(s) is given a higher fitness value than
a time frame with no event point in order to make the scores
at event points stand out. Events occurring later in a scenario
are also considered more important than events occurring
early in the scenario. This allows different starting scenes for
a single scenario

fitness
waypoint
t =

(
1.8 +

0.2× t

timemax

)
× fitnesst,

fitness
non-waypoint
t =

(
0.8 +

0.2× t

timemax

)
× fitnesst .

(3)

Our fitness functions were defined after several experiments.

fitness
waypoint
t is the fitness value at time t, if that time

contains event(s) at waypoint(s). The importance of that
time frame has also been weighed into its value. timemax is the
maximum time frame that the current scenario takes place.
fitnesst is the fitness value at time t before being given any

weight. fitness
non-waypoint
t is defined similar to fitness

waypoint
t ,

except that it is given less weight due to its lack of event
points.

The fitness of each time frame before weighing (fitnesst)
is defined in (4) as follows:

fitnesst =
∑n

i=1fitness (relevantCelli)
m× 10

, (4)

relevantCelli is a cell that burns or floods at time t or was
designed to burn or flood at time t (we do not count a cell
twice, however). The number n is the sum of the number of
cells that actually burn or flood at time t and the number
of cells designed to burn or flood at time t (again, we do
not count a single cell twice). fitness(c) is a fitness value of
cell c. It can have a negative value depending on whether
the cell being in the designed path or not (see below). m is
the number of cells designed to burn or flood at time t. The
maximum fitness score for each cell is 10. If our parameter
tuning is perfect, cells designed to burn or flood at time t will
actually burn or flood at that time frame with fitness value
equal to 10. In addition, no other cells will burn or flood.
Therefore, n will equal to m and the value of fitnesst will be 1.

The value of fitness(c) is calculated from each of the
following steps.

(i) If a cell outside specified paths produces events—lose
1 point if an adjacent cell is inside any event path. If the
cell does not have any adjacent path, 5 points are deducted
instead. This discourages events outside the specified path.

(ii) If a cell does not produce an event when the event
is set to occur—gain points equal to two times the cell
temperature divided by maximum temperature if the event is
a spreading of fire. The maximum score obtainable from this
portion of the function is 2. Water events get no score here.
The reason the fire situation gets some score even though the
cell does not produce the event is because high temperature
gives the cell a probability of burning in later time frames,
which can result in similar fire events later on.

(iii) If a cell produces an event at its specified time—gain
8 points. Get additional points according to (5) and (6) for
fire and water, respectively,

addScorefire = 2∗Burn
0.5∗MaxBurn

. (5)

For (5), Burn is the intensity of fire in the calculated cell
and MaxBurn is the maximum possible value of Burn. The
maximum score from this equation is limited to 2. Any burn
that spreads with at least half the intensity of the maximum
intensity will get full mark. The reason we need addScorefire is
to encourage all fires to burn fast. From our experiment, this
can prevent fires from dying out unexpectedly in the middle
of scenarios:

addScorewater = 2∗fluid
0.5∗MaxFluid

. (6)

For (6), fluid is the amount of water currently in the cell.
MaxFluid is the maximum amount of water that cell can
contain. Similar to (5), (6) has its maximum value being
2 and it is needed in order to prevent water from flowing
not as far as designed. The difference from (5) is that we
use the amount of water instead of speed. This is because
in our model, based on Sweetser’s, there is no water speed
parameter.



International Journal of Computer Games Technology 5

Table 1: Result of hill-climbing test.

Setting 20th–100th 60th–100th 100th Not use

Average Map 1 0.516818 0.542901 0.527788 0.476567

Average Map 2 0.448464 0.457916 0.447966 0.406109

Average Map 3 0.669976 0.66909 0.669541 0.669655

Average All 0.545086 0.556636 0.548431 0.517444

int tuneValueFire = 27;
real bestFitness;
for each cell{

//tune for fire event
real currentFitness = · · · . //calculate the cell’s fitness value
While (tuneValueFire >0){

Find the fitness when add the temperature value by tuneValueFire
Find the fitness when subtract the temperature value by tuneValueFire
Find the fitness when add the mass value by tuneValueFire
Find the fitness when subtract the mass value by tuneValueFire
Find the fitness when add the damage value by tuneValueFire
. . .//try both add and subtract for all parameters of fire chromosomes
. . .

if (the best fitness value (compared to currentFitness) is found from the tuning
trial results above){

select a modification that causes such fitness
commit changes according to the selected modification

} else {
tuneValueFire = tuneValueFire;

}
} // end while

} // end for each cell

Algorithm 1: Pseudocode for steepest ascent hill-climbing on fire related values.

(iv) If a cell produces a specified event before its intended
starting time, but not more than 1 time unit—gain 4 points.
This is to allow a slightly different scenario to still gain points.

(v) If a cell still produces a given event after its intended
end time, but not more than 4 time unit—in case of fire,
gain 5 points minus the difference between current time
and end time. If the difference in time is just 1, the score
will be 4, similar to the score when an event takes place
before its intended starting time. But we give points for other
nearby time frames in order to allow for fire trails. From
our experiments, fire trails are very important for an overall
fitness of fire events. There is no score for water remaining
in a cell, however, since our system follows Sweetser’s model
that lets water stay in a cell indefinitely.

3.3. Steepest Ascent Hill-Climbing. We use steepest ascent
hill-climbing to the best chromosome, with the same fitness
function as our genetic algorithm, in order to improve map’s
properties. Table 1 shows the effect of steepest ascent hill-
climbing used in our tool, in term of fitness values com-
pared among four settings. Three settings employ steepest
ascent hill-climbing at every 20 generations of the genetic
algorithm.

In the first setting, we start applying it at the 20th
generation. In the second setting, we start applying it at
the 60th generation. In the third setting, we apply the
algorithm only to the last generation (100th generation).
In the fourth setting, we do not use steepest ascent hill-
climbing algorithm. Each setting is tested on three different
maps of 8 × 8 cells. For each map, each setting is tested
3 times. The test maps are chosen to represent 3 scenarios
that could be set by developers. Map 1 contains a fire that
breaks into 2 paths. Map 2 contains a long path of fire. Map
3 contains water flow. Each property is tuned in sequence
until it cannot be tuned further. The values used in tuning
come from observations during experiments. The algorithm
for tuning fire-related parameters is shown in pseudocode
in Algorithm 1. For water events, the algorithm is similar,
except it works only on water-related parameter.

The result shows that, on average, tests that steepest
ascent hill-climbing are applied to have noticeably better
fitness values than the tests without steepest ascent hill-
climbing. From Table 1, it seems that starting to apply
steepest ascent hill-climbing at the 60th generation gives
the best fitness value (except in Map 3, where its fitness
value is slightly lower than the fitness values from other



6 International Journal of Computer Games Technology

Figure 4: Path editor.

tests). More experiments are needed in order to determine
whether steepest ascent hill-climbing produces a significantly
better result than ordinary genetic algorithm in our problem.
We, therefore, run our parameter tuning with genetic
algorithm alone and with our steepest ascent hill-climbing
as the genetic algorithm enhancement (we apply the second
setting from Table 1). The testing setup and its outcome are
discussed in Section 4.

3.4. Emergent Editor. Our tool for adjusting properties of
emergent environment maps is in the form of a map editor.
We name the editor emergent editor. Its features can be
divided into 4 parts.

(i) Path editor (Figure 4)—a user can define, edit, or
delete waypoints of fire events and water events.

(ii) Automatic properties adjustment (Figure 5)—this
feature adjusts map properties automatically according to a
given scenario defined by paths of events.

(iii) Event player (Figure 6)—it can show the original
scenario defined by paths of events, and the scenario created
after the map properties are set.

(iv) Property editor (Figure 7)—a user can also view or
edit map properties directly from this view.

4. Testing and Results

In this section, we first discuss results from experiments
using genetic algorithm enhanced by steepest ascent hill-
climbing (which gives better results than using genetic algo-
rithm alone). Then we discuss whether using steepest ascent
hill-climbing really gives significantly better results statisti-
cally. Finally, an experiment showing how our parameter-
tuning tool can help map designers save time is presented.

Testing is initiated by creating paths of events randomly
on a map of 8 × 8 cells. Paths of events are limited to total

of 6 waypoints. Events with the same number of waypoints
are tested between 2–5 times. Each waypoint has its radius
of one or two cells. The total running time of each event
is limited to 50 time units. The wind direction is chosen
randomly between no wind and random direction. From
100 tests, using genetic algorithm and steepest ascent hill-
climbing, our result shows that the tool preserves 75.09%
of event points at waypoints on average and produces event
points outside given scenarios by only 2.3% on average.

Figure 8 shows our test result grouped by the number of
waypoints. The horizontal axis represents various fire and
water scenarios. Fm1m2 . . .mn represents n fire paths in the
map, where the first path has m1 waypoints, the second
path has m2 waypoints, and so on. Wm1m2 . . .mn represents
water paths in the same way. The vertical axis represents the
percentage of event points for each scenario.

Figure 9 illustrates one of the test scenarios with 3
waypoints of fire spreading. Figure 9(a) shows the events
designed to take place at 3 points in time, while Figure 9(b)
shows actual events that take place after the actual parameter
adjustment at the same points in time. Darker cells are forest
cells, while lighter cells are grass cells. There is also a water
cell at the middle-bottom of the map (white cell). Cells with
white circles are cells that catch fire.

There are 11 tests that our tool gives less than half
of events correctly at waypoints. When we look into their
causes, we discover that their scenarios are impossible to take
place. Fire was set to burn longer than the fuel in the map
could support. Water was set to flow too quick or too far from
its source. In our system, the further away from its source, the
slower the water can flow. This is because there are more cells
to absorb water.

In order to find out whether steepest ascent hill-climbing
significantly enhances the accuracy, we run the experiment
again, with and without steepest ascent hill-climbing, and
compare their results using a paired t-test.



International Journal of Computer Games Technology 7

Figure 5: Automatic properties adjustment.

Figure 6: Event player.

The paired t-test result for the number of preserved
waypoints informs us that the two-tailed P value is less
than .0001. By conventional criteria, this difference is
considered to be extremely statistically significant. The
difference between the mean of the experiment using steepest
ascent hill-climbing and the experiment that does not use
steepest ascent hill-climbing equals to 2.2953264. The 95%
confidence interval of this difference is from 1.3483512 to
3.2423016. The intermediate values used in calculations
include t = 4.8094, df = 99, and standard error of difference
= 0.477. For the percentage of outside fire path, the difference
is found to be not quite statistically significant. The 95%
confidence interval of this difference is from −3.10873116

to 0.26262415. For the percentage of outside water path, the
difference is found not to be statistically significant. The 95%
confidence interval of this difference is from −0.29874686 to
0.40685569.

From the t-test results, we can conclude that using
steepest ascent hill-climbing gives a significant boost to the
number of preserved waypoints. Therefore, it should be
used in conjunction with genetic algorithm for tuning map
parameters.

In order to test whether the tool that uses our parameter-
tuning technique actually benefits scenario designers, we
perform an experiment by having 6 testers manually
tune the maps from Section 3.3 for 30 minutes per map



8 International Journal of Computer Games Technology

Figure 7: Property editor.

0
20
40
60
80

100

F6 F5 F4 F3 F2 F4
2

F3
2

F2
2

F3
3

F2
22

W
6

W
5

W
4

W
3

W
2

W
42

W
32

W
22

W
33

W
22

2
F4

W
2

F3
W

2
F2

W
2

F3
W

3
F2

W
3

F2
W

4
F2

2
W

2
F2

W
22

Outside fire path
Outside water path
Waypoints preserved

Figure 8: Test result.

I I I

IIII

I I I I

IIII

I I I

[24]

[32]

[19]

[24]

[32]

[19]

[24]

[32]

[19]

I I I

IIII

I I I I

I

III

I II

III

I I I I

IIII

I I I I

III

(a)

I I I

IIII

I I I I

IIII

I I I

[24]

[32]

[19]

[24]

[32]

[19]

[24]

[32]

[19]

I I I

IIII

I I I I

I

III

I II

III

I I I I

IIII

I I I I

III

(b)

Figure 9: Test scenario.



International Journal of Computer Games Technology 9

Table 2: Tuning accuracy results from testers and the tool.

Tester ID
Waypoint preserved Outside path

(%) (%)

1 55.68 1.23

2 61.11 0.00

3 62.47 0.00

4 42.22 45.47

5 51.11 0.00

6 35.56 0.00

Average tester
51.36 7.78

result

Our tool result 76.05 10.06

(the 30-minute period is the time our testers are willing
to spend). We compare the testers’ results with the results
obtained by our tool in Table 2.

From Table 2, it can be seen that our tool is much more
precise in preserving waypoints, given an equal period of
operation time. Therefore, our tool is capable of producing
accurate scenarios faster than human. For outside fire and
water paths, our tool performs worse than human. This turns
out to be because most of the testers cheat by removing fuel
from all outside paths. This cheat cannot be done in actual
nature simulations or games because it will produce very
unnatural maps. For tester 4 who does not cheat, the amount
of outside path is 45.47%. This is another good indication
that using our tool can save valuable development time.

5. Conclusion

From our experiment, we conclude that genetic algorithm,
with help from steepest ascent hill-climbing technique, can
be used effectively for adjusting parameters in emergent
maps which leads to simple-to-control scenarios without the
need to manually edit any property.

Some problems, such as fire burning out before the
expected ending time and water running too slowly or too
short in distance, still need to be solved. This can be solved
by having the algorithm also adjust the initial temperature
of fire and the amount of water at the first waypoint. There
are also other possible improvements. It may be useful to
allow users to control scenarios with other means besides
creating paths of events. Increasing the speed of the tool
will allow a better use with bigger maps and more complex
environments. Other kinds of emergent environments, such
as environments used for actual ecological modeling, are
good candidates for expanding the value of our tool.

Acknowledgment

This research is sponsored by Faculty of Engineering,
Chulalongkorn University, Bangkok, Thailand.

References

[1] P. Sweetser and J. Wiles, “Using cellular automata to facil-
itate emergence in game environments,” in Proceedings of
the 4th International Conference on Entertainment Computing
(ICEC ’05), Sanda, Japan, September 2005.

[2] P. Sweetser and J. Wiles, “Scripting versus emergence: issues
for game developers and players in game environment design,”
International Journal of Intelligent Games and Simulations, vol.
4, no. 1, pp. 1–9, 2005.

[3] W. W. Hargrove, R. H. Gardner, M. G. Turner, W. H. Romme,
and D. G. Despain, “Simulating fire patterns in heterogeneous
landscapes,” Ecological Modelling, vol. 135, no. 2-3, pp. 243–263,
2000.

[4] W. Song, F. Weicheng, W. Binghong, and Z. Jianjun, “Self-
organized criticality of forest fire in China,” Ecological Mod-
elling, vol. 145, no. 1, pp. 61–68, 2001.

[5] C. J. Merz, M. Pazzani, and A. P. Danyluk, “Tuning numeric
parameters of a knowledge-based system for troubleshooting
the local loop of the telephone network,” IEEE Expert, vol. 11,
no. 1, pp. 44–49, 1996.

[6] R. Legenstein, H. Markram, and W. Maass, “Input prediction
and autonomous movement analysis in recurrent circuits of
spiking neurons,” Reviews in the Neurosciences, vol. 14, no. 1-
2, pp. 5–19, 2003.

[7] R. Breukelaar and Th. Bäck, “Using a genetic algorithm
to evolve behavior in multi dimensional cellular automata:
emergence of behavior,” in Proceedings of Conference on Genetic
and Evolutionary Computation (GECCO ’05), pp. 107–114,
Washington, DC, USA, June 2005.

[8] I. Karafyllidis, “Design of a dedicated parallel processor for
the prediction of forest fire spreading using cellular automata
and genetic algorithms,” Engineering Applications of Artificial
Intelligence, vol. 17, no. 1, pp. 19–36, 2004.


	Introduction
	Related Works
	Tool for Adjusting Properties of Emergent Environment Maps
	Overview
	Genetic Algorithm
	Steepest Ascent Hill-Climbing
	Emergent Editor

	Testing and Results
	Conclusion
	Acknowledgment
	References

